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Abstract

Since 1982, the olfactory system of creatures has piqued the interest of academics who seek to create a
comparable system. Despite its mysterious nature, the first stage has been successfully completed with
the development of the ENose. Its extended applications have opened new doors for researchers, ranging
from food quality testing to bomb detection and even, more recently, identifying those infected with the
coronavirus. In this talk, we will review the structure and sensor behaviour of the ENose, as well as its
applications, such as odour source localization and various applications in agriculture. The challenge of
odour identification has prompted researchers to employ robots with sensors to investigate and locate odour
sources. The present study aims to synthesize documented research and provide a fresh perspective on odour
localization research efforts and tests conducted. The study highlights previous attempts to equip robots with
sensors to explore the real indoor or outdoor environment. Initially, a review was conducted to investigate
various aspects of the sector and the obstacles involved.
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1. Introduction
The electronic nose is a device used to investigate
organic smell functions. The electronic nose is used
to differentiate complicated volatiles by replicating the
structure and principles of olfactory perception[1]. The
olfactory system, sometimes known as the sense of
smell, is the sensory system responsible for smelling
(olfaction). Olfactory system is one of the unique
abilities that has been linked to certain organs. Several
hundred years ago, village doctors in rural China used
the distinctively sweet scent of a patient’s breath to
diagnose diabetes. To establish the same diagnosis
presently, doctors utilise a series of blood sample
and laboratory analysis, but physicians may soon be
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sniffing their patients’ breath again. This time, the
physicians will have electronic noses that are small and
inexpensive enough to fit in their pockets. An electronic
nose is a device that attempts to mimic the anatomy
and functions of the human nose[2]. The present study
aims to compare and synthesize documented researcher
work on ENose structure and odour localization with
the real environment. The study provides an overview
of research efforts and tests conducted to provide
fresh perspectives on ENose and odour localization.
The paper is organized as follows: Section 2 provides
an overview of the history and aims of the ENose.
Section 3 details the structure of the ENose, including
both hardware and software components. Section 4
describes the various applications of ENose technology
in different sectors. The paper concludes with Section 5.
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2. ENose History and aims
The history of ENose over the years has been shown in
figure 1 starting from 1920 till the present time. As the
figure shows£¬Zwaardemaker and Hogewind in 1920
[3], They proposed that scents might be recognized by
detecting the electric charges formed on a thin water
spray containing the odourant in solution, but they
were unable to turn this into a practical apparatus.
Hartmann and colleagues identified a polished metal
wire microelectrode electrochemical sensor. A network
of many senses was created to work concurrently by
employing various combinations of metal electrodes,
electrolytes, and applied possibilities. To detect scents,
Moncrieff used a single thermistor (temperature-
sensitive resistor) covered with a variety of materials,
including poly (vinyl chloride), gelatine, and vegetable
oil. He saw that the films he employed were non-
specific, and he hypothesised that if he built an array
of six thermistors with six different coatings, the
resulting device would be able to differentiate between
a huge number of distinct odours. Buck et al. 1965 [4],
employed contact potential modulation to detect scents,
whereas others employed conduction modulation. After
then, it took nearly twenty years for the idea of an
ENose to develop as a smart structure consists of an
array of chemical sensing for odour detection. The term
"ENose" came for the first time in the 1980s [5].

Figure 1. History of ENose.
Persaud and Dodd at Warwick University, UK, in

1982 [6], reported the earliest authentic reporting
about an innovative device. The sensors employed
in this experiment were essentially amperometric
e11 electrochemical sensing devices. Hitachi Research

Laboratory in Japan, Ikegam in 1987 [7]. By this point,
advancements in electronics, sensors, and computers
had combined to make an ENose a realistic prospect.
In 1991, a segment of a NATO specialized training on
chemosensory information processing was addressed
to robotic olfactory system. A device that identifies
simple or complicated "odours" by combining an array
of electronic chemical sensors with partial specificity
with a suitable sequence detection algorithm.

Gardner ultimately provided an acceptable definition
of an ENose in 1994 [8]. A device consisting of
an array of electronic chemical sensors with partial
specificity and a suitable sequence recognizer capable
of distinguishing simple or complex scents". The design
of an ENose, on the other hand, shares many similarities
with multi-sensor systems developed for the detection
and measurement of individual components in a
simple gas or vapour combination. The advancement of
electronic nose technology, or ENose, can be traced back
to the late 1980s and early 1990s, when researchers first
began exploring the use of sensors for odour recognition
and realization.

The first ENoses were developed in the late 1980s
and early 1990s and were based on metal oxide sensors
(MOS) or conductive polymer sensors. These early
ENoses were limited in their ability to accurately
detect and identify odours, and they often produced
inconsistent results [9].

In the late 1990s and early 2000s, advances in sensor
technology led to the development of more advanced
ENoses, including those based on quartz crystal
microbalance (QCM) sensors and surface acoustic wave
(SAW) sensors. These ENoses were capable of detecting
a wider range of odours and were more accurate than
earlier ENoses.

In the late 2000s and early 2010s, the use of
artificial neural networks (ANNs) in ENose applications
became more widespread, as ANNs were able to
effectively model the complex relationships between
sensor outputs and odour properties. This led to the
development of ENoses that were capable of accurately
identifying odours, even in complex and challenging
environments [10].During the years 2000-2005 period,
researchers were focused on improving the accuracy
and sensitivity of ENoses. They began incorporating
more advanced sensors, such as metal oxide sensors,
and developing better algorithms for analyzing the data
collected by the sensors. The use of ENoses in the food
and beverage industry also became more widespread,
as they were used to detect contaminants and monitor
product quality.

The record on 2006 to 2010 shows that the
development of ENoses during this period was
largely driven by advancements in nanotechnology.
Researchers began using Nano sensors, which are
smaller and more sensitive than traditional sensors, to

2 EAI Endorsed Transactions 
on AI and Robotics 



ENose design and structures from statistical analysis to application in robotic: a compressive review

improve the accuracy and sensitivity of ENoses even
further. The healthcare industry also began to adopt
ENoses, with applications such as disease diagnosis and
monitoring becoming more common.

Research activity in the period of 2011 to 2015
indicated that, ENoses became more accessible and
affordable, thanks in part to the development of
microelectromechanical systems (MEMS) technology.
MEMS allowed for the production of smaller and
cheaper sensors, making ENoses more practical for
a wider range of applications. The development
of wireless communication technology also made
integrating ENoses into larger systems, such as smart
homes or industrial monitoring systems easier. as the
final period 2016 to present shows the development
of ENoses has continued to focus on improving their
accuracy, sensitivity, and portability. Researchers are
also exploring new applications for ENoses, such as
air quality monitoring and security applications. One
of the most promising areas of development is the
use of machine learning and artificial intelligence to
analyze the data collected by ENoses, which could allow
for even more accurate and precise odor detection.
With ongoing research and development, the future of
ENoses looks bright, with potential applications in a
wide range of industries [12].

Recent developments: In recent years, ENose tech-
nology has continued to evolve, with advancements in
sensor technology and the development of new sensing
materials, as well as the integration of ENoses with
other technologies, such as cloud computing and Inter-
net of Things (IoT) systems. This has led to the devel-
opment of more advanced ENoses with improved accu-
racy, sensitivity, and reliability [11]. The ENose technol-
ogy is modelled on the human nose since the two have
several resemblances. Most animals and reptiles have
a primary and secondary olfactory system [13]. The
primary olfactory method recognizes airborne chemi-
cals, whereas the secondary olfactory system recognises
fluid-phase stimuli.Figure 2 demonstrated the biologi-
cal nose and ENose comparison for sensing the volatile
compounds.

The human nose is an amazing organ, with millions
of various types of odour receptors. They allow an
average person to identify 10000 distinct scents, that
are generally a complex blend of vapours or volatile
organic compounds, as chemists refer to them. Some are
caused by chemical levels in the parts-per-trillion range
in atmosphere [14]. By smelling, a properly functioning
individual can identify the difference between new milk
and poor milk, or go into a house and notice that a
pie is baking. The use of the human sense of smell as
an odourant instrument is limited for several purposes:
it is highly subjective, easily fatigued, and difficult to
understand. As a result, there is a significant demand
for an instrument that can simulate the human sense

Figure 2. biological nose vs ENose.
of smell yet does not have such limitations in order to
be employed in industrial applications. In this regard,
ENoses might be employed in fields such as food,
environmental industry, and medicine for a variety
of activities such as pollution management and air-
quality monitoring, industrial process control, sickness
diagnosis, and safety considerations [15].The human
nose and electronic nose (ENose) are both capable of
detecting and identifying different odours, but they
have some important differences.

Sensitivity: The human nose is highly sensitive and
can detect a wide range of odour molecules, while
ENoses typically use sensors that are not as sensitive
as the human olfactory system. However, ENoses can
often compensate for this by using multiple sensors in
combination, which allows them to detect and identify
a wider range of odours than would be possible with a
single sensor [11].

Accuracy: The human nose is often more accurate
in detecting and identifying odours, due to its highly
developed olfactory system. However, ENoses can be
trained to recognize specific odours with high accuracy,
and they are often more consistent and reliable than the
human nose [11].

Response time:The human nose can respond to an
odour in a matter of seconds, while ENoses typically
take a few seconds to a minute to respond. However,
the response time of an ENose can be improved by
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using faster sensor technologies and more powerful
computing systems [11].

Cost: The human nose is a naturally occurring
biological system, while ENoses are typically composed
of expensive sensors and electronics. However, the cost
of ENoses has been decreasing over time, and they
are becoming more accessible and affordable [11].The
olfactory system of humans has been depicted in figure
3.

Figure 3. Olfactory System, or Sense of Smell System in humans.
Numerous meals’ aromas and flavours are influenced

by volatile organic molecules, which can serve as
accurate indications of freshness and quality. However,
a fresh-cut orange or a slice of Swiss cheese, for
example, may contain hundreds of these compounds.
The human nose has hundreds of distinct odour
sensors, the response patterns of which are processed
by the brain, which then searches its memory for
matches to previously recorded response patterns. An
electronic nose has much fewer sensors; commercial
units typically contain between 10 and 50 sensing units.

3. ENose Structure
The structure of an electronic nose, or Enose, typically
consists of several key components as indicated in
figure 4.
•Sensing array: The sensing array is the core

component of an ENose and consists of multiple sensors
that are sensitive to different chemical compounds. The
sensors can be made of various materials, including
metal oxides, conductive polymers, quartz crystal
microbalances, or surface acoustic waves. The sensor
signals are collected and used to produce a unique
signature for each odour [10].
•Sampling system: Sampling system: The sampling

system is responsible for introducing the odour sample
into the ENose. This can be done through various
methods, including air flow, pumping, or diffusion. The
sampling system must be carefully designed to ensure
that the odour sample is evenly distributed across the
sensing array [11].

Figure 4. ENose Overview and structure parts and section.

•Data acquisition system: The data acquisition
system is responsible for collecting and storing the
sensor signals generated by the sensing array. This
system typically includes amplifiers, analog-to-digital
converters, and a computer for data storage and analysis
[9].

•Pattern recognition system: The pattern recogni-
tion system is responsible for analyzing the sensor
signals and identifying the odour. This can be done
using various algorithms, including artificial neural
networks, principal component analysis, linear discrim-
inant analysis, or support vector machines. The pattern
recognition system must be trained on a large and
diverse set of odour samples in order to accurately
identify odours [10].

An Electronic Nose (ENose) is a system, which can
sense the different VOCs (Volatile Organic Compounds)
just like a human nose. The ENose can sense these
VOCs through different sensors. Organic polymers,
metal oxides, quartz crystal microbalance, and even
gas-chromatography (GC) or mass spectroscopy (MS)
are examples of ENose detectors [16]. An ENose uses
a simple structure. The structure of ENose is given in
the figure 5. The structure consists of sampling systems,
data pre-processing and feature extraction.

From fig.5 it can be seen how samples are identified
and classified using the structure of ENose. The figure
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below shows the entire process of how sampling is done
in ENose system.

Figure 5. Flowchart of the ENose entire process of the sampeling
method.

The figure 5 gives a clear idea and vision of ENose
sampling process. As it shown the ENose sampling
process involves a series of steps that enable the device
to capture, analyze, and classify odours or flavors. Here
is a clear idea and vision of the ENose sampling process:
•Sampling:The ENose sampling process starts with

the collection of the sample that contains the odour or
flavor. This can be achieved through different methods,

such as headspace sampling or direct liquid injection.
The collected sample is then transferred to the ENose
for analysis.
•Detection: The ENose contains an array of sensors

that can detect volatile organic compounds (VOCs) in
the sample. Each sensor in the array is sensitive to
specific VOCs, and together, they provide a unique
fingerprint of the odour or flavor.
•Analysis: Once the ENose detects the VOCs in

the sample, it sends the data to a computer or a
microprocessor for analysis. The analysis involves the
identification of the VOCs and their concentrations in
the sample.
•Classification: The final step in the ENose sampling

process is the classification of the odour or flavor.
This is achieved through the comparison of the VOC
fingerprint obtained from the sample with a pre-
existing database of known VOC fingerprints. The
ENose can then classify the sample as belonging to
a particular odour or flavor.The vision of the ENose
sampling process is to provide a fast, accurate, and
non-invasive method of detecting and analyzing odours
and flavors. The ENose can be used in a variety
of applications, including food and beverage quality
control, environmental monitoring, medical diagnosis,
and homeland security. With further development, the
ENose technology can potentially be used to diagnose
diseases based on the analysis of breath or bodily fluids.
Additionally, the ENose can be integrated with other
technologies such as artificial intelligence and machine
learning to improve the accuracy of odour or flavor
classification. [17]

3.1. ENose Parts: sampling methods
There are different parts of the ENose. The first one to
be discussed here is the sampling methods of an ENose.
There are several methods for sampling in electronic
nose (ENose) technology:
•Direct injection:Direct injection involves injecting

the odour sample directly into the sensing array. This
method is commonly used in laboratory settings but
is not suitable for real-world applications due to the
complexity and cost of the sampling system [10].
•Diffusion: Diffusion involves introducing the odour

sample into the ENose through a porous membrane.
The odour molecules diffuse through the membrane
and are detected by the sensing array. This method is
simple and inexpensive but may not produce accurate
results if the diffusion rate is not uniform across the
sensing array [10].
•Air flow: Air flow involves drawing air containing

the odour sample into the ENose through a pump
or fan. This method is widely used in real-world
applications due to its simplicity and reliability.
However, the air flow rate must be carefully controlled
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to ensure that the odour sample is evenly distributed
across the sensing array [11]. In conclusion, the choice
of a sampling system for an ENose application will
depend on the specific requirements of the task,
including the type of odourant to be detected, the
desired level of accuracy and sensitivity, and cost
considerations. [18]

Table 1. Advantages and Disadvantages of different ENose
Sampling Methods

SAMPLING
MODE

ADVANTAGE DISADVANTAGE

Adsorption, Des-
orption

High accuracy,
Air Chamber and
tightness

Takes a long time,
High. Collection
material

STATIC Head
Space, Desorption

Simple and Low
cost. Suitable for
volatile and semi-
volatile odourants

Limited in
accuracy and
sensitivity. Not
suitable for some
odourants. Can
be influenced by
temperature and
pressure.

Dynamic uniform
extraction

Improved
accuracy and
sensitivity.
Suitable for a
wider range of
odourants

Complex and
costly. Can be
influenced by
temperature,
pressure, and
flow rate

Direct Sampling Can be used for
both volatile and
semi-volatile
odourants. High
accuracy and
sensitivity. Used
for a wide range
of odourants.

Takes a long time,
High. Collection
material

Air Contact Easy to operate Accuracy is low
Thermal desorp-
tion

No need for sol-
vent and its auto-
mated

Limited sample
size, Limited
compound range

•Purge and trap: Purge and trap involve drawing a
known volume of air over the odour sample, trapping
the odour molecules in a sorbent material, and then
releasing the trapped odour into the ENose. This
method is commonly used in industrial settings but
is more complex and expensive than other sampling
methods [11]. Table 1 shows the different sampling
methods of ENose, along with its advantages and
disadvantages.

3.2. ENose Parts: GAS SENSOR Type
Gas sensors are the second component of an ENose. A
gas sensor is an instrument that can transform chemical
compound concentrations into electric impulses and
responds to the concentration of certain nanoparticles
in liquids or gases [20].Table 2 shows the different types

of sensors that can be used for gas detection along with
their advantages and disadvantages.

Table 2. Characteristics of diverse types of gas sensors

SENSOR TYPES ADVANTAGE DISADVANTAGE

Optical Good sensitivity,
accuracy, reliabil-
ity, and lengthy
lifespan

Size reduction is
challenging and
costly

Surface acoustic
wave

Good accuracy,
quick reaction
time, and
integrated circuit
integration

Complicated
interfacing

Electrochemical High Accuracy,
low battery
consumption, and
superb clarity.

The maximum
temperature is
restricted, as is
the life span.

Catalytic Short size, Cheap
and low operating
cost.

Extremely
susceptible to
changes in the
environment.

Semi-conductor
(chemo resistive,
chemo-resistive)

Cheap, quick
reaction time,
and a diverse
spectrum of
targeted gases

Sensitivity and
selection are
modest.

Chemicals detectors can also be based on the
fundamentals of an electrical, thermal, mass, or optical
sensor. The ENose gadget has the benefit of being low-
cost and portable for in-person and virtual readings.
The metal oxide semiconductor-based gas sensor is
the most widely used. So they not only have a basic
construction, a decent cost, a quick reaction time, and
great accuracy, in addition to being user-friendly and
long-lasting. Even though their activities are impacted
by climate, moisture, and high energy consumption,
they are widely employed in a variety of applications
such as ENose for gas sensors, odour localization, plume
monitoring, and so on. A table is shown to describe the
characteristics of diverse types of gases. Table 2 gives
the characteristics of different types of gas sensors along
with their advantages and disadvantages. As Table 2
shows, gas sensors have different methods. Some of
these methods are based on electrical variations with
different materials, while some are based on other kinds
of variations.

The electrical variation contains materials like metal
oxide, polymer, carbon nanotubes and moisture-
absorbing materials. The other methods which have dif-
ferent variations are optic, acoustic methods gas chro-
matograph and calorimetric methods. Sno2 is one kind
of MOX Gas sensor which have a relativity high sensi-
tivity and is used for various gas sensor responses. Gas
sensors are mainly compared with respect to param-
eters like response time, reproducibility repeatability,
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energy consumption, sensitivity (PPM), selection, sta-
bility and production cost. but as the general problem
all have some issues like; drift in output, long time
responsibility, sensitivity, and environmental effect like
humidity and temperature) [21].

The working temperature for this gas sensor is
different which makes the limitation selecting these
sensor type to solve this problem the array of sensors
proposed. MOX gas sensors have several advantages,
including:
•Sensitivity: MOX gas sensors are highly sensitive to

low levels of gases in the air. They can detect a wide
range of gases, including carbon monoxide, methane,
and other volatile organic compounds.
•Sensitivity: Selectivity: MOX gas sensors can be

designed to be highly selective for specific gases,
making them useful for detecting gases in complex
environments where multiple gases are present.
•Low cost: MOX gas sensors are relatively inexpen-

sive compared to other types of gas sensors, making
them a popular choice for many applications.
• Fast response time: MOX gas sensors can detect

changes in gas concentrations quickly, typically within
seconds, making them ideal for applications that
require fast response times.
•Robustness: MOX gas sensors are highly robust

and can operate in a wide range of temperatures and
humidity¡¯s. They are also resistant to contaminants
in the air, making them suitable for use in harsh
environments.
•Easy to use: MOX gas sensors are easy to use and

can be integrated into a variety of electronic devices,
making them useful for a wide range of applications.

MOX (metal oxide) gas sensors are commonly used
for detecting the presence of gases in the environment.
While MOX sensors have many advantages, such as low
cost, small size, and fast response times, there are also
some disadvantages to consider. that can be listed as
following:
•Limited sensitivity: MOX sensors have a limited

sensitivity range, which means they may not be able to
detect low concentrations of certain gases.
•Cross-sensitivity: MOX sensors can be sensitive to

a wide range of gases, including those that are not being
targeted. This can lead to false readings and inaccurate
measurements.
•Short lifespan: MOX sensors tend to have a shorter

lifespan compared to other types of gas sensors. The
sensor’s sensitivity can degrade over time, and it may
need to be replaced periodically.
•Temperature and humidity dependence: MOX

sensors can be affected by changes in temperature and
humidity. High temperatures can cause the sensor’s
baseline resistance to increase, which can lead to
inaccurate readings.

•Calibration: MOX sensors require regular calibra-
tion to ensure accurate readings. Calibration can be a
time-consuming process and may require specialized
equipment and expertise.

Overall, while MOX sensors have many advantages
and are widely used in various applications, they do
have some limitations that need to be considered when
selecting a gas sensor for a particular application. The
reactions of gas detectors vary depending on densities,
temperatures, and humidity levels, and thus the goal
of this research is to provide a more efficient model
for TGS sensors and to investigate the influence of
temperature, humidity, and gas density on the sensor’s
reactions.

The ENose can be made up an array of MQ and TGS
chemo-sensors with varying degrees of sensitivities to
various atmospheric chemicals, as it is shown in Table 3
along with their respective target gases.

An ENose’s purpose is to detect odour samples and
maybe determine its amount using a signal processing
and pattern recognition system. Those two processes,
nevertheless, can be further broken into the following
[23]: pre-processing, feature extraction, prediction or
classification, and decision-making. By exposing the
samples to the sensors, a database of the predicted
odour must be created.

3.3. ENose Parts: Pre-Processing and
Post-Processing Techniques

Pre-processing methods attempt to adjust for sensing
drifts, compress sensors’ transient performance, and
decrease variance from sample to sample. Baseline
modification, response normalisation, and sensory tran-
sient compression are examples of common approaches.
Pre-processing is an important step in the analysis of
data generated by an electronic nose (ENose) as it can
improve the accuracy and robustness of the pattern
recognition system. Some common pre-processing tech-
niques used in ENose systems include:
•Normalization: Normalization is a technique for

scaling the sensor signals so that they have a similar
range of values. This can improve the accuracy of the
pattern recognition system by reducing the impact of
variations in sensor sensitivity. Normalization can be
done using techniques such as min-max normalization
or z-score normalization [24].
•Baseline correction: Baseline correction is a tech-

nique for removing any offset or drifts in the sensor
signals. This is important because it can improve the
accuracy of the pattern recognition system by removing
any systematic effects that are not related to the odour.
Baseline correction can be done using techniques such
as polynomial regression or moving average filtering
[10].
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Table 3. MQ and TGS Gas sensors variety as the most used
gas sensor type for ENose[22]

Sensor Target Gases

MQ2

Methane(0 to 100 PPM).
Butane(0 to 5,000 PPM).
Lpg(0 to 10,000 PPM)
Smoke(0 to 1,000 PPM)

MQ3 Alcohol, Ethanol(25 to 500
PPM)

MQ4 Methane (0-100 PPM), Cng
Gas(0 to 4000 PPM)

MQ5 Natural Gas (50-200 PPM),
LPG( 1,000 to 2,000 PPM

MQ7 Carbon Monoxide (10 to
500 PPM)

MQ9 Flammable Gases (100 to
1000 PPM)

MQ135 Benzene (10 to 1000PPM),
Alcohol (10 to 300PPM),
Smoke (10 to 300PPM)

MQ138 Benzene (10 to 1000PPM),
Toluene (5 to 500PPM),
Acetone (Up to 50PPM),
Propane Form aldehyde
Gas (Less Than 0.06 PPM)

TGS 821 Hydrogen Gas (50PPM)
TGS 822 Organic Solvent Vapors

and Other Vocs (300 PPM)
TGS 825 Hydrogen Sulfide (5 PPM)
TGS 826 Ammonia (50 PPM) and

Other Vocs

TGS 2600
Air Contaminants (Ethanol,
Iso-Butane, Hydrogen)
(1 to 30 PPM)

TGS2602 Vocs And Odourous Gases
(1 to 30 PPM)

TGS 2610 Liquefied Petroleum (Lp)
Gas and it’s Component
(500 to 10000PPM)

TGS 2620 Alcohol and Organic
Solvent Vapours (50 to
5000PPM)

•Denoising: Denoising is a technique for removing
any noise or unwanted signal fluctuations in the
sensor signals. This can improve the accuracy of the
pattern recognition system by reducing the impact of
measurement noise or environmental noise. Denoising

can be done using techniques such as wavelet denoising
or Kalman filtering [10].
•Feature extraction: Feature extraction is a technique

for reducing the dimensionality of the sensor signals
and identifying the most important features of the
pattern recognition system. This can improve the
accuracy of the pattern recognition system by reducing
the impact of irrelevant or redundant information.
Feature extraction can be done using techniques such
as principal component analysis or linear discriminant
analysis [10]. The objective of feature extraction is
twofold: firstly, to minimise the dimensionality of
the measurement space, and secondly, to extract
information important to pattern identification. PCA,
ANN, LDA, and SVM algorithms are used for
feature extraction. The objective of feature extraction
is twofold: first, to minimise the dimensionality
of the measurement space, and second, to obtain
information important to pattern identification. It
is often carried out using linear transformations
such as principal component analysis (PCA) and
linear discriminant analysis (LDA). Descriptions of
popular statistical analytical techniques. Electronic
nose (ENose) systems employ various feature extraction
techniques to identify the unique signature of an
odour from the sensor signals generated by the sensing
array. Some of the commonly used feature extraction
techniques are:
•Principal Component Analysis (PCA): PCA is

a dimensionality reduction technique that seeks to
identify the underlying structure in the data by
projecting it onto a smaller number of orthogonal axes.
This can help to reduce the complexity of the data
and improve the performance of the pattern recognition
system [9] [29–33].
•Linear Discriminant Analysis (LDA): LDA is a

classification technique that seeks to project the data
onto a lower-dimensional space that maximizes the
separation between classes. The mathematical equation
for Linear Discriminant Analysis (LDA) is:

w = (Sw)−1 × (m1 −m2) (1)

Where: w is the discriminant function or linear
combination of features that separate the classes. Sw
Is the within-class scatter matrix, which measures the
variance within each class m1 and m2 are the mean
vectors of the two classes. LDA aims to find the
optimal discriminant function w that maximizes the
between-class variance while minimizing the within-
class variance. The solution to the equation is the
optimal value for w. This can be useful in ENose
applications where the goal is to distinguish between
different odour classes [25, 26, 36, 37].
•The Partial Lease Square Regression(PSLR): PSLR

integrates and generalizes the characteristics of PCA
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and multiple linear regressions. The purpose of which
is to examine or predict a collection of dependent
variables based on a set of independent variables or
predictors. It is especially effective for forecasting a
collection of dependent variables. [36, 37].
• Artificial Neural Networks (ANNs): ANNs are

machine learning algorithms that are modelled after the
structure and function of the human brain. They can
be trained to recognize patterns in the sensor signals
and identify odours. ANNs are commonly used as the
pattern recognition system in ENose applications [11].
ANNs are machines teaching algorithms that are based
on the organization and functions of the human mind.
They can model complex relationships between inputs
and outputs, and have been widely used in ENose
applications. The mathematical equation for an ANN is
a multi-layer feedforward network with the following
form:

y = f (WL) × f (WL−1) . . . . . . f (W2) × f (W1 × x + b1 + b2) . . . ..) + bL
(2)

Where x is the input, Wi are the weights, bi are the
biases, f is the activation function, and y is the output
[13, 34, 35].
• Support Vector Machines (SVMs): SVMs are

machine learning algorithms that seek to find the
optimal boundary that separates the data into different
classes. They are commonly used for classification
tasks and have been applied to ENose applications to
distinguish between different odour classes [26]. SVMs
have supervised learning algorithms that can perform
regression and categorization tasks. They are based on
the idea of finding a hyperplane that maximizes the
margin between classes. The mathematical equation for
a linear SVM can be represented as:

y = Wx + b (3)

Where x is the input, W is the weight vector, b is the
bias, and y is the output. The goal is to find the optimal
values of W and b that separate the classes [26, 37, 39].
•Fourier Transform Infrared Spectroscopy (FTIR):

FTIR is a spectroscopic technique that measures the
infrared spectrum of a sample. It can be used as a
complementary technique to ENose systems to provide
additional information about the chemical composition
of the odour sample [25].

S(v) =
∫

l
(i(t))e[−2πi(vt)]dt (4)

where: S(v) represents the complex spectrum of
the sample at frequency v, and I(t) represents the
intensity of the sample as a function of time t. The
e([-2πi(vt)]) represents the complex exponential function
at frequency v and time t.
• Deep learning methods, specifically Artificial

Neural Networks (ANNs), have been widely used

in ENose applications due to their ability to model
complex relationships between inputs and outputs. Two
methods of Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs) [39].
•Convolutional Neural Networks (CNNs): CNNs

are a type of ANN that are commonly used for image
and signal processing tasks. They are designed to
effectively handle spatial and temporal correlations in
the data. The mathematical equation for a CNN is
typically composed of multiple layers of convolution,
activation, and pooling operations, which can be
represented as follows:

y = f(Conv(x)) + b (5)

where x is the input, Conv is the convolution
operation, b is the bias, and f is the activation function
[27].
•Recurrent Neural Networks (RNNs): RNNs are a

type of ANN that are designed to handle sequences
of data, such as time series or sequences of sensor
readings. The mathematical equation for an RNN can
be represented as:

ht = f (Wh) × ht−1 + (Wx) × Xt + b) (6)

where ht is the hidden state at time t, Xt is the input
at time t, Wh is the weight matrix for the hidden state,
Wx is the weight matrix for the input, b is the bias, and
f is the activation function [28].

The post-processing method includes all the deep
neural and machine learning methods that are
combined with ENose systems to produce an accurate
tool for detection. The various work was done by
different researchers, using different machine learning
methods for ENose systems. The review of pervious
research papers shows, To recognize the existence of
one out of two gases, an ENose system was presented
by Khalaf et al. 2008 [41]. The proposed system of
the authors contains 8 sensors, 5 of which were gas
sensors and the remaining 3 sensors were temperature
sensors. The Support Vector Machine (SVM) was used
to train the data model for this technique. While
for the prediction of concentrations, least square
regression was used to train the model. Experiments
were conducted by the authors, and the result they
obtained was quite good, as they found the regression
method to be more effective for the recognition of
tested VOCs (Volatile Organic Compounds). 20 gas
samples for methanol, 24 samples for acetone and 16
gas samples for the mixture of both were experimented
with, which gained an accuracy of 96.61% correctness.

In another study author Jean et al. 2017 [42],
used machine learning algorithms for electronic nose
(ENose) systems. The authors mainly focused on the
previous studies on machine learning algorithms for
ENose-based VOC (Volatile Organic Compound). Using
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various machine learning algorithms, from their work,
it can be concluded that the neural network and the
LMNN (Large Margin Nearest Neighbours) present
good and quality output which is then followed by SVM
(Support Vector Machine).

The detection of pollutant gases by using ML
techniques was presented by Jambi Ratna Raja Kumar
et al. 2019 [43]. By using the proposed method, some
harmful gases to human beings like methanol, LPG
and ammonia are detected. For this purpose, ENose
systems were developed, especially in public areas to
make sure the safety of every human being. The authors
performed experiments and a MATLAB device was
used for these experiments to get some good results.
SVM, Na?ve Bayes, and ANN methods were used to
check the sensitivity, specificity and accuracy. For SVM
the sensitivity was 79.88%, specificity was 84.55% and
accuracy was 83.54%. Similarly, for Na?ve Bayes, the
calculations were 76.34%, 87.99% and 82.34%. And for
ANN it was 84.55%, 89.45% and 86.77% respectively.

The ANN-based ENose systems have good numbers
for sensitivity, specificity and accuracy. Based on 3D
porous laser-induced grapheme (LIG) enhanced with
palladium (Pd) and nano-particles has been developed
by Jianxiong Zhang et al. 2019 [44]. The experiments
were done with the fabrication of LIG and TLIG-
GS. A novel gas sensing by applying Graphene Field-
Effect Transistor (GFET) and Machine Learning (ML)
to recognize the gas selection with some circumstances
and by joining them with the unique characteristics of
GFET and ENose properties were presented by Takeshi
Hayasaka et al. 2020 [45].

Experiments were conducted by applying two GFETs
for three different types of gases; one was Pristine
GFET and the other was ALD-RuO2-GFET (Atomic
Layer Deposition RuO2-Functionalized). The result
they obtained for sensing by using the proposed
methods of the authors were quite good. For the
identification of volatile organic compounds (VOC)
author Jianxiong et al. 2020 [44], discussed healthcare
diagnosis, which will be done through a machine
learning (ML) method known as Principle Component
Analysis (PCA). The ML can assist PEIRA (plasma-
enhanced infrared absorption), through diagnosis can
be done easily. This method has the advantage of
quick response, very high sensitivity and real-time
monitoring.

A new type of sensor known as a multivariable sensor
was presented by R.A. Potyrailo et al. 2020 [47]. For
the detection of different gases, 3-D nanostructures
were realized as sensors along with the capabilities it
has. Experiments were conducted for non-condensable
gases in the laboratory. For the detection of gases
two different classes of detectors were used. One
is single-output sensors and the other is traditional
analytical instruments. Comparing the two detectors,

the traditional analytical instruments cannot operate
with power, size and cost. In another machine learning
(ML) technique author Someya Goyal et al. 2020 [48],
proposed a new technique which can combine with
Arduino micro-controllers and control smoke detectors.
The proposed method has the advantage of detecting
cigarette smoke. This technique is applied in the
areas where a sign of ¡°No Smoking¡± is present. The
technology can turn the buzzer ¡°On¡± when it detects
any cigarette smoke. The authors experimented with
this functionality of the ENose by testing it with a
cigarette and lighter. The authors further explained that
the proposed technique is very important and quite
successful when experimented with in public places.
From their work, it can be concluded that ENose is very
important in public places.

Using the Artificial Neural Network (ANN) regres-
sion module to see and predict the different levels of
Volatile Organic Compounds (VOC) and smoke aroma
intensities in wine samples were tested by Vasiliki Sum-
merson et al. 2021 [49]. To access the wine samples,
a cheap cost portable ENose was used by the authors.
This lower-cost ENose combined with machine learning
can make the vintner (Winemakers) a very low-budget
tool for assessing the different levels of VOC and smoke
aroma intensity in wines. The gas sensing methods,
advantages, limitations and selectivity were discussed
by Usman Yaqoob and Mohammad. Younis, 2021 [50].
The potential of machine learning (ML) used for gas
sensor detection and identification were also discussed
by the authors. The ML can process data and improve
selectivity but at the same time, it also requires a
huge amount of data which should be labelled accord-
ingly for accurate training and testing of classifiers.
From their review, it can be concluded that ML is
very important and useful for the future generation
of smart, selective and sensitive sensors. Because ML
can solve critical problems which are related to any
chemical gas sensors. The design and development of an
ENose method that can detect and identify respiratory
disorders by detecting VOC in throw-out breath were
discussed by Abraham and Monikavasagom 2021 [51].

The proposed system was experimented with and
applied in 27 Lung cancer patients, 22 chronic
obstructive pulmonary diseases (COPD) patients, and
39 healthy people that include smokers and non-
smokers as well. The classification was done by
using SVM (Support Vector Machine) which was
able to classify and gave an accuracy of 88.79%, a
sensitivity of 89.58%, and a specificity of 88.23%
for lung cancer. Similarly, for COPD the accuracy,
sensitivity and specificity were 78.70%, 72.50%, and
82.35% respectively. From these results, it can be
concluded that ENoses can be applied as diagnostic
tools for patients. To study the recent progress and
advancements of ML methods in ENose systems, author

10 EAI Endorsed Transactions 
on AI and Robotics 



ENose design and structures from statistical analysis to application in robotic: a compressive review

Zhenyi Ye et al. 2021 [52], discussed the feature
extraction, modelling, and sensor drift compensation of
ENose technologies. But sometimes the VOCs (Volatile
Organic Compounds) are very complex, and that makes
it a challenging task for the machine learning methods.
From the review of the authors, it can be concluded
that a lot of work and achievements have been done for
ENose systems by using ML methods, and with further
and careful studies more achievements can be done
for ENose systems by using ML. Using three different
Deep Learning (DL) methods (Convnet, Resnet, and
Multinose) and Support Vector Machine (SVM) method
for the quick detection approach was presented by
authors Gamboa et al. 2021 [53]. Five different ENose
databases were experimented with. And from the
result of the experiments, it can be concluded that
the proposed method of the authors has the capacity,
high skill and quick response time for ENose forecast.
Furthermore, SVM has the best accuracy and best
training time compared to the other DL methods. From
this, it can also be concluded that SVM can be the best
option to be used in the field of ENose systems.

For the identification of gas phase compounds
faster, author Xiong et al. 2021 [54], reported a ML
technology in addition to an ion mobility analyser.
This method has a good ion mobility selection and
good Volatile Organic Compound (VOC) recognition
skills. Experiments were performed and three types
of Multi-Switched Manipulation of Triboelectric Nano-
Generator (SM-TENG) were used which had a friction
area of 10, 24 and 49cm2.

The results obtained from the experiments were
quite good and accurate. The ML method got a
recognition and detection accuracy of 54.286%. The
study of piezoelectric nanogenerators (PENGs) and
triboelectric nanogenerators (TENGs) have influenced
many researchers and so as author Zetian Yang et
al. 2021 [55], who worked on PENGs and TENGs
development. The authors discussed the structure
and design of these technologies along with their
advantages in applications. PENGs and TENGs are
major discoveries in the field of self-powered flexible
sensors.

Working on gas sensing with the development of
machine learning and the internet of things (IOT)
author Jianxiong Zhu et al. 2021 [56], presented a
hydrogen (H2) sensor by the injection of reduced
graphite oxide (rGO) and their applications. With
machine learning ML-enabled PCA (Principle Compo-
nent Analysis) technology and triboelectric textile as a
power origin to IOT, the H2 concentration experiments
and their applications performed good plasticity and
can be folded up easily as well. The table below shows
the different machine learning methods and technolo-
gies used for ENose. For the detection and prediction
of VAP (Ventilator Associated Pneumonia), an ENose

system was developed by Yu-Hsuan Liao et al. in 2022
[57]. The proposed method of the authors can detect
metabolites of pneumonia at early stages as it was
important because no other method can detect pneu-
monia at an early stage.

The ENose with 28 metal oxide gas sensors was
developed in the proposed method, which can predict
the existence of germs after the victim has been
suctioned in the concentrated care area. For the
experimentation, a total of 40 patients were tested.
20 of the patients were infected with Pseudomonas
aeruginosa while the remaining was not infected. The
results showed good accuracy for the detection. Support
Vector Machine (SVM) and Artificial Neural Network
(ANN) were used, as SVM gained an accuracy of
92.08%, while ANN gained an accuracy of 85.47%.
From their work, it can be concluded that the proposed
method is a cost-effective method for the detection of
VAP at the early stage.

A one-dimensional convolutional neural network
(1DCNN) and random forest regressor (RFR) which is
as combined known as 1DCNN-RFR was proposed by
Changquan Huang and Yu Gu 2022 [58]. This 1DCNN-
RFR method is being used for the quantity recognition
and detection of pork meat adulterated using ENose
data. Experiments were conducted by the authors in
two different parts. One was a training set where they
used 147 samples of meat over 7 days. And the other
was a test set where they used 63 samples for 3 days.
The results they obtained from their experiments were
quite good, and the authors suggested that the 1DCNN-
RFR method has good potential for the quantity
recognition and detection of pork meat adulterated. But
one disadvantage of RFR is that its ability to extract is
very poor.Table 4 shows some of common technologies
comparison as the post-processing method.

3.4. ENose Parts: PPM and PPB calculation

Parts per million (PPM) is a unit of measurement
that expresses the concentration of a substance in a
sample. In electronic nose (ENose) applications, PPM is
used to quantify the concentration of volatile organic
compounds (VOCs) in an odour sample. Parts per
million means 1 part of a solute that is present in
a 106 parts of a solution. The PPM is used for a
"Very Dilute" concentration of the preparation. That
means PPM is used to measure a very small amount of
something dissolved in something else. Another scale
for measuring the gases is Parts per billion (PPB) which
means 1 part of a solute that is present in a 109 parts of
a solution. 5ppb means, 5g of solute is present in 109 g
of solution.
•PPM calculation: To calculate PPM, you need to

determine the volume or mass of the substance in
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Table 4. Machine learning technologies comparison as the post-processing method in Enose. Support Vector Machine (SVM),
Graphene Field-Effect Transistor (GFET), Machine Learning (ML), Artificial Neural Network (ANN), laser-induced graphene (LIG),
palladium (Pd), piezoelectric nanogenerators (PENG) triboelectric nanogenerators (TENGs), one-dimensional convolutional neural
network (1DCNN)

Method Aims Study Highlights Ref

SVM To recognize the existence of one gas among
many, 20 gas samples for methanol, 24
samples for acetone and 16 gas samples for a
mixture of both were experimented with,
which gained an accuracy of 96.61%
correctness.

High accuracy. Able to
recognize one gas among
many.

[41]

ML algorithms and SVM Used machine learning algorithms for ENose
based on VOC

Good accuracy for
detection

[42]

SVM, and ANN ML techniques used for pollutant detection.
For SVM the sensitivity was 79.88%, and the
accuracy was 83.54%. ANN sensitivity
84.55%, and accuracy 86.77% respectively.

The ANN-based ENose
systems have good
numbers for sensitivity
and accuracy.

[43]

3D porous (LIG)
enhanced with (Pd) and
nano-particles

The experiments were done with the
fabrication of LIG and TLIG-GS.

Good accuracy. [44]

GFET and ML A novel gas sensing by applying GFET and
ML to recognize the gas selection.

Accurate and Successful
Results.

[45]

ANN to predict the
different levels of VOC

Lower-cost ENose combined with machine
learning can make the vintner (Winemakers)
a very low-budget tool for assessing the
different levels of VOC and smoke

Low cost and accurate. [49]

ML The gas sensing methods, advantages,
limitations and selectivity were discussed

Improved selectivity [50]

SVM The design and development of the ENose
method can detect and identify respiratory
disorders.

Good accuracy [51]

Feature extraction,
modelling, and sensor
drift compensation

Recent progress and advancements in ML
methods

Detect the complex VOC [52]

Pattern Recognition
Methods

Five different ENose databases were
experimented with. Have the capacity, high
skill and quick response time for ENose
forecast.

Best accuracy and
training time

[53]

ML in addition to the ion
mobility analyser

Experiments were performed and three
types of Multi-Switched Manipulation of
Triboelectric Nano-Generator (SM-TENG)
were used which had a friction area of 10, 24
and 49cm2.

Good ion mobility
selection and good VOC
recognition skills.

[54]

PENGs & TENGs The structure and design of these
technologies along with their advantages in
applications were discussed

Good results for Flexible
Sensors

[55]

PCA Hydrogen (H2) sensors by the injection of
reduced graphite oxide (rGO were
presented.

Good plasticity and can
be folded up easily.

[56]

SVM and ANN For the detection and prediction of VAP
(Ventilator Associated Pneumonia), an
ENose system was developed

Cost-effective method for
the detection of VAP at
an early stage.

[57]

1DCNN-RFR The 1DCNN-RFR method is being used for
the quantity recognition and detection of
pork meat adulterated using ENose data.

Good potential for
quantity recognition.

[58]
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question and the total volume or mass of the sample.
The calculation is performed as follows:

P PM =
Mass of substance (g)

Total mass of sample (g)
× 106 (7)

Or:

PPM =
Volume of substance

Total volume of sample
× 106 (8)

Using the formula, we can calculate the PPM for any
equation. It is important to note that the accuracy of
PPM calculations in ENose applications is dependent
on the accuracy of the sensors and the sampling system
used.
• PPB calculation: The PPB is used for ¡°Extremely

Dilute¡± concentration of the preparation. The calcula-
tion of the PPB is done by a simple formula that is,

ppb =
mass of solute in grams (g)

mass of solution in grams (g)
∗ 109 (9)

Using this formula we can calculate the PPM for
any equation These two scales can be converted to
heave others as one PPM is equal to thousands of PPB.
Calculating parts per million (PPM) or ppb of volatile
organic compounds (VOCs) in an indoor arena using an
electronic nose (ENose) typically involves the following
steps:
• Sample collection: A sample of air is collected

from the indoor arena using an appropriate sampling
device, such as a pumped air sampler or a passive air
sampler. The sample is then transported to the ENose
for analysis. Analysis: The ENose analyses the sample
by exposing the sensors to the odour molecules. The
response of the sensors is recorded and processed using
appropriate software to generate a data set.
•Calibration: The ENose data set is calibrated using

reference compounds with known concentrations to
obtain a calibration curve. This calibration curve is then
used to convert the sensor response into quantitative
measurements of the VOCs in the sample.
• Data interpretation: The resulting PPM values can

be used to characterize the composition of the indoor
air and to identify the sources of VOCs. It is important
to note that the accuracy and reliability of the PPM
calculation will depend on the performance of the
ENose system, the accuracy of the calibration, and the
quality of the sample collection and analysis. [17]

4. ENose Applications
ENose devices are appealing in a variety of sectors
for a variety of reasons, including quick sample
evaluation, qualitative and quantitative representation,
and the utilisation of low-cost and small-size sensors
suitable for manufacturing operations. A large variety

of ENose technologies for sensor applications have been
identified including as following: Food industry which
in that ENoses can be used to monitor the quality
of food products, such as detecting spoilage and off-
flavours [59].

The Environmental monitoring that ENoses can be
used to detect pollutants and toxic gases in the air.
Medical diagnosis hired ENoses in the diagnosis of
diseases such as lung cancer and diabetes. Security and
defence with the ENoses usage to detect explosives and
hazardous chemicals and Agriculture to monitor crop
health and detect pests [11, 60].

The research contains a long list of ENose reviews
that are organized and centre on mass spectroscopic
analysis ENoses [61], biomedicine and universal health-
care application fields [62], forestry and agriculture
applications [63], microbiological performance control
of food products [64] and food industry [65], pharmacy
software [66], working to develop chemical sensing
devices [67], and so on. Below are a few of the uses
for an electronic nose: Healthcare diagnosis and health
management, environmental sensing, commercial food
applications, explosives identification (NASA), devel-
opment and research sectors, quality assurance labs, the
process and production department, Identification of
chemical odours Identification of pathogenic bacteria
[68] There have previously been a number of studies
that demonstrate the ENose to be possible surveillance
equipment in fruit ripening for a range of fruits: how-
ever, they were confined to one fruit apiece as well as
sampling methods are taken. ENose also has a signifi-
cant influence on farming.

4.1. ODLS (ODOUR Localization System)

Electronic noses (ENoses) can be used with robots
for odour localization systems. In such systems, the
ENose is used to detect and identify odourants in the
environment, while the robot is used to physically
locate the source of the odour. Here’s an example of
how an ENose can be used with a robot for odour
localization: Deployment in hazardous environments:
ENoses can be integrated with robots to detect
hazardous gases and fumes in hazardous environments,
such as chemical spills or fires [69]. Search and rescue
operations: ENoses can also be integrated with robots
to locate people trapped in hazardous environments,
such as building collapses or disaster sites, by detecting
human odours. These examples show the potential for
ENoses to be used with robots for odour localization
systems, providing a useful tool for various applications
in hazardous environments and search and rescue
operations. The electronic nose (ENose) has significant
potential for use in various robotic applications due
to its ability to detect and identify odour and flavor
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compounds. Some of the key benefits of using ENoses
in robotics include:
•Sensitivity and specificity: ENoses have the ability

to detect a wide range of odour and flavor compounds
with high sensitivity and specificity, making them use-
ful for various applications such as food quality control,
environmental monitoring, and medical diagnosis.

Real-time monitoring: ENoses can provide real-time
monitoring of odour and flavor compounds, allowing
for quick and accurate detection of changes in the
environment.
•Non-invasive: ENoses are non-invasive, making

them suitable for use in sensitive environments where
traditional methods of odour detection, such as manual
sniffing, may not be appropriate.
•Integration with robots: ENoses can be integrated

with robots to provide real-time, remote sensing of
odour and flavor compounds. This integration allows
robots to detect and locate the source of odours
in hazardous environments or search and rescue
operations. Several platforms have been developed for
odour source localization with robots, each with its
unique features and capabilities.

A review of the available platforms and their
performance in odour source localization with robots
can provide insight into the current state of the field
and guide future development. One example of a
review of odour source localization platforms evaluated
the performance of several ENose-based odour source
localization systems. The study found that the use of
ENoses in combination with robots showed promising
results for real-time monitoring of odour sources, and
that the performance of the systems was influenced by
factors such as the type of ENose and the integration
of the ENose with the robot. This review highlights
the importance of considering the performance of the
available platforms and the potential for ENoses to be
used in odour source localization with robots, providing
a useful tool for various applications in hazardous
environments and search and rescue operations. [17]

Overall, the ENose has significant potential for use
in various robotic applications due to its ability to
detect and identify odour and flavor compounds with
high sensitivity and specificity, and its ability to be
integrated with robots for real-time, remote sensing.
Most of the time the questions arise are that why
animals aren¡¯t used for such detections as they have
much more powerful senses than humans. Well, the
simple answer to that is, it will take a very long time
to train them for such instances. Also, there are some
dangerous areas where they can¡¯t go or sense anything.
If they work for longer periods, they can get fatigued. In
some cases, animals can be used such as, birds used in
mines to find gases like CO2, and CO. [21]

Dogs are used for rescuing and exploring in activities
like bomb detection, drugs or people buried by

avalanches. But nowadays with so much advancement
in technology, even robots are used for such activities.
It is because robots can be deployed quickly and
maintained at a low cost. They can work for longer
periods without getting fatigued. They can enter any
dangerous ‘area without any fear. Odour monitoring
is an action that attempts to localise, discover, and
occasionally examine the origin of an odour. In brief
Odour tracking activities can be summarised in three
modes; the first is Odour detection; which can detect
an increase in the concentration. The second one is
Source tracing; it follows the signal determined from
the sensed gas distribution towards the source. And
the last one in the Source declaration; determines the
certainty that the source was found.

According to the survey, several researchers have
created their sites. Several academics had employed
the commercially accessible Koala and Kepera robots.
The table below provides a summary of the work
completed since 1996. The many approach and robotic
stations, as well as the different environment sizes and
types of the plumes, made comparing the researchers’
efforts challenging [70]. Table 5 summarises the odour
localization system which is proposed during the
1997 till 2013 due to the various reserch work in
this period.as the tbale shown this activity began
with the construction of an odour compass-direction
detector, followed by basic algorithms to calculate the
position of the odour. The variety and types of sensors
utilised for the objective were varied. Recently, the
implementations for systems built varied from basic
alcoholic odour recognition to fuel leaks and bad
odours from landfills. Initially, the habitats selected
were contained, with diameters ranging from a few
metres to tens of metres.

Later, the tests in hallways and wide open spaces
are presented, and several techniques such as gradient-
based, chemo taxis, anemotaxis, closest neighbour,
and so on have been applied and their performance
analysed. Robotic navigation is improved by algorithms
that employ a wind vane or a wind sensor. The many
strategies and robotic stations, as well as the variable
size and type of the plume, make comparing the
researcher’s work challenging [71]. Experimentation
has taken place on a variety of robotic setups. Some
organisations have created their robots for the purpose.
Animals normally require two types of information
for hunting and localization tasks: odour presence and
wind flow direction [72].

The 26XX sensors are among the most often used
odour monitoring detectors. TGS800XX, MIC, ion
detectors, Polymer, QCM sensor arrays, and prefabri-
cated E nose are examples of other sensors. There is
active research being conducted on several method-
ologies for odour localisation. There are two types of
plume/odour localization algorithms: reactive plume
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Table 5. ENose as the ODOUR Localization Activities in robotic 1997 till 2013

Year Application Odour Type Type of Sensor Size of Area Size of Area Robot Name

1 1996-97 Odour Localization Ethanol, hexanol TGS 822, TGS800, TGS
813, and airflow sensor

40 x 70cm, 5.8m x 7.3m Model male silkworm
behaviour, gradient-
based

made by researchers

2 2001-02 Odour Plume, source
localization

Ethanol, methanol, iso
propyl alcohol

Air flow and QCM, TGS
sensors

47cm x 27cm x 27cm,
2.45x2.5, 5mx2m

Upwind, gradient-based,
chemotaxis, neural net-
work, Nearest Neighbor
classifier

RAT, Koala, Super Scout
II

3 2003-04 Chemical plume track-
ing,

Ammonia solution
ethanol

Polypyrrole and TGS
sensor

15.4mx5.1m 10.6mx .5m Algorithm (E. code,
Bombbyxmori, dung
beetle)

RAT, Arthur, Koala

4 2005 Odour-source
localization system

Ethanol Cyranose sensor, TGS
sensor, QCM, PIDs

LAB 5.9m 83.2m x2.7m ,
2m x4.8m

OSM and HSM + visual,
Upwind Tracking and
Local Search

PIPI, TUAT, GaPTR11

5 2006-11 Odour source localiza-
tion system, 3D, plume
tracking

Ethanol, ions TGS sensor, ion detector,
mics 5521

24mx12cm, 12mx3m,
3mx3m

Casting, spiral surge,
Bio-inspired Particle
Plume (PP), particle

Koala, Robo Moth,
Kaperall, Sniffer, ATRV-
Jr

6 2012-13 leak localization system,
odour localization

Methane, acetone,
ethanol and 2-propanol
gasoline

RMLD PID (sampling
frequency 1Hz)

15m x 2.5m and landfill
(18m x 11m), 6x3m

gas distribution
mapping probabilistic
plume mapping

ATRV-Jr

tracking and gas distribution mapping techniques [73,
74]. The odour technique used to find the responsive
plume/odour monitoring region is made up of many
methodologies taken from biological research as well as
statistical (probabilistic) methods [75].

One of the most effective algorithms is connected to
the Silk moth, the major reason being its behaviour
for odour localization, which robots may mimic. To
implement the odour localization system, many robot
platforms were employed. Furthermore, the evaluation
of systems reveals the employment of several platforms,
as it can be shown in Fig 6.

Figure 6. The Platforms rate used for ODOUR localization.
Figure 6 gives represent the robotic platform which is

used the most for odour localization. All these robotic
platforms are capable of localizing odour sources

with high precision and accuracy. As it shown mostly
researcher tried to make their own platform and koala
plat form more hired for odour localization task.

The primary hurdles in this field are related to sensor
restrictions and the complex behaviour of the odour
plumes. Lower selection and sluggish sensor reaction,
restricted sensing area (few centimetres) [76, 77], which
decides algorithm efficiency and slows tracking [78, 79].

Because of this issue, some researchers have been
obliged to utilise insects directly to guide the actual
robot [80]. The second set of algorithmic gas transmis-
sion mapping approaches, on the other hand, worked
separately on tracking the odour/plume for source
location [81, 82]. Another element that influences the
efficiency of the algorithm is the proportion of robots
to field size, particularly for the gradient-based method
with a single sensor. Furthermore, when employing sev-
eral sensors, matching their responses may pose issues
[83]. Because of the sluggish rate of molecular diffusion
in compared to air velocity, the plume forms downwind
from its origin [84].

Different types of robots can be used to integrate
ENose and odour location technology, including ground
robots, aerial drones, and underwater robots. Each type
of robot has its unique advantages and disadvantages
as shown in Table 6 when it comes to ENose and odour
location tasks.

Table 6 shows the three different types of robots along
with their advantages and disadvantages. Each of these
robots has its strengths and limitations.

5. Conclusion

An electronic nose, or ENose, is a device that detects
and identifies odours or volatile compounds. It is a
sensory system that mimics the human olfactory system
and can be used for a variety of applications, including
food and beverage quality control, environmental

15 EAI Endorsed Transactions 
on AI and Robotics 



A. J. Moshayedi et al.

Table 6. Advantages and Disadvantages of different robots.

Robot Types Advantages Disadvantages

Ground
robots

Good manoeuvrability and
stability on the ground. Easy
to deploy and use. Can reach
confined spaces and difficult-
to-reach locations

Limited mobility in rough
terrain and obstacles. Poten-
tial damage to robot compo-
nents in harsh environments

Aerial drones Good mobility and flexibility
for aerial navigation. Good
for large-scale odour map-
ping. Can reach high and
remote locations

Limited battery life and
endurance. Challenges in
windy conditions. Potential
for air traffic interference and
safety issues

Underwater
robots

Good mobility and flexibility
for underwater navigation.
Good for monitoring and
tracking underwater odours.
Can reach remote and
difficult-to-reach underwater
locations.

Limited battery life and
endurance Challenges with
underwaternavigation and
stability. Potential damage to
robot components in harsh
underwater environments.

monitoring, medical diagnostics, and safety and
security.

The ENose typically consists of three main parts:
a sample delivery system, a sensor array, and a
pattern recognition system. The sample delivery system
collects the odour molecules and delivers them to
the sensor array, which consists of several types of
sensors that respond differently to different types of
odour molecules. The pattern recognition system then
analyzes the response patterns of the sensors and
identifies the odour based on its unique pattern.

The sensor array is the most critical component of the
ENose. It can consist of different types of sensors, such
as metal oxide sensors, conducting polymers, or surface
acoustic wave sensors, each with its unique sensing
mechanism. The sensors respond to different types of
odour molecules, and their combined response creates
a unique pattern that can be used to identify the odour.

Methods for data analysis and odour detection can
include machine learning algorithms, such as artificial
neural networks, and pattern recognition techniques.
The choice of method will depend on the specific
requirements of the odour location task, such as
accuracy, speed, and cost The results of using ENose and
odour location combination on different robots depend
on various factors, including the type of robot, the
odour source, and the environment.

However, in general, using ENose and odour loca-
tion combinations on robots is effective in accurately
detecting and locating specific odours, even in complex
and dynamic environments. The ENose has several
advantages over traditional chemical analysis methods,
including its ability to detect multiple odours simul-
taneously and to detect low concentrations of odour
molecules. It also has a fast response time, making it
useful for real-time monitoring applications.

The future of electronic nose (ENose) technology
is promising, with ongoing research and development

leading to new advancements and applications. Some
potential future directions for ENose technology
include:

1. Improved accuracy and reliability: The develop-
ment of new sensor materials, post-processing methods,
and machine-learning algorithms will likely lead to
more accurate and reliable ENose systems in the future.
This will make ENoses more useful for a wider range of
applications, such as food and beverage quality control,
medical diagnosis, and environmental monitoring [85].

2. Integration with other technologies: In the future,
ENoses may be integrated with other technologies,
such as gas chromatography or mass spectrometry, to
provide more detailed and accurate information about
the composition of odour samples. This could lead
to new applications in fields such as environmental
monitoring, food safety, and medical diagnosis [86].

3. Miniaturization: Advances in microelectronics
and nanotechnology may lead to the development of
miniaturized ENoses in the future. This could make
ENoses more portable, accessible, and cost-effective for
a wider range of users and applications [87]. The table
7 shows the comparison of the use of ENose and odour
location combination on different robot types and the
results and methods used:

•Mobile Robots: Mobile robots are capable of
moving around a given environment and can be
equipped with ENose and odour location sensors to
locate and identify specific odours.

•Fixed-Wing Robots: Fixed-wing robots, such
as drones, can be equipped with ENose and odour
location sensors to detect and locate odours in large
open areas, such as fields and forests. Ground Robots:
Ground robots can be equipped with ENoses and odour
location sensors to navigate and locate specific odours
in confined spaces, such as pipelines and buildings.

In conclusion, the ENose is a powerful tool for odour
detection and identification. Its structure consists of a
sample delivery system, a sensor array, and a pattern
recognition system, which work together to mimic the
human olfactory system. The ENose has numerous
applications, including environmental monitoring,
medical diagnostics, and safety and security. Its ability
to detect multiple odours simultaneously and at low
concentrations makes it a valuable tool in various
industries. In summary, the future of ENose technology
looks bright, with the potential for new advancements
and expanded applications in a wide range of fields.
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