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Abstract 

In recent years, graph convolutional networks (GCNs) have gained widespread attention and applications in image 
classification tasks. While traditional convolutional neural networks (CNNs) usually represent images as a two-dimensional 
grid of pixels when processing image data, the classical model of graph neural networks (GNNs), GCNs, can effectively 
handle data with the graph structure, such as social networks, recommender systems, and molecular structures. This paper 
summarizes the classical convolutional neural network models, highlighting their innovative approaches. And it will 
introduce the problems that graph convolutional networks have had, such as over-smoothing, and the ways to solve them, 
and suggest some possible future directions. 
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1. Introduction

1.1. Traditional Algorithms 

Image classification [1] is a task in computer vision that 
aims to classify the input images into a predefined class or 
classes. The main processes of image classification are data 
preprocessing, feature extraction and selection, model 
training, evaluation, and application [2]. Preprocessing 
includes operations such as scaling, cropping, grayscale, 
and normalization for subsequent processing and analysis 
[3]. The feature extractor extracts meaningful features from 
the image and filters the extracted features to remove 
redundant or irrelevant features and keep the most 
representative ones [4]. After the model is trained, the 
performance needs to be evaluated with a test set to 
calculate the accuracy, recall, precision, and other metrics 
of the classifier. Finally, the trained classifier is applied to 
the new image data for classification prediction. 

*Corresponding author. Email: wenhaotang@home.hpu.edu.cn 

Traditional image classification methods include the k-
nearest neighbor algorithm [5], support vector machine, 
rule-based models [6], etc. The k-nearest neighbor 
algorithm overly relies on the choice of distance metric 
function and k-value [7], is computationally intensive, 
requires large memory, is not very interpretable, and has a 
slow prediction speed. The training goal of traditional 
support vector machines [8] is to have the smallest error 
rate for the learned classifier obtained from the training set 
to approximate the distribution of the training set [9], 
which is achieved by finding the optimal classification 
hyperplane that maximizes the data interval of the training 
set. However, in some practical cases, choosing the correct 
kernel function to avoid overfitting is a difficult task when 
the number of features is much larger than the number of 
samples. Therefore k-nearest neighbor algorithm and SVM 
are suitable for classifying simple images [10]. And for 
some images that are heavily affected by noise or 
incomplete, the accuracy of classifiers based on them is 
significantly reduced [11]. 
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1.2. Application Of Graph Convolutional 
Networks In Image Classification 

One of the main advantages of deep learning models over 
traditional machine learning methods with hand-crafted 
features is the ability to efficiently extract high-level 
semantic information and rich detailed information [12]. 

The important backbone models of deep learning are 
convolutional neural networks, residual neural networks, 
attention mechanism, etc. 

Graph Convolutional Network (GCN) is a deep learning 
model based on graph theory that operates directly on the 
graph structure [13]. In image classification tasks, GCN 
can transform an image into an undirected graph and 
compute the feature vectors of nodes directly using the 
adjacency matrix [14] and the trainable weight matrix [15]. 
Then, the values of the nodes and their connections are 
updated by a series of convolution operations [16]. Finally, 
the final classification results are obtained after a fully 
connected layer. 

The graph convolution of the GCNs would mix node 
features and their nearby neighbors [17], that is, by using 
the local neighborhood information of the graph to perform 
feature aggregation for each node to learn the node 
representations. 

In image classification tasks, GCNs can be used for 
semi-supervised classification tasks, where the core idea is 
to update the representation of nodes by propagating 
information between them. GCNs can be modeled by 
representing images as hypergraphs. In this case, each node 
represents a pixel in the image, and the edges represent the 
similarity between pixels. This approach can capture both 
global and local information in an image. By applying 
GCNs, the local features of each node can be combined 
with information from surrounding nodes to obtain a more 
discriminative feature representation. 

The graph convolutional network has many advantages 
in image classification tasks. First, it can capture both local 
and global structural information in an image, which leads 
to a better understanding of the semantics of the image. 
Second, GCNs can learn the weights of each node 
adaptively, thus reducing the need for manually designed 
features. In addition, GCNs can handle changing graph 
structures with strong robustness and generalization ability. 

1.3. Thesis Outline 

Section 2 of this paper first summarizes classical 
convolutional neural networks in chronological order, 
highlighting their innovative points and advantages. Then, 
the concept of graph neural networks is elaborated and the 
classical models are summarized. Finally, the object of 
study, graph convolutional networks, is introduced and its 
concepts are elaborated. Section 3 of the paper first shows 
the common datasets of GCNs. Then it summarizes the 
advantages and disadvantages of recent graph 
convolutional network models with good performance and 
presents the problems they have not yet solved. Section 4 

of the paper concludes and shows the future trends of graph 
convolutional networks. 

2. Graph Convolutional Networks

2.1. Classic Convolutional Neural Networks 

Convolutional neural networks (CNN) are a class of feed-
forward artificial neural networks that use convolutional 
computation to extract features, as shown in Figure 1, 
mainly consisting of a convolutional layer, an activation 
layer, a pooling layer, and a fully-connected layer. The 
convolutional layer is responsible for extracting local 
features of the image, the activation layer introduces non-
linearity, the pooling layer reduces the dimensionality of 
the features and the fully connected layer achieves the final 
classification task. 

CNNs have a long history of development, and this 
paper reviews many classic models, starting with AlexNet, 
which won first place in the ImageNet Large Scale Visual 
Recognition Challenge. 

AlexNet [18] made an important breakthrough in the 
history of CNNs by implementing the first deep CNN 
structure on a large-scale image dataset. AlexNet consists 
of five convolutional layers, three pooling layers, and three 
fully connected layers. Compared to LeNet, AlexNet has a 
deeper network structure and a larger parameter size. In 
addition, it introduces techniques such as the ReLU 
activation function, Dropout techniques, and data 
augmentation. 

Images

Output: Classes with their probability

Convolutional layers Pooling layers

Fully-connected layers

Figure 1. The architecture of CNN. 

Simonyan and Zisserman (2014) proposed VGGNet 
with a higher number of layers, increasing the number of 
layers to 19. The main feature of VGGNet is the use of 
consecutive convolutional kernels of size 3 × 3 instead of 
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larger ones, which reduces the number of parameters and 
increases computational efficiency. The authors' 
experiments further confirm the conjecture that the higher 
the number of layers, the more accurate the prediction. The 
top-1 validation error dropped to 25.5% and the top-5 error 
dropped to 8.0% by layer 19. 

The architecture of the Inception network [20] (also 
known as GoogLeNet) differs from the original preference 
for hierarchical stacking to a more flexible network model. 
The main innovation of Inception is the introduction of the 
Inception module, a structure for parallel stacking of 
convolutional kernels at different scales. Unlike the 
stacking of a single network of residuals or VGG networks, 
GoogLe-net solves the problem of model degradation at 
high levels in a different way. And a new network 
architecture with bifurcation is proposed. One of the 
reasons why the authors propose an optimization of a single 
network model like the VGG model is that as the layers are 
stacked, the useless weights at the shallow level cause a 
significant computational loss for the stacked weights at 
the deep level. Therefore, the authors propose a bifurcated 
network architecture to reduce the impact of this 
magnifying glass effect. 

The bold innovation of the network structure of 
GoogLe-Net v1[20] also enabled the invention to beat 
VGG-net in the same year, winning first place in the 2014 
Image-Net competition by a narrow margin of 0.01% 
accuracy improvement. 

GoogLe-Net has evolved with its unique and convergent 
network structure, making good use of the BN layer in 
Inception-v2 [21] and replacing the convolutional kernel of 
size 5 × 5 with two convolutional kernels of size 3 × 3 to 
improve performance. Chollet (2017) replaced the 
Inception module with a depthwise separable convolution 
based on Inception-v3 (where the order of separable 
convolution is reversed from mobilnet, with pointwise 
convolution followed by depthwise convolution, and then 
combined with ResNet's On ImageNet, Xception is slightly 
more accurate than Inception-v3, while the number of 
parameters decreases, and the inclusion of a ResNet-like 
residual connectivity mechanism in the network 
significantly speeds up its convergence process and 
achieves significantly higher accuracy. 

The key innovation of ResNet [23] is the introduction of 
the skip connection, as shown in Figure 2, which allows 
direct information transfer between network layers. This 
structure effectively solves the problem of gradient 
disappearance in deep networks, allowing the network to 
reach very large depths. The whole idea of residual 
networks treats the action between convolutional layers as 
a mapping function 𝐻𝐻(𝑥𝑥), and the authors believe that the 
degradation problem arises because the training of 𝐻𝐻(𝑥𝑥) 
becomes extremely difficult as the layers are 
superimposed. If this part of the work can be superimposed 
in steps, that is, fitting a residual function 𝐹𝐹(𝑥𝑥)  =
 𝐻𝐻(𝑥𝑥)  −  𝑥𝑥, then the objective function can be derived as 
𝐻𝐻(𝑥𝑥)  =  𝐹𝐹(𝑥𝑥)  +  𝑥𝑥. Since F(x) and x are the output and 
input respectively, if 𝐹𝐹(𝑥𝑥)  can be found correctly, then 
𝐹𝐹(𝑥𝑥) can be brought in as 𝑥𝑥′ to find the deeper 𝐹𝐹′(𝑥𝑥) to 

achieve effective hierarchical accumulation without the 
degradation problem encountered when training deep 
convolutional networks in a single pass. In the concrete 
implementation, the authors added a batch normalization 
(BN) layer after each convolutional layer and before the 
activation layer instead of the dropout method to reduce 
overfitting. Due to the excellent stackability of Resnet, the 
authors incrementally increase the network level from 18 
to 152 layers and obtain better results than 18 layers on the 
ImageNet test set. 

+

weight layer

ReLU

weight layer

ReLU( )F X

( )F X X+

X
identity

X

Figure 2. Diagram of skip connection. 

Huang, et al. (2017) et al. proposed the densely 
connected network (DenseNet). The core idea of DenseNet 
is to connect the output of each layer to all subsequent 
layers to form a densely connected structure. This 
connection enhances feature propagation, improves the 
parameter utilization of the network, and reduces the 
training cost. 

EfficientNet [25] is a CNN structure optimized based on 
neural network search techniques (NAS). The main 
contribution of EfficientNet is the introduction of a 
balanced network expansion strategy that improves 
performance by adjusting the depth, width, and resolution 
of the network. EfficientNet achieves state-of-the-art 
performance on several image classification tasks while 
having a low number of parameters and computational 
costs. 

Although the classical models mentioned above and 
many current CNNs perform better on image classification 
tasks, there are some drawbacks compared to GCNs: 

• CNNs are mainly designed for 2D grid structures
(e.g., images) and cannot directly deal with non-
Euclidean structured data [26]. Because discretized
convolutions are only defined for regular domains
[27]. However, the graph convolution of GCN can
handle data with a non-Euclidean structure [28].

• CNNs ignore the relationships between nodes. When
processing images usually only focus on local
relationships between neighboring nodes and ignore
the connections between more distant nodes. Thus, for
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images with globally related nodes, CNNs may not be 
suitable for processing. 

• In CNNs, convolution operations are usually used to
aggregate spatial information. However, the
convolution operation has high computational
complexity. When the depth of the network increases,
the computation and parameters of convolution
become difficult to control [29].

• Although CNNs excel in dealing with two-
dimensional grid structures such as image data, GCNs
can better capture the relationships [30] between
nodes and local features for more general graph-
structured data, especially when the node
relationships and attribute features are more complex,
providing stronger modeling and representation
capabilities.

2.2. Graph Neural Networks 

For datasets containing images, traditional machine 
learning methods first preprocess the graph structure data 
[31], mapping the graph structure information to a simple 
representation such as a high or low-dimensional feature 
vector. This pre-processing stage may add to the image 
noise by losing the topological dependency of the 
information of the graph nodes [32]. 

Graph neural Networks (GNN) [32] are based on an 
information diffusion mechanism. Its appearance extends 
existing neural network methods for processing the data 
represented in graph domains. GNN pre-processing differs 
from traditional deep learning models in that it requires the 
conversion of images into node and edge representations. 

For large-size images or images with deep structure, 
certain GNN models face three problems: neighbor 
explosion, node dependency, and over-smoothing [33]. In 
addition to the graph itself, these problems are attributed to 
the design of a multilayer GNNs framework [33]. To 
address these problems, [33] proposed the Ripple Walk 
Training (RWT) method for deep and large GNNs. general 
subgraph-based training framework RWT does not train 
directly on the whole picture but takes subgraphs from the 
whole picture and constructs small batches for training. 
Their proposed complete GNN is based on small-batch 
gradient updates. By computing small batches of gradients 
within subgraphs, subgraphs with acceptable sizes can 
avoid neighbor explosion altogether. Also, the gradients do 
not depend on nodes outside the subgraph, which solves the 
node dependency at the subgraph level. Aggregation 
between subgraphs usually occurs accidentally. However, 
propagation-aggregation occurs in the subgraphs, so the 
over-smoothing problem can be solved. 

The classical models of GNN are GCN, GraphSAGE, 
and GAT. 

GraphSAGE [34] is a graph neural network algorithm 
proposed in 2017, which solves the limitations of GCN 
networks: GCN training requires the adjacency matrix of 
the entire graph, depends on the specific graph structure, 
and can generally only be used in transductive learning. 

GraphSAGE uses a multi-layer aggregation function, 
where each layer aggregates the information of nodes and 
their neighbors to obtain the feature vector of the next 
layer. GraphSAGE employs the neighborhood information 
of nodes and does not depend on the global graph structure. 
An innovative improvement of GraphSAGE is to use node 
features to learn an embedding function that enables 
invisible nodes to generate embeddings. 

GraphSAGE has good performance in both 
unsupervised and supervised learning. 
GAT [35] introduces what is essentially a single-layer pre-
feedback neural network with an attention mechanism that 
allows the model to learn itself. This mechanism is 
performed by adding a model learnable coefficient to each 
edge and performing node feature fusion with an attention 
coefficient 𝛼𝛼 . This allows the process of convolutional 
fusion feature to adjust the model parameters according to 
the task and become adaptive for better results. The 
formula for the Attention mechanism is defined as 

𝛼𝛼𝑖𝑖𝑖𝑖 =
𝑒𝑒𝑥𝑥𝑒𝑒 �𝐿𝐿𝑒𝑒𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑒𝑒𝐿𝐿𝐿𝐿�a�⃗ 𝑇𝑇�𝑊𝑊ℎ�⃗ 𝑖𝑖||𝑊𝑊ℎ�⃗ 𝑖𝑖���

∑ 𝑒𝑒𝑥𝑥𝑒𝑒 �𝐿𝐿𝑒𝑒𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑒𝑒𝐿𝐿𝐿𝐿�a�⃗ 𝑇𝑇�𝑊𝑊ℎ�⃗ 𝑖𝑖||𝑊𝑊ℎ�⃗ 𝑘𝑘���𝑘𝑘∈𝑁𝑁𝑖𝑖

, �1.� 

where a is the weight vector of the attention mechanism, 
 is the attention coefficient between the 𝑖𝑖-th node and 

the 𝑗𝑗-th node, .𝑇𝑇 is the transposition, || is the concatenation 
operation, 𝑊𝑊 is the weight matrix, and 𝑁𝑁𝑖𝑖 is some neighbor 
nodes of 𝑖𝑖-th node. After getting the  of each edge, the 
node feature of the 𝑖𝑖-th point after the fusion of attention 
can be expressed as the following formula, which is 
essentially a weighted feature summation process, except 
that the weight coefficients in each fusion are learned with 
the model training, and finally after a nonlinear activation 
function. 

ℎ′���⃗ 𝑖𝑖 = 𝜎𝜎�� 𝛼𝛼𝑖𝑖𝑖𝑖𝑊𝑊ℎ�⃗ 𝑖𝑖
𝑖𝑖∈𝑁𝑁𝑖𝑖

� . �2.� 

On this basis, to make the attention mechanism more 
scalable, the defined multi-head attention mechanism is 
used to calculate the attention weights and then contact 
them to get the node feature. When at the last layer of the 
network, the dimensionality of the node features output 
after contact is too large. To make the data reasonable, it 
was switched to accumulate and then average, and then 
output to do specific tasks. Experiments on the PPI dataset 
show that GAT has better performance than GraphSAGE. 
GNNs do not perform well on training sets with class imbalance. 
This is because, in the class imbalance node classification, Song, 
et al. (2022) found that compensating for sub-nodes that deviate 
from the class connectivity pattern can easily lead to sub-node 
false positives. Juan, et al. (2023) point out that increasing the 
participation of a few nodes in the propagation process is an 
effective solution. Their INS-GNN contains Self-supervised pre-
training, Self-training, and Self-supervised edge augmentation. 
self-supervised pre-training focuses on the contribution of a few 
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nodes, allowing the contribution to model learning, the model 
does not favor the majority of nodes. This is done by randomly 
sampling the edges of the graph and masking a few nodes. Self-
training aims to reduce the cost of semi-supervised learning. It 
enables unlabeled nodes to have labels by creating pseudo-labels, 
which facilitates the performance of two different numbers of 
nodes. Self-supervised edge augmentation aims to involve a few 
nodes more in information transfer so that the majority of nodes 
have less influence on the model. However, Self-training may 
introduce noise while expanding the dataset. However, Self-
supervised learning may have an advancing effect on solving the 
problem of unstable performance of GNNs in settings with too 
few labeled nodes [38-40]. 

2.3. Graph Convolutional Networks 

In terms of the convolution method, graph convolution 
networks can be divided into spectral-based and spatial-
based. Spectral-based GCN is a convolutional method 
based on spectral theory and convolution theorem, which 
converts data from the spatial domain to the spectral 
domain for processing and has a solid theoretical 
foundation. In contrast, spatial-based GCN is a method that 
does not rely on the spectral convolution theory but defines 
the convolution operation directly on the space, which is 
very flexible. Compared with spatial-based graph 
convolution methods, spectral-based graph convolution is 
currently less commonly used. Kipf and Welling (2016) 
proposed spectral convolution, which is to transfer the filter 
of the convolution network to the Fourier domain 
simultaneously with the graph signal before processing. 
While Niepert, et al. (2016) proposed spatial-based 
convolution which allows the nodes in the graph to connect 
and build hierarchical structures in the spatial domain and 
then convolve. 
Suppose the undirected graph 𝐺𝐺 = {𝑉𝑉, 𝐸𝐸,𝑋𝑋}. v is the set of 
N graph nodes, 𝑉𝑉 = {𝑣𝑣𝑖𝑖}𝑖𝑖=1𝑁𝑁 . 𝐸𝐸 is the set of edges of the 
nodes. 𝑋𝑋𝑖𝑖 denotes the matrix of features of node v_i. If 𝑋𝑋𝑖𝑖 
is a d-dimensional feature ( 𝑋𝑋𝑖𝑖 ∈ ℝ𝑑𝑑 ), then 𝑋𝑋 ∈ ℝ𝑁𝑁×𝑑𝑑 
denotes the matrix of all node features. 
The propagation equation of the improved GCN [41] is 

𝐻𝐻(𝑙𝑙+1) = 𝜎𝜎��̃�𝐴𝐻𝐻(𝑙𝑙)𝑊𝑊(𝑙𝑙)�. �3.� 

Here, 𝐻𝐻𝑙𝑙  is the node feature of the GCN layer 𝑙𝑙  and 𝜎𝜎 
refers to the activation function of each graph convolution 
layer. 𝐷𝐷 is the diagonal matrix representing the degree of 
nodes and 𝐷𝐷𝑖𝑖𝑖𝑖 = ∑ 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖 . 𝐴𝐴𝑖𝑖𝑖𝑖  refers to the edge-forming 
relationship of nodes 𝑖𝑖 and 𝑗𝑗. If there is an edge between 𝑖𝑖 
and 𝑗𝑗, then 𝐴𝐴𝑖𝑖𝑖𝑖 = 1, otherwise 𝐴𝐴𝑖𝑖𝑖𝑖 = 0. �̂�𝐴 = �𝐴𝐴𝑖𝑖𝑖𝑖� ∈ ℝ𝑁𝑁×𝑁𝑁  
is a node-self-connected adjacency matrix, �̂�𝐴 = 𝐴𝐴 + 𝐼𝐼𝑁𝑁 , 
and 𝐼𝐼𝑁𝑁 is the unit matrix. �̃�𝐴 = 𝐷𝐷�−

1
2�̂�𝐴𝐷𝐷�−

1
2 is a sparse matrix. 

𝑊𝑊𝑙𝑙  refers to the learnable parameters. The graph 
convolution layer has two stages: feature fusion and feature 
extraction. �̃�𝐴𝐻𝐻(𝑙𝑙) is the aggregation phase, which serves to 
control the node properties of local neighbors to make them 
similar. 𝐻𝐻(𝑙𝑙)𝑊𝑊 (𝑙𝑙)  is the feature extraction phase, where 
common features between neighboring nodes can be 

extracted after feature aggregation [32]. Before the 
improvement of the equation, 

�̃�𝐴 = 𝐷𝐷�−
1
2�̂�𝐴𝐷𝐷�−

1
2 + 𝐼𝐼𝑁𝑁, �4.� 

where �̂�𝐴 = 𝐴𝐴. The eigenvalues of the above equation are in 
a small range. Therefore, when used in deep neural network 
models, repeated application of this operator can lead to 
numerical instability, and gradient explosion or 
disappearance [41]. To alleviate this problem, Kipf and 
Welling (2016) let �̂�𝐴 = 𝐴𝐴 + 𝐼𝐼𝑁𝑁, and then 

�̃�𝐴 = 𝐷𝐷�−
1
2�̂�𝐴𝐷𝐷�−

1
2 . �5.� 

3. Image Classification Based on Graph
Convolutional Networks

3.1. Common datasets 

Citeseer, Cora, and Pubmed [43, 44] are commonly used 
datasets for GCN image classification. The datasets contain 
sparse bag-of-words feature vectors for each document and 
a list of citation links between documents [41]. The 
following is a description of these datasets (Table 1): 

Table 1. Description of the three common datasets. 

Dataset Number 
of nodes 

Dimension 
of node 
features 

Classes 
of 
nodes 

Number 
of edges 

Cora 2708 1433 7 5429 
Citeseer 3312 3703 6 4732 
Pubmed 19717 500 3 44338 

Citeseer. Nodes in the CiteSeer dataset denote papers 
and edges denote citation relationships between papers. So, 
this dataset contains 3312 papers in 6 categories in the field 
of computer science, represented by 3312 nodes. The 
citation relationships between them are represented by 
4732 edges. These nodes can all be classified into 6 
categories and are all represented by 3703-dimensional 
feature descriptors. 

Cora. This dataset contains 2708 papers on the field of 
machine learning in 7 categories, which can also be 
represented by 2708, nodes in one of the 7 categories. 
These nodes have 5429 edges. Each node has a 1433-
dimensional feature descriptor. 

Pubmed. This dataset contains 19717 papers on the field 
of biomedicine in 3 categories. Each paper is represented 
by a bag-of-words model, and the edges between nodes 
indicate the co-citation relationships between papers. It can 
also be said that the dataset network contains 19717 nodes 
and 44338 edges, each represented by a 500-dimensional 
feature descriptor. 

3.2. Graph Convolutional Networks Models 
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However, there are still some challenges and limitations of 
the original graph convolutional networks in image 
classification. One of them is the problem of computational 
efficiency because GCNs need to perform aggregation 
operations on the whole graph, resulting in high 
computational complexity [45]. In addition, GCNs may 
encounter the problem of memory limitation when dealing 
with large-scale image data because of the need to store and 
process a large number of nodes and edges [46]. Further, 
the original GCN can capture information only about 
immediate neighbors with one layer of convolution. when 
multiple GCN layers are stacked, information about larger 
neighborhoods is integrated [47]. This is because the graph 
convolution layers of GCNs can be considered low-pass 
filters [48], and this property causes the signal to become 
smoother, which is an inherent advantage of GCNs; 
however, if the number of GCN layers is large, performing 
this signal smoothing operation multiple times will make 
the signal converge, which loses the diversity of node 
features, which is the over-smoothing problem [49]. 

Too many graph convolution layers may cause the over-
smoothing problem, however, there are image 
classification studies that solve this problem to some extent 
[50-52], allowing the model to extract deep-level features. 

SelfSAGCN [50] overcomes the overfitting problem 
and the over-smoothing problem by combining feature 
aggregation and semantic alignment. SelfSAGCN first 
applies feature aggregation to extract semantic information 
from the labeled nodes layer by layer, which does not suffer 
from the over-smoothing phenomenon. The core idea of 
selfSAGCN is that the node features obtained from the 
semantic and graph structure should be consistent when the 
categories are the same. This is not affected by the over-
smoothing phenomenon. The unlabeled node features 
obtained from graph aggregation are aligned with semantic 
features by semantic alignment techniques to find 
additional supervisory information. This improves the 
performance of the model and enhances the identifiability 
of node features. The semantic alignment of selfSAGCN is 
based on the central similarity of homogeneous class 
information, which enables the model to transfer relevant 
features to unlabeled data after learning semantics from the 
labeled data. Yang, et al. (2021) additionally utilized 
central similarity optimization to align node features 
obtained from semantic and graph structure aspects, 
respectively features are aligned, which has a significant 
effect on mitigating over-smoothing. Also, the central 
similarity of labeled and unlabeled nodes can provide 
additional supervised information, which further improves 
the classification accuracy of unlabeled nodes. Moreover, 
they use the pseudo-labeling trick for unlabeled data and 
also suppress the noise using the practice of updating the 
centers. It is experimentally confirmed that selfSAGCN 
has better performance on different datasets even when the 
labeled nodes are severely limited. This indicates that the 
overfitting problem does not affect it too much. Even if the 
number of layers is increased to 16, selfSAGCN can 
mitigate the over-smoothing problem. 

Pan, et al. (2022) proposed that no deep GCN model has 
been used for medical diagnosis because of the problem of 
over-smoothing. To overcome the over-smoothing 
problem, they used a snowball GCN module to build a 
multiscale convolutional module. the snowball GCN [53] 
is a densely connected graph network that can connect 
multiscale features. This graph network can superimpose 
all the learned features as input to subsequent hidden 
layers. This network also overcomes the gradient vanishing 
problem and reduces the number of parameters, etc. The 
key to solving the over-smoothing problem in Luan, et al. 
(2019) is that they define the graph convolution of a 
spectral filter as the product of a block Krylov matrix and 
a specific form of learnable parameter matrix. The formula 
𝐾𝐾𝑚𝑚(𝐴𝐴,𝐵𝐵) ≔ [𝐵𝐵,𝐴𝐴𝐵𝐵, … ,𝐴𝐴𝑚𝑚−1𝐵𝐵]  for the block Krylov 
matrix comes from the transformation of S-span of 𝕊𝕊-span 
of {𝑋𝑋𝑘𝑘}𝑘𝑘=1𝑚𝑚  and 𝐾𝐾𝑚𝑚𝕊𝕊 (𝐴𝐴,𝐵𝐵). They stated that it is difficult to 
apply the block Krylov method directly to the GCN, so they 
developed the snowball and the truncated Krylov. For 
𝑜𝑜𝑢𝑢𝑢𝑢𝑒𝑒𝑢𝑢𝑢𝑢 = 𝑠𝑠𝑜𝑜𝑠𝑠𝑢𝑢𝑠𝑠𝐿𝐿𝑥𝑥(𝐿𝐿𝑝𝑝∁𝑊𝑊𝐶𝐶 ), if 𝑒𝑒 = 1 and 𝐿𝐿𝑝𝑝 = 𝐿𝐿 , then 
the snowball implementation maps back to the Fourier 
basis of the graph, thus achieving a "snowball "The 
Adaptive multi-channel fusion GCN implemented by Pan, 
et al. (2022) also contains the channel common convolution 
module, which solves the problem of extracting the nodes 
in a particular channel embedding and the common 
information shared between channels. As shown in Figure 
3, the output of the channel common convolution module 
is represented by the equation 
 

𝐻𝐻𝑐𝑐 = 𝛼𝛼𝐻𝐻𝑐𝑐 + 𝛽𝛽𝐻𝐻𝑐𝑐𝑐𝑐𝐻𝐻0 + 𝛾𝛾𝐻𝐻𝑐𝑐𝑝𝑝 , �6.� 
 
where, 𝛼𝛼, 𝛽𝛽, 𝛾𝛾  are hyperparameters that measure the 
importance of the common convolution, respectively. The 
multi-channel attention they introduce can fuse the outputs 
of different channels and the features of each channel to 
integrate the learned embeddings for prediction. The 
ablation experiments demonstrate that their proposed 
MAMF-GCN has strong robustness and high accuracy. 
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Figure 3. The structure of adaptive multi-channel 
fusion GCN. 

The prominent innovation of NSCGCN [52] is to overcome 
the over-smoothing problem using feature fusion based on 
the node-self-convolution algorithm and to preserve the 
spatial structure information of the original feature graph 
using the feature reconstruction algorithm. The innovative 
point of the node-self-convolution algorithm is that the 
input undirected graph 𝐺𝐺𝑙𝑙  retains only the node-self-
connected degree matrix 𝐼𝐼. The result of the convolution of 
the input graph node features 𝑋𝑋 is given by 
 

𝑍𝑍(𝑙𝑙+1) = 𝐷𝐷−12𝐼𝐼𝐷𝐷−12𝑋𝑋(𝑙𝑙)𝑊𝑊(𝑙𝑙), �7.� 
 
where 𝑊𝑊 (𝑙𝑙)  is the learnable parameter. A new graph 
structure 𝐺𝐺𝑙𝑙+1 is then obtained by combining the original 
adjacency matrix of the undirected graph 𝐺𝐺𝑙𝑙  with 𝑍𝑍(𝑙𝑙+1)  to 
regain a new graph structure 𝐺𝐺(𝑙𝑙+1) . The feature 
reconstruction algorithm is based on the image 
neighborhood structure, which converts the image into 
graphically structured data and has better classification 
performance than the down-sampling approach. Although 
NSCGCN also has outstanding performance, it also suffers 
from overfitting. And the feature reconstruction stage is not 
adaptive and does not achieve the best structure. For the 
overfitting phenomenon due to an insufficient amount of 
data, semantic alignment techniques can be considered to 
allow labeled nodes to guide unlabeled nodes [50]. 

For the problem of large memory consumption of graph 
convolution operations, Bi-GCN [54] provides a solution. 
Bi-GCN has two innovative approaches, one is to perform 
binarized network parameters and input node feature 
operations in the feature extraction phase, which can 
theoretically reduce memory consumption by up to 30 
times and improve inference speed by up to 47 times, and 
the other is to design a new backpropagation method to 
accommodate binarized weights. Wang, et al. (2021) 

showed that it is not feasible to down-sample the original 
image to the right size and compress the input graph data 
and GNN model to reduce the memory consumption of the 
model. They state that this is because of two ways of down-
sampling, one, neighborhood sampling will result in 
"neighborhood explosion" when the number of graph 
convolution layers increases, i.e., many neighborhoods are 
making it difficult to train. Second, although graph 
sampling can avoid "neighborhood explosion," it does not 
guarantee that each node will be sampled once throughout 
the training or inference process. For compressed input 
images, it is difficult to manipulate because the original 
graph is small. For compressed GNN models, the 
relationship between the compression rate and the accuracy 
of the GNN model needs to be carefully designed to ensure 
that both nodes in the high-dimensional semantic space and 
nodes in the low-dimensional feature space can be 
characterized. However, this approach is more difficult. 
The core idea of Bi-GCN is to binarize the network 
parameters (e.g., weights) and input node features in the 
feature extraction phase, while not operating in this way in 
the feature aggregation phase. In addition, the original 
matrix multiplication of the graph convolution operation is 
modified to a binary addition operation. Another core idea 
is to binarize the node features by separating them and 
assigning attention weights to each node. By deploying 
additional parameters, the model can remain effective to 
learn more useful information. In theory, Bi-GCN can 
reduce the memory consumption of network parameters 
and input data by an average of about 30 times and increase 
the inference speed by an average of about 47 times. 
However, Bi-GCN had not experimented based on solving 
the over-smoothing problem, i.e., Bi-GCN does not 
perform well at deeper layers. 
Similar to CNNs, GCNs have a multilayer structure [13], 
where each layer extracts higher-level features by 
aggregating features from neighboring nodes and applying 
a nonlinear activation function. This allows GCNs to take 
full advantage of the topology of the graph and thus better 
capture the relationships between nodes. However, 
applying GCNs may not be able to adaptively extract the 
most relevant information between topologies or node 
features. Xu, et al. (2021) proposed a multiscale skeleton 
adaptive weighted graph convolution network (MS-
AWGCN) for skeleton-based human action recognition in 
IoT. MS-AWGCN solves the problem of learning potential 
graph topology in an adaptive extraction style by an 
adaptive information aggregation strategy to weight 
information from different sampling strategies more 
efficiently. The adaptive weighted graph convolution block 
formulation of MS-AWGCN is as follows, 
 

𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜 = � 𝛼𝛼
𝐾𝐾

𝑘𝑘
𝑊𝑊𝑘𝑘𝑠𝑠𝑖𝑖𝑖𝑖(𝐴𝐴𝑘𝑘 + 𝐿𝐿𝑘𝑘). �8.� 

 
where 𝑊𝑊𝑘𝑘 denotes the weight matrix, 𝐿𝐿𝑘𝑘 is learnable, and 
𝑠𝑠𝑖𝑖𝑖𝑖 is the node feature of the input. 
Relative to the formulation of [56] graph self-learning 
module 
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𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜 = � 𝑊𝑊𝑘𝑘𝑠𝑠𝑖𝑖𝑖𝑖(𝐿𝐿𝑘𝑘)
𝐾𝐾

𝑘𝑘
, �9.� 

 
MS-AWGCN introduces weights α initialized to 1 that 
control the importance of different sampling strategies and 
𝛼𝛼 normalized adjacency matrix 𝐴𝐴𝑘𝑘 to make learning graph 
topology more efficient.MS-AWGCN also contains an 
attention mechanism, and the algorithm for the mechanism 
is SE-Net. 

The core idea of the SE-Net [57] algorithm is to learn to 
use global information to selectively emphasize 
information-rich features and suppress less useful features. 
The algorithm allows the network to recalibrate features. 
Since the SE block is relatively simple, it has been applied 
to many CNNs to improve the performance of the model 
[58-61]. Although the SE block is currently less used on 
GCNs, it may be an option to consider from the perspective 
of incorporating attention mechanisms without adding too 
much to the model complexity. 
 

4. Conclusion 

This paper focuses on graph convolutional networks for 
image classification. Firstly, some classical models of 
convolutional neural networks are discussed, and their 
advantages and limitations on image classification tasks are 
pointed out. Then, graph neural networks are introduced, 
summarizing the current status of graph neural networks 
that perform poorly on training sets with class imbalance. 
And the solution of introducing self-supervised learning 
techniques is summarized. Finally, graph convolutional 
networks are introduced. I summarize some graph 
convolutional network models that solve the over-
smoothing problem and explain the reasons for solving the 
problem. The model that solves the high memory 
consumption of graph convolution operation is also 
summarized, and its advantages and disadvantages are 
analyzed. And based on the analysis of successful cases, 
the self-attentive module is suggested to be introduced into 
graph convolutional networks. This paper does not analyze 
the over-smoothing problem and the high memory 
consumption problem of graph convolutional networks in 
more detail. In future work, I will analyze more literature 
and summarize more methods. 

Graph convolutional networks have potential and wide 
application prospects in image classification tasks. With 
the continuous development and improvement of 
technology, it is believed that GCNs will play a greater role 
in image classification and other graph data fields. 
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