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Abstract

INTRODUCTION: Ever since the initial discovery of superconductivity, the fundamental concept and the
complex relationship between critical temperature and superconductive materials have been subject to
extensive investigation. However, identifying superconductors at normal temperatures remains a significant
challenge, and there are still significant gaps in our understanding of this unique phenomenon, particularly
regarding the fundamental criteria used to estimate critical temperature.

OBJECTIVES: To address this knowledge gap, a plethora of machine learning (ML) techniques have been
developed in this work to model critical temperatures, given the inherent difficulty in predicting them using
traditional methods.

METHODS: Additionally, the limitations of the standard empirical formula in determining the temperature
range require the development of more advanced and viable methods. This article presents an investigative
analysis of the performance achieved by different supervised machine learning algorithms when used with
three different feature selection techniques.

RESULTS: The stacking model used in this work is found to be the best performer among all the algorithms
tested, as reflected by the Root Mean Squared Error (RMSE) of 9.68, R2 score of 0.922, Mean Absolute Error
(MAE) score of 5.383, and Mean Absolute Percentage Error (MAPE) score of 4.575.

CONCLUSION: Therefore, it is observed that ML algorithms can contribute significantly in the domain of
predictive analysis of modeling critical temperatures in superconductors and can assist in developing a
robust computer-aided system to aid the education personnel and research scientists to further assess the
performance of the ML models.
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1. Introduction based on available data are not sufficiently accurate due
to their oversimplification of a complex and nonlinear
problem. Superconductors possess two distinct physical
characteristics: absolute electrical conductivity and full
diamagnetism. These properties are of utmost impor-
tance in various industrial sectors such as mechanical
engineering, wireless communication, underwater sen-
sors, superconducting electric motors, non-destructive
testing of components, instrumentation, and power sys-
tems [3-5]. Moreover, the exceptional responsiveness
of superconductive materials to magnetic fields can be

The importance of superconductivity as a distinct and
captivating phenomena is paramount, and it has been
the subject of extensive research for almost a century
[1]. The critical temperature, denoted as T, refers to the
temperature at which certain metals, such as indium,
mercury, lead, tin, and niobium, cease to exhibit electri-
cal resistance [2]. The current analytical models used to
predict the superconducting threshold temperature T,
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utilized to accurately ascertain the location of under-
water sensor nodes by utilizing optoacoustic signals
[6-8]. The traditional method of trial-and-error experi-
mentation for discovering new superconductors is time-
consuming and requires the use of very high pres-
sure and low temperatures. Computational approaches
based on density functional theory (DFT) are often
costly and require a significant amount of effort [9].
This has led researchers to explore other methods, such
as machine learning [10-19], to gain a deeper under-
standing of the relationships between superconductiv-
ity and a material’s chemistry and structure. Machine
learning algorithms [20-29] offer a unique opportunity
to extract patterns and relationships from large datasets
that traditional methods may miss [30-41]. It is inter-
esting to note that the critical temperatures (T.s) of
most recently found superconducting materials, which
have a stronger interaction between two-dimensional
electrons and phonons, do not align with Allen and
Dynes’ formulation [42]. Hence, it seems that employ-
ing machine-learning methodology is a more effective
strategy for highlighting the specification that sur-
passes the constraints of traditional empirical method-
ologies in describing the characteristics of supercon-
ductors, particularly in relation to critical tempera-
ture. This research introduces an integrated machine
learning approach to predict the T, information of
superconducting substances, which can accelerate the
identification of potential high-T, superconductors.
Moreover, accurately estimating the critical tempera-
ture (T,) is a crucial aspect of the complex and resource-
intensive process involved in synthesizing supercon-
ductors [43]. The viability of the synthesis process
depends significantly on the accuracy of the T, estima-
tion. Therefore, the findings of this study could have
potential implications for decision-making in the syn-
thesis of superconductors [44]. The proposed approxi-
mation technique offers a reliable way for researchers
to estimate the T, of newly discovered superconducting
materials. By accurately estimating T, researchers can
efficiently identify materials with desirable supercon-
ducting properties, expediting the development of new
superconductors.

In this study, five supervised machine learning
models, along with a stacking ensemble model and a
voting ensemble model, have been tested. The purpose
of this study was to analyze the performance of these
models under three different feature selection methods
that were tested, i.e., f-classif, f-regression, and mutual
info regression. Again, to analyze the difference in
performance when these feature selection methods are
used, all features were used to analyze the performance
of these algorithms. Furthermore, hyper-parameter
optimization was done using RandomizedSearchCV.
The difference before and after this optimization is
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compared. The novelty of this study can be considered
as follows:

* Firstly, understanding the influence of feature
selection methods on the overall performance of
the ML methods applied in this work to estimate
the critical temperature of the superconductors.

* Secondly, evaluating the performance of the
stacking and voting ensemble methods applied
in this work to investigate whether it adds any
additional benefits for using these models over the
previously used models.

* Finally, inspecting the performance gain achieved
after optimizing the hyper-parameters.

This paper is organized in the following manner.
The literature and works related to this work are
described in section 2. Section 3 contains a detailed
description of the methodology including the data
description, preprocessing, feature scaling, Hyper-
parameter tuning, the overall workflow along with
the approaches adopted in this work and the model
descriptions. In section 4 the evaluation metrics used
in this work are described. Finally, in Sections 5 and 6,
the results and the conclusion have been included.

2. Literature Review

Machine learning has been a crucial aspect in numerous
significant domains for researchers [45-64]. In recent
years, there has been a surge of interest in using
machine learning algorithms to predict the critical
temperature of superconductors. To predict T, from
diverse sets of input characteristics, several models
such as Random Forest, Support Vector Machines,
and Artificial Neural Networks have been used [65].
Some research has also concentrated on finding
important factors that contribute the most to T,
prediction. Despite substantial advances in this field,
precisely predicting T, for complex superconductors
with multiple elements and disorder in their crystal
structure remains a difficulty. The objective of this
literature review is to provide a comprehensive
summary of the current advancements in utilizing
machine learning techniques to estimate the critical
temperature (T.) of superconductors. The review will
examine the various machine learning models that
have been developed for this objective and their
respective merits and limitations. Hamidieh created a
model in [66], that employs a combination of linear
regression, gradient boosting, and neural networks to
make predictions. They also used feature engineering
to extract relevant information from the chemical
formulas and improve the accuracy of the predictions
Their statistical model performs fairly well with an
RMSE of 9.5K. (Despite achieving superior RMSE and
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R2 scores, their approach cannot identify the features
that are more crucial for predicting T,, whereas this
paper’s approach demonstrates the ability to do so.
The study in [67] suggests a technique that describes
materials using atomic vectors and predicts T, using
a hybrid neural network (HNN) model that combines
a convolutional neural network (CNN) and a long
short-term memory neural network (LSTM). The LSTM
recovers the long-dependence feature interactions
between atoms, while the HNN model employs CNN
to extract the short-dependence feature relationships.
This deep learning-based approach performs pretty
well with an R2 score of 0.899 and MAE 5.023K;
However, their approach only yields a substandard
RMSE of 83.565. Consequently, the current study
achieves superior results in terms of both RMSE and
R2 compared to their findings. A novel method was
developed by Paulino et al. [68] by fusing the MARS
approximation and the whale optimization algorithm
(WOA). This may be an appealing methodology that
had not previously been explored. In addition to
that Ridge, Lasso, and Elastic-net regression was
used for comparison purposes. The results show that
all four machine learning techniques are capable of
predicting T, with reasonable accuracy but this hybrid
WOA/MARS-based model outperforms the rest three
models with an RMSE value of 15.14, R2 score of
0.80, and MAE of 10.75. However, in the aspects of
RMSE, R2, and MAE, the results of the present study
outperform their findings. Two popular regression
methods, linear and simple linear regression models,
were utilized in the research of Babu et al. [69] to
compare various performance metrics. Their linear
regression model yields improved results, featuring an
RMSE of 17.68, MAE of 13.42, and R2 of 0.7396. Once
again, the results from the present study stand superior,
highlighting better RMSE, R2, and MAE metrics. In
the study of Mohammad N. Haque et al. [70], they
introduced a new model for multivariate regression
that involves the iterative fitting of a continued
fraction alongside additive spline models. To assess its
efficacy, they compared it with different established
techniques, including AdaBoost, Kernel Ridge, Linear
Regression, etc. They evaluated the performance of
these methods in predicting the critical temperature
of superconductors based on their physical-chemical
properties, which is a crucial problem in the field.
They achieved an RMSE of 10.989, which the current
research managed to outperform. The numerical
characterization of the material is a necessary first step
in such methods, after which various machine learning
algorithms are employed to test and compare the
predictive model. The use of machine learning has the
potential to revolutionize the field of superconductivity,
providing a more efficient approach to understanding
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the relationships between a material’s chemistry and
structure and its superconducting properties.
Nonetheless, these investigations provide valuable
knowledge in the realm of materials science and lay
the groundwork for future progress in superconductiv-
ity research employing machine learning methods. In
this paper, we introduce a stacked integrated machine
learning approach that merges various streamlined
machine learning algorithms while enhancing the meta-
model’s hyperparameters. Consequently, the proposed
approach provides a more comprehensive and pre-
cise depiction of machine learning model performance
in material discovery applications with a simplified
approach. The study exhibited a high coefficient of
determination (R2 score = 0.922) in the predictive
framework, which is on par with or superior to certain

prior artificial intelligence techniques'.

3. Methodology
3.1. Data Description

This dataset emphasizes a cutting-edge machine learn-
ing technique to extract complex superconductive
material properties for critical temperature (T,) predic-
tion. The information regarding superconductors was
compiled from the Superconducting Material Database
(SuperCon), which is preserved by the Japanese
National Institute of Materials Science (NIMS) [72].
21,263 superconductors are employed after some data
preprocessing. However, this database was not open-
accessed at the time of this research. That is why, the
same dataset from the UCI Machine Learning Reposi-
tory [73] was used in this paper. It includes the critical
temperature and 81 features derived from 21,263 super-
conductors.

3.2. Feature Scaling

Feature scaling refers to the process of normalizing or
standardizing the data. This is done to ensure that all
features contribute equally to the model and to prevent
features with larger values from dominating the model,
as machine learning models can make the underlying
assumption that larger values have greater importance
compared to lower values [74]. Furthermore, in this
study min-max scaling was implemented to normalize
the data, which can be expressed in the following
mathematical expression:

X = X
Min-Max Scaling = X—mm (1)

max — Xmin

IPart of this research was presented at the 7th IEEE International
Conference on Sustainable Innovation (ICOSI 2023). This paper first
appeared on ArXiv in August 2023 [71].
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Where:

X : The original value of the feature,
Xmin : The minimum value of the feature,

Xmax : The maximum value of the feature.

3.3. Data Preprocessing

To compare the machine learning models used in this
work, three feature selection methods (f-regression, f-
classif, mutual info regression) were used. The top 50
features were chosen out of the original 81 attributes.
This enhances performance by focusing on the most
relevant attributes and reducing dimensionality. The
selection of 50 features was made to strike a balance
between retaining enough information for accurate
modeling and reducing the dimensionality of the
dataset. Choosing a smaller subset of features helps
to eliminate noise and irrelevant information that
could potentially hinder the model’s performance [75].
Table 1 shows the overall progression of dataset
preprocessing.

3.4. Hyperparameter Tuning

In machine learning, the task of determining the ideal
collection of hyperparameters for a learning algorithm
is referred to as hyperparameter optimization or tuning.
A parameter whose value is utilized to guide the
learning process is termed a hyperparameter. For this
process, RandomizedSearchCV was used to find out
the best hyperparameter. Cross-validated search across
parameter settings is used to optimize the estimator’s
parameters, which are then used to implement these
methods.

3.5. Workiflow

In this study, the effectiveness of three feature selection
techniques, namely f-regression, f-classif, and mutual
info regression, was evaluated both individually and in
comparison to a baseline where all the features were
used. These specific feature selection methods have not
been previously utilized in the preprocessing of this
dataset.

The study is divided into four stages. The first stage
involves obtaining baseline results without applying
any feature selection techniques. This step provides
a reference point for evaluating the performance
of the subsequent feature selection methods. Before
proceeding with the feature selection stages, the data
is preprocessed. Min-max scaling is employed as the
chosen data preprocessing technique. This method
scales the data to a fixed range, typically between 0 and
1. By applying min-max scaling, the data is normalized
and brought within a standardized range, facilitating
ease of further analysis.
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Figure 1. Overall Workflow Diagram.

In the next three stages, each of the feature selection
methods is applied separately. Feature selection is a
process of reducing the number of input variables
to include only those that are most beneficial to
the model [76]. It can enhance model efficiency and
reduce computational costs. By selecting the most
relevant features, the model can focus on the attributes
that have the greatest impact on accurate predictions.
The f-regression and f-classif methods are used to
calculate the correlation between each predictor and
the target variable. These methods capture linear
interactions between predictors and the target. On
the other hand, mutual info regression is capable
of capturing various types of relationships, including
linear, quadratic, and exponential. Compared to f-
regression and f-classif, mutual info regression is
generally considered more reliable and adaptable,
particularly when the relationships between predictors
and the target are unclear. Finally, to evaluate the
models, four performance metrics (RMSE, R2 score,
MAE, and MAPE) were employed. The objective was
to assess the impact of hyperparameter optimization on
model performance when utilizing reduced feature sets.
Fig. 1 represents the complete workflow diagram.

Overall, the workflow of this research article involves
preprocessing the data using min-max scaling, followed
by evaluating the performance of three feature selection
techniques individually and in comparison to the
baseline. This approach showcases the potential of these
feature selection methods and their impact on the
predictive accuracy of the model.

3.6. Approach |

To compare model performance with fewer features,
a baseline was established using all 81 features. The

EAIl Endorsed Transactions on
Al and Robotics
| Volume 2 | 2023 |



A Machine Learning Based Investigative Analysis for Predicting the Critical Temperature of Superconductors

Table 1. Dataset Preprocessing

Feature Selection Method Scaling Method Feature Count Status of Hyperpa-
rameter

None Min-Max Scaler 81 Not optimized
None Min-Max Scaler 81 Optimized
f-regression Min-Max Scaler 50 Not optimized
f-regression Min-Max Scaler 50 Optimized
mutual-info-regression Min-Max Scaler 50 Not optimized
mutual-info-regression Min-Max Scaler 50 Optimized

f-classif Min-Max Scaler 50 Not optimized
f-classif Min-Max Scaler 50 Optimized

study employed five standalone machine learning mod-
els, two stacked regression models, and one vot-
ing regression model. Initially, default hyperparame-
ters were used for training the models. Subsequently,
hyperparameter optimization was conducted using the
Random-Search CV algorithm to find the best com-
binations [77]. The resulting optimal hyperparameter
configurations for each model can be found in Table 2.

3.7. Approach Il

The f-classif feature selection method employed in this
study is a univariate technique. It utilizes univariate
statistical tests to select the most relevant features,
making it a preprocessing step for estimators [78].
From this method, the top 50 features were chosen.
The same set of five standalone models from the
baseline section were utilized, along with stacking
and voting models. Hyperparameter optimization was
performed using RandomSearch CV, resulting in the
best hyperparameter combinations presented in Table
3.

3.8. Approach lll

The f-regression method is a recommended feature
selection criterion for identifying potentially predictive
features, regardless of their association’s sign with the
target variable. This method provides p-values as a
measure of feature significance [79]. In this section,
the top 50 features were selected using the f-regression
method. After this, five standalone models and the
stacking and voting models were employed. The hyper-
parameters of these algorithms were optimized using
RandomSearch CV. The optimized hyperparameters
were also applied to build the stacking and voting mod-
els. Table 4 summarizes the best hyperparameters for
each model while implementing this feature selection
technique.

3.9. Approach IV

RandomSearchal information is a non-negative mea-
sure of the interdependence between two random vari-
ables. RandomSearchal information quantifies variable

dependence, with zero indicating independence and
higher values indicating stronger dependence. This
section utilized RandomSearchal information regres-
sion. This method utilizes non-parametric algorithms
based on k-nearest neighbor distances to estimate
entropy [80]. Optimal hyperparameters were deter-
mined through the RandomizedSearchCV method after
initially using default hyperparameters. Table 5 sum-
marizes the best hyperparameters for each model.

3.10. Model Description

Stacking Model. Stacking is a method that can be used
to ensemble several different classification or regression
models [81]. Ensemble models can be created in a
variety of ways; however, bagging and boosting are the
most common approaches. The variance can be reduced
using the bagging technique by averaging the results of
numerous similar models with high volatility. Boosting
is the process of building numerous incremental models
to reduce bias while maintaining a low variance.
When used for a problem involving classification or
regression, stacking has the advantage of combining the
most successful features of multiple different efficient
models. This, in turn, produces predictions that are
superior to those produced by any one individual model
in the ensemble. A random division into J sections of
the same size is performed using this method on the
dataset. One set is utilized for the testing phase of the
j-fold cross-validation, while the remaining sets are put
to use in the training phase. Because of these training
testing pair subsets, it can obtain the predictions
of several learning models, which are subsequently
utilized as the meta-data to construct the meta-model.
The ultimate forecast is determined by the meta-
model, which is also referred to as the winner-takes-all
technique [82]. In this suggested model, five algorithms
as estimators were used, with the Random Forest
regressor with the default hyper-parameters, serving
as the final estimator. Five algorithms were used as
the base estimators, which were Random Forest, KNN,
SVR, Ridge, and Lasso as shown in Fig. 2. All these
base estimators were once used with the default hyper-
parameters and once with the hyper-parameters found
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Table 2. Hyperparameter Optimization On All The 81 Features

Algorithm Hyperparameters Test Values Best Vales
Ridge Regressor | alpha 0.1,1,10,0.001, 100 0.001
tol 0.001, 0.0001, 0.01, 0.1, 0.00001 | 0.00001
solver auto, svd, cholesky, Isqr, | sparse_cg
sparse_cg, sag, saga
Lasso Regressor | alpha 0.1,1,10,0.001, 100 0.001
tol 0.001, 0.0001, 0.01, 0.1, | 0.0000001
0.00001, 0.000001, 0.0000001
KNN n_neighbors 2,5,10, 25,50
leaf_size 10, 20, 30, 60, 90, 105, 120, 150
algorithm auto, ball_tree, kd_tree, brute brute
p 1,2,3,5,10, 20, 40, 80, 100, 200
SVR epsilon 0.01,0.1,1, 10,100
C 0.5,1,5,10,100, 0.05 100
cache_size 0.2, 2,20, 200, 2000 2000
coef0 0.01,0.1,0,1,10
degree 1,2,3,4,5
MLP activation logistic, relu relu
learning_rate_init 0.01, 0.1, 0.001
hidden_layer_sizes (55, 52,78, 30), (56, 32, 25), (57, | (56, 32, 25)
40, 52, 75, 60)
RFR n_estimators 20, 40, 60, 80,100, 120 120
min_samples_split 2,4,8,10
max_depth 5,10, 15, 20
Table 3. Hyperparameter optimization on 50 features selected by f-classif
Algorithm Hyperparameters Test Values Best Values
Ridge Regressor | alpha 0.1,1,10,0.001, 100 0.001
tol 0.001, 0.0001, 0.01, 0.1, 0.00001 | 0.0001
solver ‘auto’, ’svd’, ’cholesky’, ’lsqr’,
‘sparse_cg’, 'sag’, 'saga’
Lasso Regressor | alpha 0.1,1,10,0.001, 100 0.001
tol 0.001, 0.0001, 0.01, 0.1, | 0.0000001

0.00001, 0.000001, 0.0000001

KNN n_neighbors 2,5,10, 25,50
leaf_size 10, 20, 30, 60,90, 105,120,150 | 150
algorithm auto, ball_tree, kd_tree, brute kd_tree
p 1,2,3,5,10, 20, 40, 80,100, 200

SVR epsilon 0.01,0.1,1,10, 100
C 0.5,1,5,10,100, 0.05 100
cache_size 0.2, 2,20,200, 2000
coef0 0.01,0.1,0,1,10
degree 1,2,3,4,5

MLP activation logistic, relu relu
learning_rate_init 0.01, 0.1, 0.001 0.001
hidden_layer_sizes (55, 52,78, 30), (56, 32, 25), (57, | (57, 40, 52, 75,

40, 52, 75, 60)
RFR n_estimators 20, 40, 60, 80, 100, 120 100

min_samples_split

2,4,8,10

max_depth

5,10,15, 20
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Table 4. Hyperparameter optimization On 50 Features f-regression

Algorithm Hyperparameters Test Values Best Vales
Ridge Regressor | alpha 0.1,1,10,0.001, 100 0.001
tol 0.001, 0.0001, 0.01, 0.1, 0.00001 | 0.1
solver auto, svd, cholesky, lIsqr, | svd
sparse_cg, sag, saga
Lasso Regressor | alpha 0.1,1,10,0.001, 100 0.001
tol 0.001, 0.0001, 0.01, 0.1, | 0.000001
0.00001, 0.000001, 0.0000001
KNN n_neighbors 2,5,10, 25,50 2
leaf_size 10, 20, 30, 60, 90, 105, 120, 150 | 20
algorithm auto, ball_tree, kd_tree, brute ball_tree
p 1,2,3,5,10, 20,40, 80,100,200 | 1
SVR epsilon 0.01,0.1,1, 10,100 1
C 0.5,1,5,10,100, 0.05 100
cache_size 0.2, 2,20, 200, 2000 20
coef0 0.01,0.1,0,1, 10 0.1
degree 1,2,3,4,5 1
MLP activation logistic, relu relu
learning_rate_init 0.01, 0.1, 0.001 0.001
hidden_layer_sizes (55, 52,78, 30), (56, 32, 25), (57, | (55,52,78, 30)
40, 52, 75, 60)
RFR n_estimators 20, 40, 60, 80,100,120 120
min_samples_split 2,4,8,10 4
max_depth 5,10, 15, 20 20
Table 5. Hyperparameter optimization on 50 features selected by mutual-info
Algorithm Hyperparameters Test Values Best Values
Ridge Regressor | alpha 0.1,1,10,0.001, 100 0.001
tol 0.001, 0.0001, 0.01, 0.1, 0.00001 | 0.0001
solver ‘auto’, ’svd’, ’cholesky’, ’lsqr’, | auto
‘sparse_cg’, 'sag’, ‘saga’
Lasso Regressor | alpha 0.1,1,10,0.001, 100 0.001
tol 0.0010, 0.0001, 0.01, 0.1, 0.01
0.00001, 0.000001, 0.0000001
KNN n_neighbors 2,5,10, 25,50 2
leaf_size 10, 20, 30, 60, 90, 105,120, 150 | 105
algorithm ‘auto’, ’ball_tree’, ’kd_tree’, | brute
"brute’
p 1,2,3,5,10, 20, 40, 80,100, 200 | 20
SVR epsilon 0.01,0.1,1,10,100 1
C 0.5,1,5,10,100, 0.05 100
cache_size 0.2, 2,20, 200, 2000 200
coef0 0.01,0.1,0,1,10 0.01
degree 1,2,3,4,5 2
MLP activation logistic, relu relu
learning_rate_init 0.01, 0.1, 0.001 0.01
hidden_layer_sizes (55,52,78,30), (56,32,25), | (56, 32, 25)
(57,40,52,75,60)
RFR n_estimators 20, 40, 60, 80,100, 120 100
min_samples_split 2,4,8,10 4
max_depth 5,10, 15,20 20
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Training
L Dataset

Each model's predictions function as
the meta-classifier's input.

Random Forest
(meta-classifier

Figure 2. Stacking model.

while optimizing each of those standalone models with
RandomSearch CV.

Voting Model. In Voting ensemble models, there are
several models of the various machine learning
algorithms that are present. These models are fed the
entire dataset, and after being trained on the data,
each algorithm will make a prediction [83]. After
all of the models have made their predictions for
the sample data, the average of the predictions of
all the models will be taken which will reflect the
final prediction of the voting ensemble model. The
voting ensemble method used in this work consists
of five standalone models. These models are the
Random Forest, KNN, SVR, Ridge, and Lasso as shown
in Fig. 3. All of the models were first used with
the default hyperparameters. To optimize the voting
ensemble model further, the best hyperparameters that
were found using RandomizedSearchCV were used
for each of the standalone models while using them
as the estimators. Along with this another voting
ensemble model was created where all the default
hyper-parameters of the models were used.

4. Evaluation Metrics
41. RMSE

The standard deviation of the error in the prediction
can be found from the Root Mean Square Error (RMSE).
Residuals of these prediction errors are the measure of
how far from the regression line data points are. The
RMSE measures how spread these residual values are.

Training
Dataset

Figure 3. Voting model.

The underlying assumption when presenting the RMSE
is that the errors are unbiased and follow a normal
distribution. The RMSE can be defined by the following
equation [84]:

RMSE =

Where:
N : The number of data points,
y; : The actual values,
9; : The predicted values.
4.2. MAE

Mean Absolute Error (MAE) is a measure of the average
magnitude of the errors in a set of predictions, without
taking into account their direction. It is the average
absolute difference between the predicted and actual
values and is used to evaluate the performance of
a regression model. MAE can be represented by the
following equation [85]:

N
1 A
MAE = ;lw -9l (3)
1=
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Where:

N : The number of data points,
y; : The actual values,

9; : The predicted values.

MAE presents itself to be the most natural measure
of average error magnitude, and (unlike RMSE) it is an
unambiguous measure of average error magnitude.

4.3. MAPE

Mean Absolute Percentage Error (MAPE) is the most
common error analysis technique used for forecasting.
It measures accuracy as a percentage. MAPE can be
represented by the following mathematical equation
[86]:

Vi — i
y.

1

N
1
_ o)
MAPE = N El x 100% (4)
1=

Where:

N : The number of data points,
y; : The actual values,

9; : The predicted values.

MAPE is generally used when the quantity to be
predicted remains much higher than zero.

44. R2 Score

A measure of how well a linear regression model fits
the data is called the R-squared. This statistic expresses,
as a percentage, the percentage of the variation in
the dependent variable that can be attributed, as a
whole, to the effects of the independent variables [87].
On a scale that ranges from 0 to 100 percent, the
coefficient of determination, or R-squared, provides
an important measurement of the strength of the
relationship between the model and the dependent
accurately by the various algorithms will be utilized as
the model’s final prediction.

YN (i - 9:)?

RP=1-
Y i -9)?

(5)

N : The number of data points,
y; : The actual values,
: The predicted values,

\S>

: The mean of the actual values.
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Figure 4. RMSE for different ML models in terms of feature
selection methods.

5. Results

In this section, the testing set created in each of
the approaches mentioned above is tested with the
evaluation metrics that were discussed in section 4. In
terms of RMSE scores, the stacking model performed
better than other regressor models. Consequently, the
stacking model predicted the critical temperature of
superconductors with fewer variations in results when
tested with multiple feature selection strategies, but
all other pertinent ML models displayed fluctuations
when various feature selection methods were chosen for
RMSE as seen in Fig. 4. Table 6 and Table 7 consequently
show the average RMSE for all machine learning models
tested for the different feature selection methods used.
The prior one depicts the results when the default
hyperparameters were used and the latter does the same
for the case when the hyperparameters were optimized.
From these two tables, it can be seen, that the stacking
model achieves the best result of RMSE 9.686 after
hyperparameter optimization with all 81 characteristics
taken into account.
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The stacking model performed the best among all
models tested with an average R2 Score that was close
to 0.919 across eight different situations considering
the result from Table 8 and Table 9, whereas the
KNN regressor being the second-best performer had the
highest R2 score of 0.9089 when all the features were
used with HPO and the lowest R2 score of 0.8808 when
all features were used without HPO. This proves that
the stacking model has performed similarly in all cases
with fewer variations.

The average value of MAE for all the algorithms for
each of the feature selection techniques used, with HPO
and without HPO are shown in Table 10 and Table 11.
The stacking model once again has the lowest MAE
score, coming in at 5.383, with scores hovering around
5.4 throughout all eight cases, shown in Tables 10 and
11. The second lowest MAE score of 5.448 was achieved
by the KNN model when all features were used with
HPO.

The stacking model once again receives the lowest
MAPE score, which is 4.575 as shown in Table 12,
which is the best result among all 8 cases. It is evident
that using the default hyper-parameters for all of the
stacking model’s algorithms gives the best results for
MAPE. The width of each of the separate portions in
Fig. 5 indicates the MAPE values. The image shows that,
among all the feature selection methods employed here,
the MAPE stacking model’s breadth is the smallest in
comparison to other models.

6. Conclusion

This study attempts to analyze the performance of
some supervised machine learning models when uti-
lized with different feature selection methods. Utiliz-
ing a stacking ensemble method with hyperparameter
optimization outperforms previous research in terms

{_regression without HPO Y VOTING

R STACKING
SVR

Mutual_info_regression
with HPO

Mutual_info_regression

without HPO

f_classif with HPO

f_classif without HPO

NN

All features with HPO Q §

All features without HPO

Feature Selection Criteria

MAPE

Figure 5. Feature selection criteria vs MAPE.

of performance. Evaluation of the model’s efficacy
using a variety of metrics, such as RMSE, R2 score,
MAE, and MAPE, yields insightful information. The
results indicate that the incorporation of hyperparam-
eter optimization improves the estimation of critical
temperature’s precision and dependability. The average
RMSE, R2 score, MAE, and MAPE values obtained
from models with hyperparameter optimization con-
sistently outperform those without hyperparameter
optimization, demonstrating the significance of opti-
mizing model parameters. The study also investigates
the effect of feature reduction on model performance.
Even after employing feature reduction techniques, the
stacking method performs consistently in performance
metrics, for all feature selection methods. The results
demonstrate the capability of the stacking ensemble
method with hyperparameter optimization to improve
the dependability of critical temperature estimation
under the feature selection methods tested. A deep
learning model to predict the critical temperature of
superconductors is under development. In the future,
we would also like to incorporate the readings of
the properties of newly found superconductors in this
study to further assess the performance of the ML
models.
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Table 6. Average RMSE under all conditions without hyperparameter optimization

Criteria Ridge Lasso KNN MLP SVR Stacking | Voting
All features 17.636 18.345 11.821 25.158 24.812 9.734 13.826
f-classif 18.624 18.655 10.788 15.513 14.649 9.748 12.400
RandomSearchal- 19.689 23.204 11.052 15.193 17.477 9.750 13.938
info-regression

f-regression 18.705 23.159 10.718 14.657 17.315 9.768 13.652

Table 7. Average RMSE under all conditions with hyperparameter optimization

Criteria Ridge Lasso KNN MLP SVR Stacking | Voting
All features 17.627 17.677 10.332 16.826 13.938 9.686 11.875
f-classif 18.624 18.651 10.591 14.595 14.661 9.888 12.540
RandomSearchal- 19.622 19.639 10.691 16.05 14.803 9.727 12.648
info-regression

f-regression 18.521 18.548 10.356 14.388 14.487 9.731 12.252

Table 8. Average R2 under all conditions without hyperparameter optimization

Criteria Ridge Lasso KNN MLP SVR Stacking | Voting
All features 0.7348 0.7131 0.8808 0.4041 0.4751 0.9191 0.8370
f-classif 0.7043 0.7033 0.9006 0.7947 0.8170 0.9189 0.8689
mutual-info- 0.6695 0.5410 0.8958 0.8032 0.7396 0.9189 0.8344
regression

f-regression 0.7017 0.5428 0.9020 0.8167 0.7444 0.9186 0.8411

Table 9. Average R2 under all conditions with hyperparameter optimization

Criteria Ridge Lasso KNN MLP SVR Stacking | Voting
All features 0.7351 0.7336 0.9089 0.7571 0.8343 0.919958 | 0.8797
f-classif 0.7043 0.7034 0.9043 0.8166 0.81674 0.916636 | 0.8659
mutual-info- 0.671792 | 0.6712 0.9025 0.7774 0.81316 0.919301 | 0.8636
regression

f-regression 0.707593 | 0.7067 0.9085 0.2169 0.8210 0.91922 0.8720

Table 10. Average MAE under all conditions without hyperparameter optimization

Criteria Ridge Lasso KNN MLP SVR Stacking | Voting
All features 13.3535 13.981 6.6822 20.406 18.524 5.475659 | 10.130
f-classif 14.3864 14.408 5.7242 10.375 8.9589 5.454676 | 8.7256
mutual-info- 14.9859 18.142 6.1600 10.349 12.065 5.405764 | 10.035
regression

f-regression 14.377 18.110 6.0186 9.9280 11.841 5.465831 | 9.8239

Table 11. Average MAE under all conditions with hyperparameter optimization

Criteria Ridge Lasso KNN MLP SVR Stacking | Voting
All features 13.34874 | 13.3659 5.44815 11.49106 | 8.31017 5.383053 | 8.1803
f-classif 14.38648 | 14.4049 5.89576 9.47307 8.92848 5.557045 | 8.8195
mutual-info- 14.90684 | 14.9273 5.64775 10.38217 | 9.04408 5.438871 | 8.8572
regression

f-regression 14.22273 | 14.2468 5.46085 24.37746 | 8.85529 5.440037 | 8.5893
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Table 12. Average MAPE under all conditions without hyperparameter optimization

Criteria Ridge Lasso KNN MLP SVR Stacking | Voting
All features 12.86335 | 16.6023 5.464846 | 26.62253 | 15.40685 | 4.815816 | 10.3292
f-classif 16.81786 | 16.3090 5.488384 | 9.007473 | 7.637216 | 4.575237 | 9.732087
mutual-info- 16.17585 | 19.2875 5.071434 | 7.340627 | 10.02875 | 4.984084 | 9.649217
regression

f-regression 15.81139 | 19.5317 5.687521 | 7.916581 | 9.335178 | 4.747403 | 9.386212

Table 13. Average MAPE under all conditions with hyperparameter optimization

Criteria Ridge Lasso KNN MLP SVR Stacking | Voting
All features 12.95154 | 13.003 5.05690 11.038 7.4839 4.80839 8.3418
f-classif 16.81786 | 16.351 5.5626 9.4737 7.2858 4.7112 9.7490
mutual-info- 17.03013 | 16.545 4.5454 9.5143 8.0557 5.250034 | 9.7261
regression

f-regression 17.49597 | 16.945 4.3979 38.199 7.7147 4.818958 | 9.8588
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