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Abstract 

Surface defect detection is crucial in maintaining product quality across various industries. Traditional manual 
inspection methods are often time-consuming and subjective, which can result in inaccuracies and higher production costs. 
With the use of deep learning techniques, significant advancements have been made in automating the process of surface 
defect detection in recent years. Moreover, deep learning includes a variety of techniques, and image recognition-based deep 
learning is especially relevant to our field of study, which is the main focus of this research paper. 

In the industrial surface defect detection field, researchers have always aimed to create a deep learning-based 
intelligent defect detection system that achieves near-zero defect rates while maintaining a lightweight, efficient, and cost-
effective solution. However, these objectives often conflict with each other, and it is unrealistic to develop a model that can 
achieve all of them simultaneously. Some trade-offs must be made. If accuracy is the top priority, a large amount of defective 
data labeled for supervised learning is usually required. If lightweight and low cost is prioritized, a simple small model such 
as Auto-Encoder is usually used, along with a large number of flawless images for unsupervised learning to minimize the 
cost of labeling. 

As mentioned before, it is very difficult to design a single model that can achieve all of them simultaneously. However, 
present-day studies frequently center on accomplishing those tasks using a single model and rarely address the multi-model 
architecture. This paper presents a Surface Defect Detection and Classification System that builds on the current state-of-
the-art model in the field of surface defect detection, along with the zero-shot learning (ZSL) classifier based on VAEGAN 
and the Variational Auto-Encoder developed by our laboratory. 

We have developed a Surface Defect Detection and Classification System that effectively integrates the 
aforementioned three models. It has been validated on a dataset of metal surface defects, yielding excellent results. This 
system not only achieves defect detection rates that comply with industrial standards and low false positive rates but also 
maintains characteristics such as lightweight, low latency, and low annotation cost. In addition to achieving the above goals, 
this system can also instantly identify and issue anomaly notifications when there are unseen anomalies, which is generally 
impossible to do with supervised learning anomaly detection models. 
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1. Introduction

Anomaly detection is an area of deep learning with many 
practical applications. These applications range from signal 
analysis for detecting credit card fraud to predicting machine 
maintenance. Image analysis is also part of the anomaly 
detection field, such as examining brain tumor histopathology 
and detecting product surface defects. Instead of being a 
single technique, it is more of a problem-solving approach. 

Today, many manufacturers still rely on manual methods 
for surface defect detection in production, which is time-
consuming and labor-intensive. Moreover, the accuracy 
heavily depends on the experience of technical personnel to 
correctly identify and differentiate various defects hidden on 
the surface. Numerous studies have demonstrated that 
utilizing deep learning techniques to address the issue of 
product surface defect detection has significantly 
outperformed human experts in terms of time, cost, and 
accuracy. 

This paper approaches the problem of product surface 
defect detection in production from the perspective of 
anomaly detection, utilizing deep learning techniques to 
achieve automated defect detection and intelligent analysis. 

At present, most of the research using deep learning 
technology and applied to industrial surface defect detection 
can be roughly divided into two directions: supervised 
learning and unsupervised learning. 

In order to achieve high standards in industrial defect 
detection, a high level of accuracy is necessary, which is the 
strength of supervised learning. However, supervised 
learning typically requires a large amount of annotated 
abnormal data, which may not be available in practical 
production scenarios. On the other hand, the advantage of 
unsupervised learning is that it can perform anomaly 
detection without the need for labeled data (1). One common 
technique is to use Auto-Encoders and Variational Auto-
Encoder (2), which learn to reconstruct the distribution of 
normal data by inputting a large amount of unlabeled normal 
data. Therefore, any data the model cannot reconstruct can be 
identified as anomalies. The benefit of using this approach is 
that it does not require labeled data, and the model can still 
successfully detect unseen anomalies that have not occurred 
in the past on the production line, which is not possible with 
supervised models. However, there are two main 
disadvantages of utilizing unsupervised learning for detecting 
surface defects. The first drawback is the need for more 
accuracy, as the correct rate often falls below the standard 
required for industrial production. The second drawback is 
that while the model can identify unseen anomalies, it can 
only perform simple binary classification. The model 
typically can only determine whether the input image is 
similar enough to the training data. Any data that deviates 
significantly from the training data is treated as unseen 
anomalies. 

In the field of supervised learning for detecting surface 
defects, the Segmentation and Decision Network (Seg-Dec 

Net) (3) has demonstrated excellent performance in terms of 
accuracy, labeling cost, and recognition time. This model 
uses a supervised learning approach and is broken down into 
two stages: segmentation and decision. Its primary objective 
is to identify defects in images and mark their locations. 
Several studies have shown that supervised learning 
combined with defect location annotation can effectively 
improve the performance of defect detection. However, Seg-
Dec Net only treats surface defect detection as a binary 
classification problem, focusing solely on identifying the 
presence of defects in images without the ability to 
distinguish between different types of surface materials or 
different types of defects. 

The proposed Surface Defect Detection and Classification 
System not only achieves high accuracy in surface defect 
detection and classification tasks, but also has the ability to 
recognize unseen anomalies. To enable the recognition of 
unseen anomalies, we have incorporated techniques from the 
field of zero-shot learning, combining class embedding to 
allow the model to learn semantic information from the seen 
classes it has observed. By integrating visual and semantic 
feature information, the model can distinguish between seen 
and unseen classes. This system allows for high accuracy 
using a small amount of labeled data, which meets industry 
requirements. Additionally, it can also efficiently recognize 
unseen anomalies and achieve soft real-time detection 
capabilities. 

To summarize, the main contributions of this paper are as 
follows: 

• Propose a novel Surface Defect Detection and
Classification System that combines a zero-shot learning
classifier with multiple binary CNN defect detectors,
enabling the model to simultaneously detect and classify
defects, as well as recognize unknown anomalies

• Introduce DAGM_MIX dataset, which combines the
benign and defect data together in each class

• Introduce class embedding (CE) of DAGM_MIX
dataset for training the zero-shot learning (ZSL)
classifier

• Proposed the concept of Reverse Autoencoder (R-AE),
emphasizing the reconstruction quality of class
embedding (CE)

• Utilize the Customized Variational Auto Encoder
(VAE) model developed by our laboratory to enable the
model to generate its own class embedding (referred to
as Learned-CE), which further enhances the accuracy of
the zero-shot learning (ZSL) classifier

• The surface defect detection and classification system is
designed to simulate real-world scenarios in factory
production lines, with features such as anomaly
detection and classification, defect detection, high
accuracy, low latency, and cost-effectiveness
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2. Related work 

Research on anomaly detection has a long history, with early 
work going back as far as Edgeworth (1887) and is concerned 
with finding unusual or anomalous samples in a corpus of 
data. An extensive overview of traditional anomaly detection 
methods as well as open challenges, can be found in Chandola 
et al. (4). 

Defect detection on product surfaces is a critical task in 
manufacturing and quality control. Traditional defect 
detection methods rely on manual inspection, which is time-
consuming and error-prone. With the recent advancements in 
deep learning, there has been growing interest in using deep 
learning techniques for defect detection on product surfaces. 

There are many different approaches to solving this 
problem. One popular approach is to use convolutional neural 
network (CNN) for defect detection. CNN is well-suited for 
image analysis tasks and can learn to identify complex 
patterns in images. Researchers have proposed various CNN-
based models for defect detection, such as Region-based 
CNN (R-CNN), Faster R-CNN, and Mask R-CNN. These 
models can detect defects of different shapes and sizes and 
can achieve high accuracy in defect detection. 

The Segmentation-Based Defect Detector(SBDD) model, 
which will present later, is based on the current state-of-the-
art paper using CNN (3) (5) (6). They considered the surface 
defect detection task as a binary classification issue and 
obtained significant results using two-stage training and label 
optimization. 

Recently, several object detection techniques (7) (8) have 
demonstrated promising results in automating surface defect 
detection. One popular choice is You Only Look Once 
(YOLO) due to its speed and accuracy. 

YOLO is a deep learning model that uses convolutional 
neural network (CNN) to detect and classify objects in real-
time. It is an improvement over previous versions of YOLO 
in terms of accuracy, speed, and robustness to occlusions and 
small object sizes. YOLO is based on the anchor box 
approach, which involves defining a set of boxes of different 
sizes and aspect ratios that are used to predict object locations 
and sizes. This approach allows for efficient training and 
detection of objects, making it well-suited for surface defect 
detection. However, there are some drawbacks to using 
YOLO for surface defect detection: 

• This method requires a large amount of image dataset 
for training, and collecting and annotating these data 
may require a significant amount of time and manpower 

• The method may have missed detections and false 
alarms, especially when the defect appearance and 
location differ from known samples, which is one of the 
main problems this paper aims to solve 

• Using YOLO for surface defect detection requires model 
debugging and optimization to improve its accuracy and 
performance 

 

Another approach to surface defect detection is the use of 
generative models, such as Variational Autoencoder (VAE) 
and Generative Adversarial Networks (GAN). 

Recently, Generative Adversarial Network (9) (GAN) have 
been employed to synthesize unseen class features, which are 
then used in a fully supervised setting to train ZSL classifiers 
(10). GAN is composed of two neural networks that 
collaborate to produce realistic images. A conditional 
Wasserstein GAN (11) (WGAN) is used along with a seen 
category classifier to learn the generator for unseen class 
feature synthesis (10). This is achieved by using a WGAN 
loss and a classification loss. 

Researchers have proposed using GAN for anomaly 
detection on product surfaces. GAN is mainly for defect 
image reconstruction and recognition (12), where the model 
learns to distinguish between normal and abnormal samples. 
This approach has shown promising results in defect 
detection tasks, as it can learn to identify subtle defects that 
are challenging to detect with conventional methods. VAE-
GAN (13) (14) is a hybrid model that combines the 
advantages of VAE and GAN. The VAE-GAN model is 
trained on a dataset of images with and without surface 
defects. The encoder of VAE-GAN learns the latent 
representation of the image, and the decoder generates the 
reconstructed image. The generator of GAN generates the 
fake image, and the discriminator distinguishes between real 
and fake images. The joint training of VAE and GAN ensures 
that the generated images are not only similar to the input 
images but also visually realistic. 

To the best of our knowledge, no one has yet applied Zero-
shot learning (ZSL) techniques to the field of industrial metal 
surface defect detection. The proposed Surface-Based 
Anomaly Detector(SBAD) model in this paper, which will 
present later, is based on the TF-VAEGAN (13) architecture, 
which combines VAE and GAN models. It introduces 
innovative concepts such as incorporating Class Embedding 
(CE) at all stages of training and using the decoder to 
reconstruct CE. The model has been demonstrated to achieve 
significant accuracy improvement on multiple datasets. 

Additionally, researchers have explored using transfer 
learning techniques to improve the performance of defect 
detection models (15). Transfer learning involves using a pre-
trained model on a large dataset and fine-tuning it on a 
smaller dataset for a specific task. By leveraging the pre-
trained model's knowledge, transfer learning can improve the 
performance of defect detection models, especially in 
scenarios with limited training data. 

In conclusion, deep learning techniques have shown great 
potential in defect detection on product surfaces. By 
leveraging the power of CNN, VAE, GAN, and transfer 
learning, defect detection models can achieve high accuracy 
and robustness, improving the efficiency and accuracy of 
quality control in manufacturing. However, there are still 
challenges to be addressed, such as the requirement for large 
amounts of labeled data and the robustness of the models to 
different lighting and viewing conditions. Further research is 
required to address these challenges and improve the 
performance of defect detection models in real-world 
scenarios. 

EAI Endorsed Transactions on 
AI and Robotics 

| Volume 2 | 2023 |



 
Sheng-Tzong Cheng, Chun-Wei Yeh 

  4      

2.1. Transfer Learning 

Transfer Learning serves as an approach to address the 
challenges of data scarcity, especially in obtaining labeled 
data, by exploring the relatedness between datasets of similar 
tasks. 

In Transfer Learning, the data required for the target task 
is referred to as target data, while data that is similar to the 
task but not directly related is termed source data. The 
objective of Transfer Learning is to leverage the assistance of 
source data to alleviate the difficulties and costs associated 
with collecting target data. 

Zero-Shot Learning (ZSL) is a subfield of Transfer 
Learning wherein the target data lacks any labels while the 
source data is labeled. During training, only the labeled 
source data is provided to the model, with the expectation that 
the model can discern the categories among the target data 
during testing. 

It is evident that relying solely on visual information is 
insufficient to achieve the aforementioned goals. Therefore, 
ZSL requires the prior definition of attributes, also known as 
Class-Embedding or CE, based on the characteristics of each 
class. The collection of attributes defined for each class 
represents the Class-Embedding, and different combinations 
of Class-Embedding can represent distinct categories. 
 

Class-Embedding 
In Zero-shot learning, Class-Embedding is a technique for 
representing category information. It is used to convert 
categories into vector representations for use in zero-shot 
learning tasks. 

In traditional supervised learning, we typically have a large 
number of labeled training samples, with each sample 
associated with a specific category. However, in zero-shot 
learning, the challenge is to learn how to classify new 
categories that have not appeared in the training set. 

Class-Embedding addresses this problem by generating a 
vector for each category, encoding the semantic information 
of the category into a continuous feature representation. This 
allows us to use these class embedding vectors during the 
training phase and associate them with existing training 
samples. Then, during the testing phase, we can utilize these 
embedding vectors to classify new categories. 

Class-Embedding (CE) plays a crucial role in Zero-Shot 
Learning (ZSL) as it represents the key attribute features of a 
category, encapsulating the core information of that class. 
Currently, there are several methods for generating Class-
Embedding. Apart from relying on domain knowledge and 
understanding of the dataset itself through manual definition, 
natural language processing techniques are also employed. 
These techniques leverage resources available on the internet, 
such as Wikipedia, and utilize word-to-vector approaches to 
transform textual descriptions of a category into numerical 
representations. 

To summarize, Class-Embedding is a technique that 
incorporates category information into vector 
representations, which is essential in zero-shot learning. This 
approach allows us to classify new categories by utilizing 
semantic relationships and attribute information between 
categories, thereby expanding the capabilities of traditional 
supervised learning. 

3. System Design and Methodology 

3.1. Two-Stage Metal Surface Defect 
Detection and Classification System 

In the following chapters, we will start by providing an 
overview of the system architecture and design, as well as the 
purpose and benefits of using the two-stage model. We will 
also cover the advantages and goals of the system design. 
Then, we will give separate introductions to the SBAD and 
SBDD models and their architectures. Finally, we will 
explain the proposed DAGM_MIX dataset and the design of 
Class-Embedding specifically for this dataset. 

The proposed system consists of two main models, namely 
Surface-Based Anomaly Detector (SBAD) and 
Segmentation-Based Defect Detector (SBDD); SBDD treats 
defect detection as a binary classification problem, with the 
task of detecting whether the input image contains defects and 
displaying the location of the defects. On the other hand, 
SBAD can be viewed as a pre-classifier for the input images 
before SBDD, with its primary task being to recognize unseen 
anomalies and its secondary task being to classify seen 
categories. 

 
Figure 1. Metal Surface Defect Detection and Classification System flow chart – 1

EAI Endorsed Transactions on 
AI and Robotics 

| Volume 2 | 2023 |



5 

The system is a diagram that models real-world situations 
occurring on production lines. It is composed of two main 
stages: SBAD handles anomaly detection and classification, 
while SBDD handles defect detection, as displayed in 
Figure 1. 

3.1.1. System Design 
The entire system can be divided into two stages: the 
unknown anomaly detection and classification stage, handled 
by SBAD, and the defect recognition stage, handled by 
SBDD. 

Firstly, the Image Capture System is responsible for 
capturing images of products on the production line. The 
captured images are then input to SBAD. The primary task of 
SBAD is determining whether the current input image 
belongs to an unknown category. In most cases, the input to 
SBAD consists of normal seen class images, so SBAD 
generally does not produce any output or trigger anomaly 
alerts. However, when SBAD identifies that the current input 
image does not belong to any known category, referred to as 
an "unseen anomaly," the model outputs the result, triggers 

an anomaly alert in the system, and prevents the transmission 
of that image data to SBDD. The secondary task of SBAD is 
to classify known categories. When the production line is not 
isolated, multiple products with different surface materials 
and defect types may appear simultaneously on a single 
production line. Therefore, we rely on SBAD to classify these 
different products into categories, ensuring that the inputs to 
SBDD belong to the same category. At this stage, the tasks of 
the first stage are completed. 

The second stage is the defect recognition stage, led by 
SBDD. SBDD can be considered a defect detector that 
identifies defects in an image, performing a binary 
classification task. If a defect is detected, it triggers a defect 
alert and indicates the specific location of the defect. 
However, whether encountering an unknown category in the 
first stage or detecting defects in the second stage, the system 
not only issues an alert but also outputs the corresponding 
Class-Embedding (CE). This allows inspection personnel to 
make an initial assessment of the cause behind the alert. 
Furthermore, for CEs generated from unknown categories, 
the model's output is based on the learned features from 
known categories. 

Figure 2. Metal Surface Defect Detection and Classification System flow chart – 2 

To be more specific, Figure 2 illustrates the detailed 
process of the system operation. Assuming ten classes are in 
the dataset, each class would have two labels, namely 
"benign" and "defect." If there are eight known classes and 
two unknown classes, we need to train eight SBDD models 
for all known classes. The purpose of each SBDD model is 
to detect whether there is a defect in the images of its 
respective class. The SBAD's role is to ensure that each 
image input to the SBDD belongs to the corresponding class 
and cannot contain any images of other known or unknown 
classes. Additionally, when an image of an unknown class is 
detected, the SBAD model needs to issue an abnormal alert 
and prevent it from being input into the SBDD. 

3.1.2. Surface-Based Anomaly Detector 
The Surface-Based Anomaly Detector (SBAD) plays a 
crucial role in the system. SBAD has two primary tasks: 

functioning as a classifier for the input of SBDD and 
performing anomaly detection for the entire system, 
responsible for detecting unseen anomalies. 

The first priority of the SBAD is to identify the difference 
between Normal and Anomaly. Most of the time, the output 
of the detector will be normal; it would only output an 
anomaly when the detector thinks this data does not belong to 
any known classes. The second priority is classifying the 
known classes to ensure that every input data of the SBDD 
belongs to its own category. 

SBAD is a classifier that utilizes surface textures as the 
basis for classification. In order for SBDD to perform binary 
classification tasks, SBAD needs to learn to treat benign and 
defective samples within the same class as the same cluster. 
To achieve this, we require a more flexible model than an 
Autoencoder (AE) so that the model can still successfully 
reconstruct the original image even if defects appear on 
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images with the same surface texture. Therefore, we adopt the 
Variational Autoencoder (VAE) model to reduce the 
differences between benign and defective samples in images 
with the same surface texture. However, due to the 
characteristics of industrial surface defect datasets, different 
classes often exhibit high similarity. If a VAE model is used 
alone, it will result in reduced differences between each class, 
i.e., images with different surface textures. This would 
increase the difficulty of classification for SBAD. Hence, we 
combine the VAE model with a Generative Adversarial 
Network (GAN) to form the VAEGAN architecture. Through 
the discriminative power of GAN, the quality of the images 
reconstructed by VAE for each category is improved, 
enhancing the difference between each category. 

The training process for SBAD is split into two stages: the 
CE generation stage for training the VAE and the 
classification stage for training the VAEGAN. In the 
following sections, we will discuss the model architectures 
and training methods used in each of these stages. 
 

CE generation stage for training the VAE model: 
At the CE generation stage, we use the VAE model alongside 
the CE we proposed (Table 1). The VAE model used in this 
paper is based on previous research in our laboratory (16), 
which has demonstrated that using VAE-generated CE can 
significantly improve accuracy in some mainstream zero-shot 
learning datasets, such as Animals with Attributes 2 (AWA2) 
(17) and Caltech-UCSD birds (CUB) (18) datasets, compared 
to using expert-defined CE. This paper applies this method to 
the field of industrial surface defect detection and achieves 
promising results. 

 
Figure 3. Proposed VAE model architecture 

 
The training process of the VAE model is briefly described 

below, while the detailed model architecture and training 
details can be found in the original paper. 

Firstly, the feature vector, denoted as 𝒙𝒙, which is extracted 
by the backbone network, is used as the input of the Encoder. 
The goal of the Encoder is dimensionality reduction. It 
simplifies the feature vector into a 29-dimensional vector that 
matches the same dimensions of the designed Class 
Embedding, denoted as 𝒂𝒂𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 , which is presented in Table 
1. We expect the Encoder to learn the most representative 29-
dimensional vector, which is also known as the latent code, 
denoted as 𝒁𝒁, that can best represent the feature vector 𝒙𝒙. 
Next, the latent code is used as the input of the Decoder. The 
goal of the Decoder is to reconstruct the feature vector 𝒙𝒙 from 
the latent code so that the reconstructed vector, denoted as 𝒙̂𝒙, 
is as similar as possible to the original input 𝒙𝒙. 

The VAE model has two loss functions, namely the 
reconstruction loss function (𝐿𝐿𝑅𝑅𝑅𝑅𝑅𝑅) and the class embedding 
constrained loss function (𝐿𝐿𝐶𝐶𝐶𝐶). 

 
𝐵𝐵𝐵𝐵𝐵𝐵(𝑦𝑦𝑖𝑖 , 𝑦̂𝑦𝑖𝑖) = −

1
𝑛𝑛
�  
𝑛𝑛

𝑖𝑖=1

𝑦𝑦𝑖𝑖log (𝑦̂𝑦𝑖𝑖)  

+ (1 − 𝑦𝑦𝑖𝑖)log (1 − 𝑦̂𝑦𝑖𝑖) 
(1) 

 𝐿𝐿𝑅𝑅𝑅𝑅𝑅𝑅 ∶ 0.5 ∗ 𝐵𝐵𝐵𝐵𝐵𝐵 �𝑥𝑥𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡(𝑖𝑖), 𝑥𝑥𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡(𝑖𝑖)� 
 

(2) 

 𝐿𝐿𝐶𝐶𝐶𝐶 ∶ −0.5 ∗  [1 + 𝑙𝑙𝑙𝑙𝑙𝑙𝜎𝜎2 +  𝜎𝜎2
+ (𝜇𝜇 −   𝐶𝐶𝐸𝐸𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)2] 

 

 

(3) 

 
Reconstruction loss (2) is computed using Binary Cross-
Entropy (1). In the following, n represents the number of 
samples, and 𝒚𝒚𝒊𝒊 denotes the true label of the i-th sample, 
where the label values represent the brightness of each pixel 
using 0 and 1. On the other hand, 𝒚̂𝒚𝒊𝒊 represents the predicted 
probability of the i-th sample. 

Reconstruction loss has been used to measure the 
difference in probability distribution between the 
reconstructed 𝒙̂𝒙 output by the Decoder and the original 
input 𝒙𝒙. The optimization goal is to minimize the difference 
between them, meaning that we want the probability 
distribution of 𝒙̂𝒙 to be as similar as possible to the 
probability distribution of input 𝒙𝒙. 

Class embedding constrained loss (3) is measured using 
KL-divergence loss to evaluate the distance between the 
probability distributions learned by the Encoder and the real 
distributions. Unlike a typical KL-divergence loss, the CE-
constrained loss adds a constraint on the CE, which means 
that the latent code produced by the Encoder not only needs 
to represent the input features well but also needs to be as 
similar as possible to our designated Real CE. Using these 
two loss functions, the Encoder can generate a latent code that 
can accurately reconstruct the original input through the 
Decoder and be distributed near the Real CE we designed. 
This indicates that the Encoder can find the 29-dimensional 
vector that best represents the original input 𝒙𝒙 , and each 
dimension of this vector has a meaningful value. By 
comparing the differences between the values of the latent 
code and the Real CE, we can observe the model's 
interpretation of different features and compare it with our 
human-designed Real CE. 

 
After training the VAE, we take the average of the 

latent code produced by the Encoder to obtain the Learned 
CE that best represents each seen class and replace the 
original Real CE with it for the subsequent training of the 
VAEGAN. 
 

Classification stage for training the VAEGAN 
model: 

VAEGAN is a model that merges Variational Auto 
Encoder (VAE) and Generative Adversarial Networks 
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(GAN) to generate high-quality synthetic images. It 
accomplishes this by training a VAE and a GAN 
simultaneously, capitalizing on the advantages of both 
models. During training, the VAE's Decoder acts as the 
GAN's Generator, attempting to reconstruct the original input 
image based on the latent code produced by the Encoder. 
Meanwhile, the Discriminator in the GAN identifies the 
difference between real and synthesized images generated by 
the Generator. The Generator creates images that closely 
resemble the original to mislead the Discriminator. 

The VAEGAN model used in this paper is fine-tuned 
based on the TF-VAEGAN (13) model architecture. The 
paper introduces the concept of using another Decoder to 
reconstruct CE and suggests incorporating CE throughout all 
training phases to enhance the model's ability to distinguish 
between seen and unseen classes. The detailed model 
architecture and training details can be found in the original 
paper. The strong classification ability of the ZSL Anomaly 
Detector can be attributed to the design of the VAEGAN 
model. During training, VAEGAN not only has to classify 
seen classes but also has to be able to recognize unseen 
anomalies. 

 
 

Figure 4. Proposed VAEGAN model architecture 
 

The overall architecture of the proposed VAEGAN 
model is depicted in Figure 4. Unlike TF-VAEGAN, our 
proposed architecture includes two Encoders (Encoder-1, 
Encoder-2), a Decoder, and a Discriminator, with an 
emphasis on the reconstruction quality of Class-Embedding 
(CE). Next, we will provide a detailed description of the 
complete training procedure for VAEGAN. 

After obtaining the Learned CE for each seen class in 
the previous stage, we assign the corresponding Learned CE 
based on the class of the seen class. Firstly, we input the seen 
class image into the backbone network to extract visual 
features 𝒙𝒙 . These features, along with the corresponding 
Learned CE (denoted as 𝒂𝒂𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍  in Figure 4), are used as 
inputs for Encoder-1. Encoder-1 then outputs a latent code 𝒁𝒁. 
Next, 𝒁𝒁 and the corresponding 𝒂𝒂𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 are used as inputs for 
the Decoder, which synthesizes the features 𝒙̂𝒙 based on the 
input. Finally, as mentioned earlier, the Discriminator 
receives either 𝒙𝒙 or 𝒙̂𝒙 as input. The training objective of the 
Discriminator is to learn to distinguish between real and 
synthesized features without knowing whether the current 
input is 𝒙𝒙 or 𝒙̂𝒙. 

Next, Encoder-2 is used to map the visual features 𝒙𝒙 or 
𝒙̂𝒙  to a latent attribute 𝒂̂𝒂𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 . During training, the 
dissimilarity between 𝒂𝒂𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍  and 𝒂̂𝒂𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍  is minimized. 

During testing, when images of unseen anomalies appear, the 
dissimilarity between the latent attribute 𝒂̂𝒂𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍  and 𝒂𝒂𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 
will be enlarged. As a result, given an unseen test image, the 
high dissimilarity between the latent attribute 𝒂̂𝒂𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍  and 
𝒂𝒂𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 indicates an unseen anomaly. 

On the other hand, we can consider the combination of 
the Decoder and Encoder-2 as a Reversed-Autoencoder (R-
AE). The conventional autoencoder (AE) maps high-
dimensional features to a lower-dimensional latent code, 
aiming to learn essential features from the original input data 
while disregarding less critical details. AE focuses on 
whether it can produce a sufficiently good latent code that 
represents the original high-dimensional features. In contrast, 
R-AE requires mapping a low-dimensional latent code to a 
high-dimensional feature representation, which is more 
challenging than AE. Therefore, R-AE heavily relies on the 
quality of the latent code, i.e., the 𝒂𝒂𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 and 𝒁𝒁 in Figure 4. 
If the quality of the latent code is good enough, the 
reconstruction by Encoder-2 becomes easier, and the key 
concern of R-AE is whether the reconstructed 𝒂̂𝒂𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍  is 
sufficiently similar to the original 𝒂𝒂𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 . During training, 
Encoder-2 receives the same input as the Discriminator 
without knowing whether the current input is 𝒙𝒙 or 𝒙̂𝒙. The role 
of Encoder-2 is to reduce the current visual features to 𝒂̂𝒂𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 
with the same dimensionality as 𝒂𝒂𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍. Next, we will explain 
the loss functions used in each model. 

Both Encoder-1 and Decoder together constitute the 
VAE, which is trained using Binary Cross-Entropy, denoted 
as 𝐿𝐿𝐵𝐵𝐵𝐵𝐵𝐵 , and the KL divergence loss, denoted as 𝐿𝐿𝐾𝐾𝐾𝐾 . 
Likewise, both Generator(Decoder) and Discriminator form 
the GAN trained using the WGAN loss (13) (11), denoted as 
𝐿𝐿𝑊𝑊. Finally, as mentioned before, both Decoder and Encoder-
2 consist of R-AE, which is trained with Mean Squared Error 
(MSE) loss, denoted as 𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀 . It is worth noting that our 
proposed VAEGAN and the original reference paper (13) 
differ in both the architecture and loss function used for CE 
reconstruction. The model employed in TF-VAEGAN is 
called Semantic Embedding Decoder, which utilizes L1 
reconstruction loss. This loss function subtracts the predicted 
value from the actual value, i.e., 𝒂̂𝒂𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 − 𝒂𝒂𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 , and then 
computes the L1 norm of the resulting values, followed by 
taking the average. In contrast, the loss function we utilize is 
MSE loss (4). 

Next, we will provide an explanation of the proposed 
MSE loss (4). However, it is important to note that other 
utilized loss functions, including Binary Cross-Entropy, KL 
divergence, and WGAN loss, remain the same as in the 
original reference paper (13). 
 

 𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛
�  
𝑛𝑛

𝑖𝑖=1

(𝑎̂𝑎learn𝑖𝑖 − 𝑎𝑎learn𝑖𝑖)
2 (4) 

 
Generally, in the field of industrial surface defect 

detection, anomaly detection models are expected to 
minimize the reconstruction error on normal images during 
training and induce a large reconstruction error on anomalies 
during the testing stage. However, in this domain, the 
similarity between classes is often high. SBAD not only 
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needs to differentiate between these similar seen classes but 
also needs to recognize unseen anomalies. This requirement 
makes it insufficient to rely solely on L1 reconstruction loss 
for effective classification. Therefore, we propose using 
MSE loss (4) to measure the quality of the reconstructed 
𝒂̂𝒂𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍. Previous studies (19) have demonstrated that MSE 
loss performs better than L1 reconstruction loss. 
Furthermore, the experimental results presented in 
subsequent chapters demonstrate that using MSE loss 
improves the overall classification accuracy compared to 
TF-VAEGAN, which uses L1 reconstruction loss. 
 

3.1.3. Segmentation-Based Defect Detector 
The Metal Surface Defect Detection and Classification 

System simulates possible scenarios in real-world 
production lines, where SBDD plays the role of real-time 
defect detector. 

Segmentation-Based Defect Detector, abbreviated as 
SBDD, is a deep convolutional network model based on 
segmentation. The overall model can be roughly divided 
into a segmentation network and a decision network. The 
segmentation network focuses on detecting small surface 
defects in high-resolution images, aiming to locate the 
specific positions of defects and perform pixel-level 
segmentation. The decision network is responsible for 
determining whether there are defects in the image. Based 
on this architecture, SBDD can be regarded as a binary 
classifier whose task is to inform the system whether the 
current input image contains defects. A defect notification is 
issued if defects are detected, and the specific defect 
locations in the image are output. 

The characteristics of SBDD are lightweight and cost-
effective while maintaining high accuracy in real-time 
detection. Since the task of SBDD is relatively simple and 
has already achieved good results in the original papers (3) 
(5) (6), we have made minimal modifications to its source 
code, only integrating the input with SBAD. For more 
details on the model architecture of SBDD, please refer to 
the original papers (3) (5) (6). 

3.2. DAGM_MIX and Class-Embedding 

The performance of the Metal Surface Defect 
Detection and Classification System heavily relies on the 
accurate and effective classification of SBAD. SBAD needs 
to be able to classify not only the seen classes but also 
identify unseen classes that have not been encountered 
before. The two key factors that determine the effectiveness 
of SBAD's classification ability are the quality of the dataset 
and the class embedding. In this chapter, we will explain the 
DAGM_MIX dataset we proposed and its corresponding 
class embedding. 

DAGM dataset 
Before we introduce the DAGM_MIX dataset, we first 

need to introduce what the DAGM dataset is. The DAGM 
dataset (20) is a widely recognized benchmark dataset in the 

field of industrial surface defect detection. The dataset 
comprises ten classes generated by computers, but similar to 
real-world problems, each with a different surface texture 
and containing grayscale image data for both benign(non-
defective) and defective samples, such as crazing, scratches, 
or spots. At first, only six classes were made publicly 
available and known as the development dataset, while four 
more were introduced later, known as the competition 
dataset. As a result, some related methods report results only 
on the first six classes, while others present results on all 
ten. Each development (competition) dataset consists of 
1000 (2000) 'benign' and 150 (300) 'defective' images saved 
in grayscale 8-bit PNG format. 

DAGM_MIX dataset 
As mentioned earlier, due to the system design we 

proposed, which requires SBAD to treat both benign and 
defect images within the same class, we have introduced the 
DAGM_MIX dataset based on the DAGM dataset. 

The DAGM_MIX dataset is categorized into ten 
classes based on surface texture (background). Each class in 
the dataset contains both benign and defective images, as 
shown in Figure 5. 

The DAGM_MIX dataset provides three different 
types of data annotations: surface-based labels, image-level 
labels, and pixel-level labels. The surface-based labels 
classify the images based on surface texture and indicate 
which class the image belongs to. The image-level labels 
can be considered as weak labels, informing the model 
whether the image is "benign" or "defect". On the other 
hand, pixel-level labels can be seen as strong labels, 
providing the specific spatial distribution of the background 
and defect areas in the image. In the pixel-level labels, the 
values 0 and 255 denote the background and defective area, 
respectively. The relationship between surface-based, 
image-level, and pixel-level labels is illustrated in Figure 5. 

 

 
 

Figure 5. The different level label used in DAGM_MIX 
dataset 

 
On the other hand, due to the large difference in the 

amount of benign and defective data, we have also 
addressed the issue of data imbalance. In addition to 
downsampling benign images, we have also performed data 
augmentation on defect images of various types, including 
rotation, horizontal flip, vertical flip, brightness adjustment, 
etc. 
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Class-Embedding 
We propose a Class Embedding designed explicitly 

for the DAGM_MIX dataset based on its characteristics and 
the relevant expertise of the laboratory in the production and 
manufacturing field. The Class Embedding consists of 29 
dimensions, with each dimension representing a specific 
attribute, as shown in Table 1. 
 

Table 1. Class-Embedding of DAGM_MIX dataset 
 

Attribute number Define attributes 
1 Color_D: white 
2 Color_D : black 
3 Color_BG: white_b 
4 Color_BG: black_b 
5 Surface texture: grainy 
6 Surface texture: smooth 
7 Surface texture: regular pattern 
8 Surface texture: irregular pattern 
9 Surface texture: strip 
10 Defect scope area: large 
11 Defect scope area: medium 
12 Defect scope area: small 
13 Defect shape: irregular slender strip 
14 Defect shape: regular straight slender strip 
15 Defect shape: irregular long strip 
16 Defect shape: irregular small bump 
17 Defect shape: irregular sparse dots 
18 Defect shape: small dot 
19 Defect shape: irregular ellipse stain 
20 Defect distribution: concentration 
21 Defect distribution: continuity 
22 Defect reason: reason 1 
23 Defect reason: reason 2 
24 Defect reason: reason 3 
25 Defect reason: reason 4 
26 Defect reason: reason 5 
27 Defect reason: reason 6 
28 Defect reason: reason 7 
29 Defect reason: reason 8 

 

4. System Design and Methodology 

This chapter will describe our experimental results in 
detail. First, we will explain the datasets we use and our 
experiment’s environment in section 4.1. Next, we will 
demonstrate several experiments in section 4.2 to evaluate the 
performance of SBAD and SBDD models separately. 

4.1. Datasets and Environment 

DAGM_MIX Datasets 
In the dataset processing part, we first divided the 

original ten categories of the DAGM dataset into eight seen 
classes and two unseen classes. The so-called unseen classes 
refer to the fact that the model will not use any data from that 
category during the entire training stage, including image data 
and the CE of that category. Next, we separated the benign 
and defect in each of the seen classes and downsized the 

benign images to 300 per class. Then, we performed data 
augmentation for the class with only 150 defect images, 
which is the competition dataset mentioned earlier. After data 
augmentation, each class increased from the original 150 to 
300. At this point, the ratio of benign to defect data in all eight 
seen classes is 1:1, with a total of 600 data per class and a 
total of 4800 data. Then, we divided these data into training 
and validation sets at a ratio of 8:2. As for the unseen class 
part, we directly downsized the benign images in each 
category to be consistent with the number of defect images in 
that category and used them all as test data. Finally, we map 
the CE to their corresponding classes. Each CE is a 29-
dimensional vector, where the semantics of each dimension 
are shown in Table 1. The experiment environment is shown 
in Table 2. 

Environment 
We use the local server built in our lab with Nvidia 

GeForce RTX3090 GPU to train our models. Following is the 
detailed experiment environment. In the next section, we will 
present experimental results to demonstrate our work. 

 
Table 2. Experiment environment 

 
 Setting 

OS Ubuntu 20.04 
Platform Pytorch 1.7.1 / CUDA 11.0 
Program language Python 3.7 
CPU AMD Ryzen 9 5950X 16-Core 

Processor 
GPU NVIDIA GeForce RTX 3090 
memory 32G 

4.2. Experimental Results 

In this section, we validate the proposed Metal Surface 
Defect Detection and Classification System for industrial 
quality control and anomaly detection. 

This system consists of two main models, the SBAD 
model, responsible for the surface material classification and 
identifying unseen anomalies, and the SBDD model, 
responsible for detecting whether defects appear in the image 
and drawing the specific location of the defects. Next, we will 
verify the performance of these two models separately. 

Results on the SBAD Model 
In the experimentation of the SBAD model, firstly, In 

order to verify the effectiveness of the learned CE, we 
compared the accuracy of using the Real CE proposed in this 
paper (Table 1) and the Learned CE generated by the VAE 
model while adopting the Inductive setting standard on TF-
VAEGAN model. Furthermore, in order to verify the 
performance of our proposed VAEGAN, we trained TF-
VAEGAN (13) using the DAGM_MIX dataset and Learned 
CE configuration and compared it with our proposed 
VAEGAN. 
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Table 3. Accuracy using TF-VAEGAN 
 

Class-
Embedding 

GZSL ZSL 
Normal 
(seen 

classes) 

Anomaly 
(unseen 
classes) 

Harmonic 
mean(H) 

Anomaly 
(unseen 
classes) 

Real CE 96.56 65.76 78.24 100 

Learned CE 96.15 93.94 95.03 100 

 
Table 4. Accuracy of SBAD using proposed VAEGAN 

 

Class-
Embedding 

GZSL ZSL 
Normal 
(seen 

classes) 

Anomaly 
(unseen 
classes) 

Harmonic 
mean(H) 

Anomaly 
(unseen 
classes) 

Real CE 96.46 70.61 81.53 100 

Learned CE 98.12 95.96 97.03 100 

 
As shown in Table 3 and Table 4, in the evaluation of 

SBAD, it can be observed that our model achieved perfect 
classification in all four different experimental setups in ZSL. 
When comparing VAEGAN and TF-VAEGAN in the case of 
GZSL, we noticed that using Real CE resulted in a slight 
decrease of 0.1% in the classification accuracy of seen 
classes. However, the accuracy of unseen classes improved 
by almost 5%. We believe this improvement is due to the 
higher quality of CE reconstruction in Encoder-2. 

In addition, regardless of whether VAEGAN or the 
original TF-VAEGAN was used, we found that using 
Learned CE can significantly improve the accuracy of 
recognizing unseen classes than using Real CE. This indicates 
that the Learned CE obtained from our VAE model can 
provide more precise semantic feature values compared to 
manually defined Real CE. 

It can be observed that using our proposed VAEGAN 
and training with Learned CE can achieve the best 
performance. The accuracy of harmonic reach 97%. 

 
Table 5. Accuracy comparison between TF-VAEGAN 

and proposed VAEGAN 
 

Models 

GZSL ZSL 

Normal 
(seen 

classes) 

Anomal
y 

(unseen 
classes) 

Harmoni
c 

mean(H) 

Anomal
y 

(unseen 
classes) 

TF-
VAEGAN 96.15 93.94 95.03 100 

VAEGAN
(ours) 98.12 95.96 97.03 100 

 
From Table 5, as mentioned before, we can observe 

that using our proposed VAEGAN model architecture as the 
SBAD classifier, the classification accuracy of both seen and 
unseen classes has been slightly improved compared to 
training directly with TF-VAEGAN. We believe this 
improvement can be attributed to the use of the R-AE 

architecture combined with MSE Loss, which places more 
power on the quality of CE reconstruction. 

Results on the SBDD Model 
In the experiments conducted on the SBDD model, we 

compared four different datasets: DAGM, KSDD, KSDD2, 
and STEEL. 

 
Table 6. Evaluation of SBDD on four datasets 

 DAGM KSDD KSDD2 STEEL 
AUC 0.99 0.99 0.97 0.99 
AP 0.99 0.99 0.94 0.99 

f-measure 0.99 0.99 0.91 0.96 
FP 0 0 2 35 
FN 0 0 17 9 

 
As shown in Table 6. It can be observed that, except for 

the KSDD2 and STEEL datasets, the SBDD model 
demonstrated no False Positive (FP) or False Negative (FN) 
values, indicating that the model was able to distinguish 
whether defects were present in the input images perfectly. 
The data results of this experiment were also consistent with 
the data provided in the original paper (5). 

5. Conclusions 

Regarding the last chapter of this thesis, we will discuss 
the results of the experiment of our model and make 
conclusions in Section 5.1. 

5.1. Conclusions 

With the development of artificial intelligence, big 
data, the Internet of Things, and intelligent manufacturing, 
the digitalization and intelligence transformation of 
manufacturing factories have become an inevitable trend. 
Among them, the use of deep learning to address the problem 
of industrial surface defect detection has undoubtedly 
demonstrated remarkable effectiveness. It is currently a topic 
of much research and development. 

This paper references many studies that adopt different 
deep learning methods and finds some common goals in these 
research efforts, namely: 
1. High accuracy at an industrial level of standard, with 

the current goal of approaching zero defects. 
2. Difficulty in obtaining defect data and the cost of 

labeling, which requires training methods that do not 
rely on large amounts of labeled data. 

3. Lightweight models that can be deployed on edge 
devices with architectures that are not overly complex. 

4. In a mass production environment, low latency of the 
detection system is usually required. 

5. Facing the diversity of production and manufacturing 
processes, the model often needs to be able to recognize 
unseen anomalies. 
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To address the issues mentioned above, we found that 
most research focuses on developing a single general deep 
learning model to solve most of the problems in the field or 
developing a single deep learning model to solve a specific 
sub-problem. In contrast, this paper takes a different approach 
to the industrial surface defect detection problem, starting 
from the perspective of multiple models. We incorporate and 
combine three different deep learning models and adjust them 
according to the dataset's characteristics, proposing a Metal 
Surface Defect Detection and Classification System. 

Our proposed VAE model has demonstrated that using 
learned CE to train a ZSL classifier performs better than using 
manually defined CE and better reflects the features of the 
classes. Next, through experiments, we found that using our 
proposed DAGM_MIX dataset and Learned CE could 

achieve the best performance in the SBAD classification task 
and significantly increase the ability of SBAD to identify 
unseen anomalies. 

Finally, we also compared the performance of TF-
VAEGAN and our proposed VAEGAN under the optimal 
configuration mentioned earlier. The experiment in Table 4 
showed that using our proposed VAEGAN model, the 
accuracy of both seen and unseen classes has increased 
slightly. 

In addition, we briefly introduce various deep learning 
methods currently used to solve industrial surface defect 
detection problems, including supervised and unsupervised 
learning techniques, and analyze their advantages and 
disadvantages in the Introduction and Related Work sections.
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