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Abstract 
 
INTRODUCTION: With the advancement in the large language models, often called LLMs, there has been increasing 
concerns around the usage of these models. As they can generate human-like text and can also perform a number of tasks 
such as generating code, question answering, essay writing and even generating text for research papers. 
OBJECTIVES: The generated text is subject to the usage of the original data (using which models are trained) which might 
be protected or may be personal/private data. The detailed description of such concerns and various potential solutions is 
discussed in ‘Generative language models and automated influence operations: Emerging threats and potential mitigations’. 
METHODS: Addressing these concerns becomes the paramount for LLMs usability. There are several directions explored 
by the researchers and one of the interesting works is around building content aware models. The idea is that the model is 
aware of the type of content it is learning from and aware what type of content should be used to generate a response to a 
specific query.  
RESULTS: In our work we explored direction by applying poisoning techniques to contaminate data and then applying 
genetic algorithms to extract the non-poisoned content from the poisoned content that can generate a good response when 
paraphrased.  
CONCLUSION: While we demonstrated the idea using poisoning techniques and tried to make the model aware of 
copyrighted content, the same can be extended to detect other types of contents or any other use cases where content 
awareness is required. 
 

Keywords: Content awareness, Large Language Models, Data poisoning, Genetic algorithms 

Received on 05 October 2023, accepted on 03 November 2023, published on 07 November 2023 
 
Copyright © 2023 U. Tank et al., licensed to EAI. This is an open access article distributed under the terms of the CC BY-NC-SA 4.0, 
which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original 
work is properly cited. 
 
doi: 10.4108/airo.4078 
 

*Corresponding author. Email:  anwesh@greatlearning.in 

1. Introduction 

1.1. The Imitation Game 

The history of the NLP and intelligence dates back to at 
least 1950 when Alan Turing proposed a famous Turing test. 
Since then, researchers have been trying to build a system that 
can impersonate humans and more recently the focus is to 
build a useful AI system that can automate some of the jobs 
that require conversation with the human in real-time and 

more often in the open domain setting. These systems are 
mostly known as a Chatbot.  

Chatbots are computer programs that possess the ability to 
engage in natural language conversations with users. They 
have the capacity to comprehend user intentions and provide 
responses using pre-established rules and data. Chatbots are 
specifically crafted to emulate the conversational behavior of 
humans. The capabilities of the Chatbots have been extended 
since their inception and now they don’t just stick to the said 
definition but are able to take images and many other forms of 
inputs to perform a given task.  
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1.2. Power comes with great 
responsibilities 

As Chatbots become more and more powerful, comes the 
concerns around their handling of information, specifically 
copyrighted content, sensitive/confidential information, and 
audience specific information. Chatbots, like ChatGPT, 
inadvertently use that information to generate a response to a 
user query. This requires models to be smart enough to 
generate user appropriate responses just like humans do. We 
don’t disclose classified/sensitive information inadvertently, 
we use copyrighted content within the permissible limits. This 
is where content awareness becomes the most important 
when it comes to information handling.  

1.3. Elephant in the room 

In our work, we present a study of building a content-
aware model using genetic algorithms. The problem statement 
we are trying to solve is - How can we build content awareness 
into the model so that they can handle information just like 
humans? To answer this question, we conducted a study and 
developed an approach where we apply data poisoning 
techniques to copyrighted content and contaminate it. Once 
we have a dataset that includes poisoned and non-poisoned 
content our next objective is to extract contents from the 
corpus such that the model can generate meaningful 
paraphrased sentences. Extracting an optimal subset of content 
from the corpus requires us to find a solution in the huge 
search space. This is where genetic algorithms excel [6] & [7]. 
Thus, we apply genetic algorithms to it to extract the best 
candidate solution. Note that the genetic algorithm falls under 
the umbrella term called evolutionary algorithms. This is our 
first attempt towards building content aware models. 

2. Related Work

2.1. Information handling 

Until recently, handling copyrighted or confidential 
information was mostly ignored because it is a sensitive matter 
and involves litigations. Thus, the focus was on building more 
powerful models. But with the success of LLMs came the 
challenges of handling this information which made clear that 
these issues are real and need to be addressed [13] & [15].  The 
way information is handled by the models and the associated 
risk and misuse of that information is an active research area. 
There are several contributions from researchers and 
organizations [14] & [16]. One of the most notable and 
detailed works we came across is captured in [1]. As described 
in [1] it is not hard to use LLMS to generate misinformation. 
This can lead to numerous issues such as generating toxicity, 
getting biased opinions, spreading fake news, or building 
hostility. Various online platforms have been misused to 
influence the audience and LLMs can’t hide for a long time 
[17]. On the other hand, if copyright contents are not handled 
cautiously then it can lead to litigations. 

The content-aware AI systems can be rescued for issues 
related to information handling. The content-aware AI 
systems are capable of recognizing misinformation and 
preventing fake information from getting generated by LLMs. 
The content awareness also enables AI system to detect 
copyright content and exclude them from the response. 

2.2. Current research 

Since LLMs are available very recently, issues related to 
information handling are also new and being investigated. 
There isn’t any method available at this moment to the best of 
our knowledge which effectively solves information handling 
issues. When we asked one of the famous chatbots if its 
generated response could infringe copyright. The response we 
received was that it is the responsibility of the users to ensure 
that information received from the generated response 
wouldn’t violate copyright.  

Although methods don’t exist to prevent copyright 
contents from getting generated by the LLMs, it’s an active 
research area and various techniques do exist, such as 
fingerprinting or watermarking the generated output [18], 
Building Content Aware Models, building models that 
produce detectable output (eg using radioactive data) as 
described in [19]. To detect generated output some of the 
techniques explored are Natural Language Steganography 
[20], Simulated Annealing, radioactive data [19], and Data 
Poisoning [10]. In our study, we used data poisoning 
techniques and genetic algorithms to develop a model. 

2.3. Data Poisoning Techniques 

Extensive research has shown that ML models are 
vulnerable to adversarial attacks [8]. So far visual models are 
the primary targets of such attacks. The NLP models are no 
exception, and they are also vulnerable to such attacks [9]. The 
NLP models can be affected in black-box settings without 
making any perceptible changes to the data/text. The 
techniques are often called Data Poisoning in which various 
perturbation methods are used which are not visible to human 
eyes [11] & [12]. Research has shown [3] that most of the 
models are not immune to Data Poisoning attacks [10]. 
Moreover, Data Poisoning attacks can be carried out in a 
targeted manner without any understanding of the model. The 
following methods can be used or they can be combined with 
other methods to generate more sophisticated changes to the 
input. 

1. Invisible Character

2. Homoglyph

3. Reordering

We will describe the above methods briefly in the
following sections. More details can be found in this paper [3]. 
Though these methods are imperceptible to humans, they do 
modify inputs that can be detected by the machine. 
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Invisible Characters 
How many characters are there in the below sentence? “ 
invisible ch aracters.” A human can see 21 characters but a 
machine will see more than 21. You can copy the above text 
and calculate its length using Python’s len function and you 
would notice that it returns 27. Therefore the above text 
contains 6 invisible characters. The invisible characters are 
zero-width characters that are ignored by most of the text 
rendering systems but are visible to machines. You can find 
more information about the zero-width characters in the 
original paper[3]. In our work, we just considered zero-width 
space, zero-width joiner, and zero-width non-joiner. 

Homoglyph 
Homoglyph refers to the characters that look similar but have 
different meanings. They are two distinct characters but have 
similar glyphs. For example the letter ‘O’ and zero (0). 
Similarly, the Latin letter ‘H’ and Cyrillic letter ‘H’ also 
capitalized i (I) and l. 

Reordering  
While most of the scripts are read from left to right there are 
scripts that are written from right to left. Therefore, there are 
directionality control characters that control the direction of 
the script. For example, - ‘001’ and ‘U+202E100’ are the 
same. Moreover, you wouldn’t be able to see ‘U+202E’ but 
just 100 but since ‘U+202E’ direction control character will 
revert the direction for the system it means the same. 

2.4. Genetic Algorithms 

The genetic algorithms are part of the evolutionary 
algorithms which are inspired by the theory of evolution, 
described by Charles Darwin. The genetic algorithm is a 
widely used branch of evolutionary algorithms while other 
algorithms exist. In this section, we will describe genetic 
algorithm’s resemblance to evolution, their fundamental 
operations, their typical workflow, and various steps that need 
to be implemented. 

What are genetic algorithms? 
Genetic algorithms, which draw inspiration from natural 

evolution, form a group of search algorithms. By simulating 
natural selection and reproduction, these algorithms generate 
excellent solutions for diverse problems in search, 
optimization, and learning. Moreover, the resemblance to 
natural evolution enables genetic algorithms to surmount 
challenges faced by conventional search and optimization 
algorithms, particularly when dealing with problems 
characterized by numerous parameters and intricate 
mathematical representations. 

For natural selection and reproduction, Genetic algorithms 
utilize a simplified version of the evolutionary processes 
observed in nature, as described by Darwin. The fundamental 
principles of Darwinian evolution can be summarized as 
follows: 

1. Variation (Principle of Variation): In every species, 
individuals possess unique genetic structures, 
resulting in a multitude of distinct variations in their 
physical characteristics. Within a population, 

individuals differ from one another and display a 
diverse range of traits or attributes. 

2. Inheritance (Principle of Inheritance): Individuals 
transmit a portion of their genetic material to their 
offspring, resulting in the inheritance of traits from 
parents to their offspring. Some of these traits are 
consistently passed down from the parents because 
of that offspring tend to resemble their parents more 
closely than the species. 

3. Selection (Principle of Selection): Certain 
individuals possess inherited traits (genes) that 
provide them with an advantage in surviving within 
a competitive environment or increasing their 
reproductive success. As a result, their offspring are 
more likely to thrive in the same competitive 
environment and produce their own offspring. 
Consequently, the prevalence of their genes increases 
throughout the entire population, as certain variants 
reproduce more frequently than others. 

Essentially, evolution sustains a population of specimens 
that possess varying characteristics. Those specimens that are 
better adapted to their environment have higher chances of 
survival, reproduction, and passing on their traits to 
subsequent generations. Over time, this process leads to 
species becoming increasingly adapted to their environment 
and the challenges they encounter. 

Each individual in the population is a potential solution 
therefore population is a solution search space where our 
objective is to find the optimal solution.  

In the genetic algorithm, we need to iterate over many 
generations. We need to find fitter individuals from the 
population which will represent the next generation. To 
evaluate individuals, a genetic algorithm uses a fitness 
function which computes the fitness of an individual in the 
population. In other words, the fitness function can compare 
two individuals from the search space and identify a better 
one. The fitness function can be a score or a simple 
comparison of two individuals. Individuals who attain higher 
fitness scores signify superior solutions and are more inclined 
to be selected for reproduction, subsequently contributing to 
the composition of the next generation. 

Genetic algorithm’s Operator 
 Crossover or recombination, where offspring inherit a 
mixture of their parents' traits, plays a crucial role in enabling 
evolution. Crossover helps maintain population diversity and 
gradually brings together favorable traits. Additionally, 
mutations, which are random variations in traits, can 
occasionally introduce changes that result in significant 
advancements. The three primary operators of genetic 
algorithm are briefly described below. 

1. Selection 
2. Crossover 
3. Mutation 
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1) Selection  
Once the fitness of everyone within the population has been 
computed, a selection procedure is employed to determine 
which individuals will have the opportunity to reproduce and 
generate the offspring that will constitute the subsequent 
generation. 
This selection process is primarily guided by the fitness 
scores assigned to the individuals. Those with higher scores 
are given a greater likelihood of being selected and 
transmitting their genetic material to the next generation. 
Although individuals with lower fitness values can still be 
chosen, their probability of selection is comparatively lower. 
This approach ensures that their genetic material is not entirely 
disregarded, allowing for a degree of inclusion in the 
reproductive process. 

2) Crossover  
During the evolution process, new offspring are generated by 
combining two individuals from the current generation, also 
called parents. Parents will exchange or crossover their 
chromosomes to create new chromosomes for the offspring. 
Since each parent has a chromosome, usually crossover 
process ends up creating two offspring. 

3) Mutation  
The mutation alters the existing chromosome of an individual 
thereby introducing new traits and attributes to the individual. 
The mutation helps in changing attributes which allows the 
algorithm to explore uncharted solution space. The mutation 
operator is applied randomly and periodically. A mutation 
may be in the form of a random change in a single gene or set 
of genes in the chromosomes. 

 Genetic algorithm’s Workflow 
The typical workflow of genetic algorithm is 

straightforward. It iterates over the population while evolving 
during each iteration by applying operators. The goal of 
evolution is to retain the fitter individuals in the population. 

The Fig-1 below illustrates the typical workflow of a genetic 
algorithm.  

The below steps outline the workflow. 

1. Define initial population. 

2. Compute the fitness of everyone in the population 
using a fitness function. 

3. Select N individuals from the population that will 
represent the current generation. 

4. Perform crossover to get the next generation. 

5. Apply mutation on the new generation. 

6. Compute the fitness of everyone in the new 
generation. 

7. Check if we reached the stopping condition. 

8. If the stopping conditions aren’t met go back to #3 

9. If the stopping conditions are met, then select the best 
N individuals that represent the solution. 

In summary, the genetic algorithm process initiates with a 
population of candidate solutions (individuals) that are 
randomly generated. These individuals are then assessed using 
the fitness function. The main procedure involves a loop 
where selection, crossover, and mutation operators are 
sequentially applied to the individuals, followed by their re-
evaluation. This loop persists until a predefined stopping 
condition is satisfied, at which point the best individual within 
the population is chosen as the solution. 

 

Figure. 1: Genetic Algorithm Workflow 

3. Materials and Methods 

We followed a standard machine learning pipeline that is 
Data Generation, Genetic Algorithm Flow, and Result 
Analysis. The Data Generation includes Data collection, Data 
cleaning, and Data preparation. The GA flow covers the 
workflow of Genetic Algorithms (such as population 
selection, Crossover, Mutation, and stopping condition). The 
Result Analysis covers generating results, computing 
evaluation metrics, and deriving the conclusion. 

3.1. Dataset 

Since our primary goal is to generate a text from the given 
input, we need to find a dataset that can be used for the text 
generation. We have used Microsoft Research Paraphrase 
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Corpus (https://www.microsoft.com/en-
us/download/details.aspx?id=52398) as our data set. The 
dataset is suitable for paraphrasing; hence we can easily 
paraphrase the given input. There were a few other datasets 
that we considered but due to GPU constraint, we thought of 
using only the subset of Microsoft Research Paraphrase 
Corpus. The other datasets we considered are Quora Question 
Pairs Datasets and Google PAWS-wiki (Paraphrase 
Adversaries from Word Scrambling). 

3.2. Architectural overview/Proposed 
Architecture 

The overall high-level architecture of our proposed solution is 
depicted in the following diagram, Fig-2. The usual 
components involved in the generative models are train data, 
prepared during the data generation phase, which will be fed 
to transformers to learn from the data. Once the model is 
trained on the dataset we deploy it, and the transformer 
produces a response based on the user query. The text 
generator module selects the appropriate response based on 
the context and other user-specific parameters. We have 
introduced a few modules in the typical flow of generative 
models which are Data Poisoning, GA module, and filtered 
contents.  

 

Figure. 2: Proposed System Architecture 
In our work, to demonstrate our technique of filtering out 
copyrighted content, we have used Microsoft Research 
Paraphrase Corpus. As part of the data collection, we applied 
data poisoning to the dataset by injecting zero-width invisible 
characters into the original text.  The invisible characters are 
zero-width characters that are ignored by most of the text 
rendering systems but are visible to machines. In the next 
section, we have covered data poisoning techniques in a little 
more detail. In our work, we just considered zero-width space, 
zero-width joiner, and zero-width non-joiner. We poisoned 
50% of the characters distributed uniformly to ensure noise 
was high in the dataset.  

For our experiment, we would like to mimic a situation where 
a dataset contains copyrighted content, and we are 
differentiating it using poisoned data. Therefore, we need to 
mix normal text with the poisoned data. We picked the first 
400 lines from the normal text and 400 lines from the poisoned 
dataset and put all the sentences together in a single data set.  

Each sentence will be presented in the chromosomes, and the 
sentence can be visualized as a gene in the chromosomes. For 
our representation, a gene is either present or absent. We 
shuffled the dataset so that poisoned and original contents 
were mixed and not in sequence. Though it is not a 
requirement, it is good to have some randomness.  

In general algorithms don’t work on text directly but work on 
the numeric form of the text. Therefore, we need to encode or 
represent text in the numeric format. In a format that is suitable 
for the algorithm. One of the challenges with the Genetic 
algorithm is presenting the solution space in the numeric 
format such that we can apply various operators of the 
algorithms, e.g., fitness functions, crossover, and mutation. 

3.3. Data coding and presentation 

We found the perplexity score would be the best fit for our 
use case, since the perplexity score is a float number, and each 
sentence can have different perplexity values. It would allow 
us to compare the fitness of the two genes in finding the better 
solution. 

We decided to use the average perplexity value of 
individuals for fitness calculation. The individuals or 
chromosomes are represented by a series of 0 or 1.  Which 
indicates if a particular gene is present (1) or absent (0). Each 
sentence in the dataset is represented as a gene. Thus, to 
represent an individual or chromosome we will need 800 
genes as our dataset consists of 800 lines of text.  

The perplexity score was calculated based on the model 
that we had built which is based on Sequence-to-sequence [4] 
transformer [2] from the Huggingface and was pretrained by 
Facebook. For each sentence 3 sentences were paraphrased, 
and its perplexity score was calculated. Since our dataset is not 
dynamic and we don’t plan to change it during our experiment, 
we computed the score for all the sentences in the corpus once 
and stored it in a file along with the original sentence for which 
the score was computed. 

3.4. Data Poisoning 

As described in the previous section, we applied data 
poisoning techniques on the dataset to contaminate and 
assume that it is copyrighted content which we would like the 
model to identify and filter out. Almost 50% of the data was 
poisoned by adding invisible characters. There were 3 zero-
width characters that we have used: zero-width space 
(0x200B), zero-width joiner (0x200D), zero-width non-joiner 
(0x200C). There are other zero-width characters as well as 
other ways of manipulating data but for our work, we are 
limiting ourselves to invisible zero-width characters.  

To inject zero-width characters we have used uniform 
distribution to identify an index where we would like to inject 
the zero-width character.  
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3.5. System Requirements 

For our experiments, we needed a model that can 
generate a text. Therefore, we built and trained a transformer-
based model for the text generation and computed the 
perplexity score. Instead of reinventing the wheel, we used 
existing BART based model developed by Facebook. Here 
are some details about the model- 

• Algorithms: Xformers, Huggingface transformer 
• Model: Facebook bart-base [21] 
• Dataset: Microsoft Research Paraphrase Corpus 

(https://www.microsoft.com/en-
us/download/details.aspx?id=52398) 

• Techniques: Imperceptible perturbation for data 
poisoning which is zero-width non-joiner invisible 
character in the input text. 

• Model Type: Text generation 
• Platform: Google colab 

Training this model on a data set requires GPU hence we 
used a free version of google colab which has GPUs. Since it 
is a free version it has certain resource constraints, due to 
which we just ran 2 epochs. Although there are more 
powerful BART base models developed by Facebook which 
can be employed if resources are not constrained.  

Another algorithm we developed was the genetic 
algorithm. The output from the text generation model is a set 
of text which includes both poisoned and non-poisoned data. 
The job of the algorithm is to find the set of text that can 
generate a response that filter out the copyrighted text. We 
have used our own machines to run genetic algorithms on the 
dataset. We have used a small subset of the data to get results 
in a reasonable amount of time and resources. Though we 
used a small subset of the data, we did try different thresholds 
for the stopping condition, up to an extent where we could see 
significant improvements. You can find our work in the 
following repo- 
https://github.com/umeshgtank/content_awareness_study 

3.6. GA Module 

In the GA module, we apply genetic algorithms to the prepared 
data. The final dataset includes the original text and its 
perplexity score. We will use this perplexity score to evaluate 
everyone in the population. We need to define certain 
parameters for the genetic algorithms and need to set some 
initial values for the hyperparameters. Below is a list of 
hyperparameters along with the values we used during our 
experiments. 

• Population size: 10000 

• Number of chromosomes: 800 

• Selection method: Tournament selection with 
tournament size 3 

• Fitness function: Average perplexity score. 
Minimize the average perplexity score for the 
individuals. 

• Crossover method: Two-point crossover. Cross two 
individuals with a probability 0.5 

• Mutation method: flip bit method with 0.05 
chromosome mutation probability and 0.2 for 
mutation of individual 

• Termination conditions: 

o The average perplexity score is < 4.  

o 1000 Generation 

As we have seen in the previous sections, the workflow of 
Genetic Algorithms is relatively simple and straightforward to 
implement but Genetic Algorithms have quite a few operators, 
such as selection, crossover, mutation, etc. As noted in the 
previous section, there are multiple algorithms and methods 
for each of these operators. Each of the methods has its own 
characteristics and produces a different result or can be applied 
to a specific use case. Since implementing all of those methods 
and algorithms is challenging, time-consuming and, error-
prone, it is a good idea to leverage a proven framework which 
will allow us to focus on our core research and try out different 
scenarios instead of worrying about the implementation of 
those operators. 

This is where theDEAP framework fills the gap. The DEAP 
(Distributed Evolutionary Algorithm in Python) framework as 
its name suggests is an open-source Python-based 
development framework focused on evolutionary algorithms. 
The DEAP framework implements data structures and 
algorithms for genetic algorithms, thus we implemented our 
workflow using the DEAP framework. 

Let’s look at how we have implemented the GA workflow:   

Defining Initial Population 
 
As we have noted in the previous section, Genetic Algorithms 
start with the initial population and search for the solution in 
the initial population. The population is defined as a 
chromosome and a chromosome represents the candidate 
solution; therefore, the population represents the current 
generation or current state of the solutions in the search space. 
That is one chromosome is one of the candidate solutions in 
the search space. If there are N chromosomes (that is N 
individuals in the population) then there are N candidate 
solutions. The initial population is a hyperparameter and that 
needs to be tuned. The bigger the population, the more 
varieties we can get in each generation and can represent more 
solutions from the search space. Therefore, having the right 
size of population increases our chance to find an optimal 
solution. Below is how the initial population can be defined 
using the DEAP framework. 

       toolbox = base.Toolbox() 
       toolbox.register("individual",  

     tools.initRepeat,  
     creator.Individual,   
     toolbox.attr_bool,  
     800) 
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Gene 
Chromosomes are represented as a sequence of a gene, very 
similar to a biological system. A gene can be defined as a 
sequence of binary digits, integers, or real numbers depending 
on the problem at hand. The gene represents the contribution 
of individual data points to the solution. Changing the value of 
a gene changes the solution and it represents a different 
solution than before. The main objective of Genetic 
Algorithms is to find the values for the set of genes (called 
chromosomes) which is the best solution in the given search 
space. 

As discussed in the problem statement section, we would like 
to find a set of sentences from a corpus that can generate better 
responses based on the perplexity score. Therefore, each 
sentence can be represented as a gene. We decided to use a 
binary string to represent each sentence in the corpus as a gene. 
Thus, genes can be present or absent in the chromosome based 
on the binary value assigned to it. As our dataset consists of 
800 lines of text we have 800 genes in one chromosome or in 
other words an individual consists of 800 genes.  
The individual is a vector representation of a binary digit, and 
the population can be a set of a vector. Thus, the population 
can be represented as a matrix of individuals and genes. The 
initial population can be visualized as shown in the below 
Table-1. Each column in the table represents a sentence in the 
corpus. Each row in the table represents an individual or 
chromosome. The value in each column of the individual’s 
row represents whether the given sentence is present or absent. 
The entire row is a vector representation of a single individual 
whose characteristic contributes to a solution (non-poisoned 
sentences). The entire table is our population, and it is a matrix 
of Boolean values. 

Table-1: Population Presentation 
 

Those 
reports 
were 
denied 
by the 
interior 
minister, 
Prince 
Nayef. 

The year-
ago 
compariso
ns were 
restated to 
include 
Compaq 
results. 

It was 
the best 
advance 
since 
Oct. 1, 
when the 
index 
gained 
22.25. 

…. Ricky 
Clemons' 
brief, 
troubled 
Missouri 
basketball 
career is 
over. 

Ind-1 0 1 0 … 1 

Ind-2 0 0 1 … 1 

Ind-3 1 1 0 … 0 

..… 
     

Ind-N 1 0 1 
 

0 

 

To define initial the population we uniformly sampled 
sentences from the corpus and assigned them to an individual. 
So, there is a 50% chance that a sentence will be present in the 
individual. Using this approach N individuals are generated to 
create the initial population. Below is how we defined genes 
using the DEAP framework. 

       toolbox.register("attr_bool",  
     random.randint,  
     0,  
     1)  

 

Fitness computation 
Fitness is a function that we would like to optimize. At each 
iteration of the Genetic Algorithm’s workflow individuals are 
evaluated using the fitness function. Fitness helps formulate 
the problem statement using which GA tries to find the 
solution.  

Since we are using a paraphrase dataset, we found that a 
perplexity score is a better way of measuring the quality of 
paraphrased sentences given an input sentence. Thus, the 
perplexity score is applied to a gene and not the entire 
chromosome. Therefore, we take an average perplexity score 
for genes which is the fitness value for each individual. Here 
is how we implemented the fitness function. Note that we have 
computed the perplexity score upfront to avoid doing it for 
every single comparison. 

def sol_fitness(individual): 
    indices = [i for i, x in enumerate(individual) if (x == 1)] 
    ind_fitness_score = get_avg_score(indices) 
    return ind_fitness_score, 
 

Selecting Individuals from the Population 
 Once we computed the fitness score for everyone, we needed 
to select the fittest individuals who would represent the next 
generation. There are several methods available to select an 
individual from the population. For our use case, tournament 
selection is best suited as we would like to select the fittest 
individuals. In our algorithm, we randomly select 3 
individuals and out of those we select the fittest individual 
which will represent the next generation. The above process is 
repeated to select everyone in the population. The size of the 
population and selecting the fittest individual from the 
randomly chosen individuals are hyperparameters and it can 
be optimized for the given use case. Below code snippet below 
demonstrates the tournament selection. 

       toolbox.register("select",  
     tools.selTournament,  
     tournsize=3) 

 

Crossover 
We employed a two-point crossover method on the individuals 
to get offspring. In the two-point crossover, we will identify 
two points in the sequence and all the genes between these two 
points are swapped with each other. For example, if two points 
are 2 and 4 then all the genes between 2-4 are exchanged 
between two selected individuals.  

After crossover, the average value of the genes will change 
which means the fitness of the individual will be changed as 
well. During each iteration, we applied crossover on 50% of 
the population. The crossover points were randomly selected 
for each crossover operation. Meaning crossover points 
selected for one pair of chromosomes may not be selected for 
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the next pair of chromosomes but will be selected 
randomly.  Below code block below defines a two-point 
crossover 

       toolbox.register("crossover",  
     tools.cxTwoPoint)  

 

Mutation 
 Like Selection and Crossover, there are several methods to 
apply mutation. Some of these mutation methods and methods 
of other genetic operators are described in more detail in [5]. 
Since we are representing individuals as binary string Flip bit 
mutation fit perfectly well for our use case. 

 As we can see a gene is chosen randomly and its value is 
flipped which impacts the representation of that gene in the 
individual that eventually impacts the fitness score of that 
individual. 

 We mutated around 20% of the individuals from the 
population during each cycle and mutated only 2% of the 
genes from the selected individuals. Since each individual 
consists of 800 genes in our use case, we flipped roughly 16 
genes of selected individuals during each cycle. Below code 
snippet implements the same  

       toolbox.register("mutate",  
    tools.mutFlipBit, indpb=0.05) 

Stopping Condition 
 Genetic Algorithms can run for a long time or even forever 
since the idea is to iterate over the existing solution in search 
of a better solution and the final solution is not known. 
Therefore, defining a stopping condition is critical to stop the 
algorithm when it finds the optimal solution. In most cases, the 
stopping condition is associated with the fitness function as 
that is the function that we would like to optimize hence the 
stopping condition can be some value of that fitness function. 
During our experiments, we discovered that the perplexity 
score for the sentences that perform better is mostly <2. 
Therefore, our stopping condition is when the average score 
of the individual is less than 2. It is likely that after many 
iterations and producing many generations algorithm may not 
be able to meet the condition, so to avoid GA running forever 
it is a good idea to add an additional condition that breaks after 
producing a certain number of generations. We will stop our 
GA after 1000 generations. The stopping condition can also 
sometimes be a hyperparameter. To get better results we may 
want to set strict values and it can be relaxed to reduce the 
computation cost. 

4. Results 

Since GA can be computationally expensive, we tried a 
corpus with 800 sentences which is a mix of poisoned and non-
poisoned data. We would like to filter out poisoned data so 
that we can have a dataset that can generate better results for 
the given query. We can see the fitness of the solution 
increases when more generations are produced. In our case, 
better results are those where the dataset has a smaller number 
of poisoned contents. We tried to bring down the average 

fitness score to < 2 which resulted in producing 146 
generations with just 800 lines of content. Fig. 3 below 
demonstrates fitness improvement along with the increase in 
a number of generations produced. We also tried to visualize 
the average population evaluated in the same graph. When the 
average perplexity score is <2, we can see produced results are 
promising. We can see generated text does have some 
poisoned text but despite that overall dataset is able to generate 
a better response compared to the one trained on the mixed 
dataset.   

 
Figure. 3: Fitness (<2) vs Generation 

The above chart illustrates the average fitness score over a 
generation. Note that we would like to minimize the perplexity 
score thus lower value indicates fitter individuals. 

We can set a stricter value for the average perplexity 
score to reduce the noise (poisoned data) in the results. We 
tried different values (Fig.4) and discovered that decreasing 
the average perplexity score improves the results 
significantly at the same time it also needs to produce more 
generations.  

 
Figure. 4: Fitness (<3) vs Generation 

Finding the ideal value for the stopping condition can be 
challenging but if found it produces remarkably efficient 
results. As we can see in the below image, when we reduce the 
fitness threshold, we can see algorithm produces more 
generations and there are a less number of poisoned contents 
in the output. When we increase the threshold, we can see 
more poisoned contents are generated. It is worth noting that 
when we reduce the threshold non-poisoned data is not 
impacted much. This mean when a genetic algorithm produces 
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more generation, the population evolves by producing fitter 
individuals, and we get closer to the optimum solution. 
Remember, we are using a perplexity score hence we need to 
reduce the threshold to get better results as the lower the 
perplexity scores better the result. The below column chart 
(fig.5) shows the number of generations, filtering of poison & 
non-poisoned data, and fitness threshold. 

 
Figure. 5: Fitness (<4) vs Generation 

 
5. Discussions, Limitations and 
Conclusions 

5.1. The Search Space 

As we discussed in previous sections Genetic Algorithms 
are efficient in finding solutions in the huge search space. How 
big the search space can be, let’s consider our use case. We 
have 800 sentences in our dataset. Out of 800 sentences, we 
will try to find the best set of sentences (candidates) that can 
produce the best results when paraphrased. Assume all the 
non-poisoned sentences (400 sentences in our dataset) can 
potentially produce better results and all the poisoned 
sentences can’t produce better results. Further, assume that we 
would like to select around 300 sentences out of 800. Then 
according to the combination formula 800 choose 300 (or 
800C300) we are dealing with approximately 2.06 E+228 
combinations. If we take a brute force approach, then we need 
to go through 2.06 E+228 combinations to find the best 
solution.  

As we have already described in previous sections, the 
Genetic Algorithm doesn't go through all these combinations 
rather it tries to arrive at a better solution from the current 
solution. Therefore, genetic algorithms really excel when the 
search space is huge. 

5.2. Future direction 

The general idea here is to filter out certain contents or 
categorize content that can alter the behavior of the model. The 
same idea can be extended to build a content-aware model. In 
our work, we have demonstrated a way of filtering out 
copyrighted content by applying data poisoning techniques on 
data and applying Genetic Algorithms to reduce the poisoned 
content in the final data set. 

For the demonstration purpose and due to resource 
constraints, we have used a simple model to generate text, 
perplexity score for the fitness computation, and many other 
parameters that were allowed within our resource limits. We 
can use more sophisticated models if resources are not a 
constraint, more complex functions can be used instead of just 
the perplexity score, different models can be employed for 
better pattern matching and different hyperparameters can be 
used to get better results or address different use cases. One of 
the interesting directions that can be explored is to find the 
correlation between the number of generations produced and 
the amount of poisoned content filtered. This correlation may 
provide some guidance in terms of the number of generations 
required when given the percentage of poisoned data that 
needs to be removed from the data set. This will also help in 
managing the computational cost. 

5.3. Limitations 

There are certain inherent limitations of Genetic 
algorithms [5] which our solution may suffer from are listed 
below- 

1. It requires a special definition for various components of 
the algorithm. We need to devise appropriate 
representation for population, fitness function, 
Chromosome structure, as well as the selection crossover, 
and mutation operators tailored to the problem domain. 
This process can be demanding and time-intensive. 

2. Genetic algorithms are influenced by a collection of 
hyperparameters, including population size and mutation 
rate, which govern their behavior. Determining the 
optimal values for these hyperparameters is not governed 
by strict rules when applying genetic algorithms to a 
specific problem. 

3. Performing operations on populations, especially when 
dealing with large populations, and the iterative nature of 
genetic algorithms can be computationally demanding 
and time-consuming before achieving a satisfactory 
outcome. However, there are strategies to alleviate these 
challenges. Making appropriate choices for 
hyperparameters, such as population size and mutation 
rate, can optimize the algorithm's performance. 
Additionally, implementing parallel processing 
techniques can distribute the computational workload 
across multiple processors or machines, speeding up the 
execution. Furthermore, in certain cases, caching 
intermediate results can be beneficial, allowing the reuse 
of previously calculated values and reducing redundant 
computations. In our implementation, we computed 
certain results and cached them to avoid computing them 
every time we needed them. 

4. When a single individual in the population significantly 
outperforms the rest in terms of fitness, there is a risk that 
it will dominate the entire population, resulting in 
premature convergence to a local maximum rather than 
exploring the global solution space. To avoid this issue, 
it is crucial to preserve the diversity within the 
population.  
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5. The application of genetic algorithms does not provide a 
guarantee of finding the global maximum for the given 
problem. However, this holds true for most search and 
optimization algorithms unless there exists an analytical 
solution specifically tailored to the problem. In general, 
when genetic algorithms are properly applied, they are 
recognized for their ability to generate satisfactory 
solutions within a reasonable timeframe. 

Other limitations are- 
1. The amount of poisoned data left out in the final 

response depends on the threshold defined for the 
perplexity score. Therefore, the threshold is also a 
hyperparameter, and fine-tuning the threshold could 
be challenging. 

2. All the contents that we would like to hide from the 
model need to be poisoned. Since there is no single 
source of content and virtually everyone holds 
copyright for some content it is hard to implement 
data poisoning techniques across content owners. 

3. The current study focuses on protecting copyright 
contents and current implementation doesn’t explore 
categorizing copyrights and detecting a specific 
copyright. 

 
4. Note: we tried to capture limitations to the best of our 

knowledge, there can be other limitations as well 
which we haven’t discovered yet. 

5.4. Deployment 

 To apply the techniques outlined in this paper to real-world 
application, the content owner who holds the copyright must 
poison their content as described in the paper. As shown in the 
example, data poisoning is straightforward and doesn’t require 
special expertise. A web interface can be provided to generate 
poisoned text, as demonstrated in [3].  

Once contents are poisoned and if crawlers retrieve the 
content to feed it to the LLMs then the model wouldn’t be able 
to learn the actual context instead will learn some garbled text. 
Therefore, the model wouldn’t be able to generate a 
meaningful response from the learned text. For the model to 
find a better response when input consists of poisoned and 
non-poisoned data, we employed genetic algorithms. As 
described genetic algorithm requires a way of comparing the 
generated results. We achieved this using a perplexity score. 
We cached perplexity scores in memory but for the real-world 
application databases or caching solutions can be employed. 
One can use any suitable algorithm instead of a perplexity 
score. 

5.5. Conclusions 

When the threshold for the fitness function is high 
algorithm has to produce more generation. That is a more 
robust solution that needs more generation. Though Genetic 
algorithms are computationally extensive, they are far better 
than traditional algorithms when we would like to find a 
solution from the large search space. 

Genetic algorithms may or may not provide the best 
solution but in most cases, the solution is good enough for the 
given problem domain. For example, in our case, we would 
like to filter out content that is not relevant. Even though some 
unwanted content is left out in the final solution the ML model 
should be able to tolerate that noise. 
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