
EAI Endorsed Transactions
on AI and Robotics Research Article

 1

A Study Towards Building Content Aware Models in
NLP using Genetic Algorithms
Umesh Tank1, Saranya Arirangan2, Anwesh P R2, * and Narayana Darapaneni3

1 PES University, Bangalore, Karnataka, 560050, India
2Great Learning, Hyderabad, Telangana, 500089, India
3Northwestern University, Evanston, IL 60208, United States

Abstract

INTRODUCTION: With the advancement in the large language models, often called LLMs, there has been increasing
concerns around the usage of these models. As they can generate human-like text and can also perform a number of tasks
such as generating code, question answering, essay writing and even generating text for research papers.
OBJECTIVES: The generated text is subject to the usage of the original data (using which models are trained) which might
be protected or may be personal/private data. The detailed description of such concerns and various potential solutions is
discussed in ‘Generative language models and automated influence operations: Emerging threats and potential mitigations’.
METHODS: Addressing these concerns becomes the paramount for LLMs usability. There are several directions explored
by the researchers and one of the interesting works is around building content aware models. The idea is that the model is
aware of the type of content it is learning from and aware what type of content should be used to generate a response to a
specific query.
RESULTS: In our work we explored direction by applying poisoning techniques to contaminate data and then applying
genetic algorithms to extract the non-poisoned content from the poisoned content that can generate a good response when
paraphrased.
CONCLUSION: While we demonstrated the idea using poisoning techniques and tried to make the model aware of
copyrighted content, the same can be extended to detect other types of contents or any other use cases where content
awareness is required.

Keywords: Content awareness, Large Language Models, Data poisoning, Genetic algorithms

Received on 05 October 2023, accepted on 03 November 2023, published on 07 November 2023

Copyright © 2023 U. Tank et al., licensed to EAI. This is an open access article distributed under the terms of the CC BY-NC-SA 4.0,
which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original
work is properly cited.

doi: 10.4108/airo.4078

*Corresponding author. Email: anwesh@greatlearning.in

1. Introduction

1.1. The Imitation Game

The history of the NLP and intelligence dates back to at
least 1950 when Alan Turing proposed a famous Turing test.
Since then, researchers have been trying to build a system that
can impersonate humans and more recently the focus is to
build a useful AI system that can automate some of the jobs
that require conversation with the human in real-time and

more often in the open domain setting. These systems are
mostly known as a Chatbot.

Chatbots are computer programs that possess the ability to
engage in natural language conversations with users. They
have the capacity to comprehend user intentions and provide
responses using pre-established rules and data. Chatbots are
specifically crafted to emulate the conversational behavior of
humans. The capabilities of the Chatbots have been extended
since their inception and now they don’t just stick to the said
definition but are able to take images and many other forms of
inputs to perform a given task.

EAI Endorsed Transactions on
AI and Robotics

| Volume 2 | 2023 |

https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:anwesh@greatlearning.in

U. Tank et al.

2

1.2. Power comes with great
responsibilities

As Chatbots become more and more powerful, comes the
concerns around their handling of information, specifically
copyrighted content, sensitive/confidential information, and
audience specific information. Chatbots, like ChatGPT,
inadvertently use that information to generate a response to a
user query. This requires models to be smart enough to
generate user appropriate responses just like humans do. We
don’t disclose classified/sensitive information inadvertently,
we use copyrighted content within the permissible limits. This
is where content awareness becomes the most important
when it comes to information handling.

1.3. Elephant in the room

In our work, we present a study of building a content-
aware model using genetic algorithms. The problem statement
we are trying to solve is - How can we build content awareness
into the model so that they can handle information just like
humans? To answer this question, we conducted a study and
developed an approach where we apply data poisoning
techniques to copyrighted content and contaminate it. Once
we have a dataset that includes poisoned and non-poisoned
content our next objective is to extract contents from the
corpus such that the model can generate meaningful
paraphrased sentences. Extracting an optimal subset of content
from the corpus requires us to find a solution in the huge
search space. This is where genetic algorithms excel [6] & [7].
Thus, we apply genetic algorithms to it to extract the best
candidate solution. Note that the genetic algorithm falls under
the umbrella term called evolutionary algorithms. This is our
first attempt towards building content aware models.

2. Related Work

2.1. Information handling

Until recently, handling copyrighted or confidential
information was mostly ignored because it is a sensitive matter
and involves litigations. Thus, the focus was on building more
powerful models. But with the success of LLMs came the
challenges of handling this information which made clear that
these issues are real and need to be addressed [13] & [15]. The
way information is handled by the models and the associated
risk and misuse of that information is an active research area.
There are several contributions from researchers and
organizations [14] & [16]. One of the most notable and
detailed works we came across is captured in [1]. As described
in [1] it is not hard to use LLMS to generate misinformation.
This can lead to numerous issues such as generating toxicity,
getting biased opinions, spreading fake news, or building
hostility. Various online platforms have been misused to
influence the audience and LLMs can’t hide for a long time
[17]. On the other hand, if copyright contents are not handled
cautiously then it can lead to litigations.

The content-aware AI systems can be rescued for issues
related to information handling. The content-aware AI
systems are capable of recognizing misinformation and
preventing fake information from getting generated by LLMs.
The content awareness also enables AI system to detect
copyright content and exclude them from the response.

2.2. Current research

Since LLMs are available very recently, issues related to
information handling are also new and being investigated.
There isn’t any method available at this moment to the best of
our knowledge which effectively solves information handling
issues. When we asked one of the famous chatbots if its
generated response could infringe copyright. The response we
received was that it is the responsibility of the users to ensure
that information received from the generated response
wouldn’t violate copyright.

Although methods don’t exist to prevent copyright
contents from getting generated by the LLMs, it’s an active
research area and various techniques do exist, such as
fingerprinting or watermarking the generated output [18],
Building Content Aware Models, building models that
produce detectable output (eg using radioactive data) as
described in [19]. To detect generated output some of the
techniques explored are Natural Language Steganography
[20], Simulated Annealing, radioactive data [19], and Data
Poisoning [10]. In our study, we used data poisoning
techniques and genetic algorithms to develop a model.

2.3. Data Poisoning Techniques

Extensive research has shown that ML models are
vulnerable to adversarial attacks [8]. So far visual models are
the primary targets of such attacks. The NLP models are no
exception, and they are also vulnerable to such attacks [9]. The
NLP models can be affected in black-box settings without
making any perceptible changes to the data/text. The
techniques are often called Data Poisoning in which various
perturbation methods are used which are not visible to human
eyes [11] & [12]. Research has shown [3] that most of the
models are not immune to Data Poisoning attacks [10].
Moreover, Data Poisoning attacks can be carried out in a
targeted manner without any understanding of the model. The
following methods can be used or they can be combined with
other methods to generate more sophisticated changes to the
input.

1. Invisible Character

2. Homoglyph

3. Reordering

We will describe the above methods briefly in the
following sections. More details can be found in this paper [3].
Though these methods are imperceptible to humans, they do
modify inputs that can be detected by the machine.

EAI Endorsed Transactions on
AI and Robotics

| Volume 2 | 2023 |

 A Study Towards Building Content Aware Models in NLP using Genetic Algorithms

3

Invisible Characters
How many characters are there in the below sentence? “
invisible ch aracters.” A human can see 21 characters but a
machine will see more than 21. You can copy the above text
and calculate its length using Python’s len function and you
would notice that it returns 27. Therefore the above text
contains 6 invisible characters. The invisible characters are
zero-width characters that are ignored by most of the text
rendering systems but are visible to machines. You can find
more information about the zero-width characters in the
original paper[3]. In our work, we just considered zero-width
space, zero-width joiner, and zero-width non-joiner.

Homoglyph
Homoglyph refers to the characters that look similar but have
different meanings. They are two distinct characters but have
similar glyphs. For example the letter ‘O’ and zero (0).
Similarly, the Latin letter ‘H’ and Cyrillic letter ‘H’ also
capitalized i (I) and l.

Reordering
While most of the scripts are read from left to right there are
scripts that are written from right to left. Therefore, there are
directionality control characters that control the direction of
the script. For example, - ‘001’ and ‘U+202E100’ are the
same. Moreover, you wouldn’t be able to see ‘U+202E’ but
just 100 but since ‘U+202E’ direction control character will
revert the direction for the system it means the same.

2.4. Genetic Algorithms

The genetic algorithms are part of the evolutionary
algorithms which are inspired by the theory of evolution,
described by Charles Darwin. The genetic algorithm is a
widely used branch of evolutionary algorithms while other
algorithms exist. In this section, we will describe genetic
algorithm’s resemblance to evolution, their fundamental
operations, their typical workflow, and various steps that need
to be implemented.

What are genetic algorithms?
Genetic algorithms, which draw inspiration from natural

evolution, form a group of search algorithms. By simulating
natural selection and reproduction, these algorithms generate
excellent solutions for diverse problems in search,
optimization, and learning. Moreover, the resemblance to
natural evolution enables genetic algorithms to surmount
challenges faced by conventional search and optimization
algorithms, particularly when dealing with problems
characterized by numerous parameters and intricate
mathematical representations.

For natural selection and reproduction, Genetic algorithms
utilize a simplified version of the evolutionary processes
observed in nature, as described by Darwin. The fundamental
principles of Darwinian evolution can be summarized as
follows:

1. Variation (Principle of Variation): In every species,
individuals possess unique genetic structures,
resulting in a multitude of distinct variations in their
physical characteristics. Within a population,

individuals differ from one another and display a
diverse range of traits or attributes.

2. Inheritance (Principle of Inheritance): Individuals
transmit a portion of their genetic material to their
offspring, resulting in the inheritance of traits from
parents to their offspring. Some of these traits are
consistently passed down from the parents because
of that offspring tend to resemble their parents more
closely than the species.

3. Selection (Principle of Selection): Certain
individuals possess inherited traits (genes) that
provide them with an advantage in surviving within
a competitive environment or increasing their
reproductive success. As a result, their offspring are
more likely to thrive in the same competitive
environment and produce their own offspring.
Consequently, the prevalence of their genes increases
throughout the entire population, as certain variants
reproduce more frequently than others.

Essentially, evolution sustains a population of specimens
that possess varying characteristics. Those specimens that are
better adapted to their environment have higher chances of
survival, reproduction, and passing on their traits to
subsequent generations. Over time, this process leads to
species becoming increasingly adapted to their environment
and the challenges they encounter.

Each individual in the population is a potential solution
therefore population is a solution search space where our
objective is to find the optimal solution.

In the genetic algorithm, we need to iterate over many
generations. We need to find fitter individuals from the
population which will represent the next generation. To
evaluate individuals, a genetic algorithm uses a fitness
function which computes the fitness of an individual in the
population. In other words, the fitness function can compare
two individuals from the search space and identify a better
one. The fitness function can be a score or a simple
comparison of two individuals. Individuals who attain higher
fitness scores signify superior solutions and are more inclined
to be selected for reproduction, subsequently contributing to
the composition of the next generation.

Genetic algorithm’s Operator
 Crossover or recombination, where offspring inherit a
mixture of their parents' traits, plays a crucial role in enabling
evolution. Crossover helps maintain population diversity and
gradually brings together favorable traits. Additionally,
mutations, which are random variations in traits, can
occasionally introduce changes that result in significant
advancements. The three primary operators of genetic
algorithm are briefly described below.

1. Selection
2. Crossover
3. Mutation

EAI Endorsed Transactions on
AI and Robotics

| Volume 2 | 2023 |

U. Tank et al.

4

1) Selection
Once the fitness of everyone within the population has been
computed, a selection procedure is employed to determine
which individuals will have the opportunity to reproduce and
generate the offspring that will constitute the subsequent
generation.
This selection process is primarily guided by the fitness
scores assigned to the individuals. Those with higher scores
are given a greater likelihood of being selected and
transmitting their genetic material to the next generation.
Although individuals with lower fitness values can still be
chosen, their probability of selection is comparatively lower.
This approach ensures that their genetic material is not entirely
disregarded, allowing for a degree of inclusion in the
reproductive process.

2) Crossover
During the evolution process, new offspring are generated by
combining two individuals from the current generation, also
called parents. Parents will exchange or crossover their
chromosomes to create new chromosomes for the offspring.
Since each parent has a chromosome, usually crossover
process ends up creating two offspring.

3) Mutation
The mutation alters the existing chromosome of an individual
thereby introducing new traits and attributes to the individual.
The mutation helps in changing attributes which allows the
algorithm to explore uncharted solution space. The mutation
operator is applied randomly and periodically. A mutation
may be in the form of a random change in a single gene or set
of genes in the chromosomes.

 Genetic algorithm’s Workflow
The typical workflow of genetic algorithm is

straightforward. It iterates over the population while evolving
during each iteration by applying operators. The goal of
evolution is to retain the fitter individuals in the population.

The Fig-1 below illustrates the typical workflow of a genetic
algorithm.

The below steps outline the workflow.

1. Define initial population.

2. Compute the fitness of everyone in the population
using a fitness function.

3. Select N individuals from the population that will
represent the current generation.

4. Perform crossover to get the next generation.

5. Apply mutation on the new generation.

6. Compute the fitness of everyone in the new
generation.

7. Check if we reached the stopping condition.

8. If the stopping conditions aren’t met go back to #3

9. If the stopping conditions are met, then select the best
N individuals that represent the solution.

In summary, the genetic algorithm process initiates with a
population of candidate solutions (individuals) that are
randomly generated. These individuals are then assessed using
the fitness function. The main procedure involves a loop
where selection, crossover, and mutation operators are
sequentially applied to the individuals, followed by their re-
evaluation. This loop persists until a predefined stopping
condition is satisfied, at which point the best individual within
the population is chosen as the solution.

Figure. 1: Genetic Algorithm Workflow

3. Materials and Methods

We followed a standard machine learning pipeline that is
Data Generation, Genetic Algorithm Flow, and Result
Analysis. The Data Generation includes Data collection, Data
cleaning, and Data preparation. The GA flow covers the
workflow of Genetic Algorithms (such as population
selection, Crossover, Mutation, and stopping condition). The
Result Analysis covers generating results, computing
evaluation metrics, and deriving the conclusion.

3.1. Dataset

Since our primary goal is to generate a text from the given
input, we need to find a dataset that can be used for the text
generation. We have used Microsoft Research Paraphrase

EAI Endorsed Transactions on
AI and Robotics

| Volume 2 | 2023 |

 A Study Towards Building Content Aware Models in NLP using Genetic Algorithms

5

Corpus (https://www.microsoft.com/en-
us/download/details.aspx?id=52398) as our data set. The
dataset is suitable for paraphrasing; hence we can easily
paraphrase the given input. There were a few other datasets
that we considered but due to GPU constraint, we thought of
using only the subset of Microsoft Research Paraphrase
Corpus. The other datasets we considered are Quora Question
Pairs Datasets and Google PAWS-wiki (Paraphrase
Adversaries from Word Scrambling).

3.2. Architectural overview/Proposed
Architecture

The overall high-level architecture of our proposed solution is
depicted in the following diagram, Fig-2. The usual
components involved in the generative models are train data,
prepared during the data generation phase, which will be fed
to transformers to learn from the data. Once the model is
trained on the dataset we deploy it, and the transformer
produces a response based on the user query. The text
generator module selects the appropriate response based on
the context and other user-specific parameters. We have
introduced a few modules in the typical flow of generative
models which are Data Poisoning, GA module, and filtered
contents.

Figure. 2: Proposed System Architecture
In our work, to demonstrate our technique of filtering out
copyrighted content, we have used Microsoft Research
Paraphrase Corpus. As part of the data collection, we applied
data poisoning to the dataset by injecting zero-width invisible
characters into the original text. The invisible characters are
zero-width characters that are ignored by most of the text
rendering systems but are visible to machines. In the next
section, we have covered data poisoning techniques in a little
more detail. In our work, we just considered zero-width space,
zero-width joiner, and zero-width non-joiner. We poisoned
50% of the characters distributed uniformly to ensure noise
was high in the dataset.

For our experiment, we would like to mimic a situation where
a dataset contains copyrighted content, and we are
differentiating it using poisoned data. Therefore, we need to
mix normal text with the poisoned data. We picked the first
400 lines from the normal text and 400 lines from the poisoned
dataset and put all the sentences together in a single data set.

Each sentence will be presented in the chromosomes, and the
sentence can be visualized as a gene in the chromosomes. For
our representation, a gene is either present or absent. We
shuffled the dataset so that poisoned and original contents
were mixed and not in sequence. Though it is not a
requirement, it is good to have some randomness.

In general algorithms don’t work on text directly but work on
the numeric form of the text. Therefore, we need to encode or
represent text in the numeric format. In a format that is suitable
for the algorithm. One of the challenges with the Genetic
algorithm is presenting the solution space in the numeric
format such that we can apply various operators of the
algorithms, e.g., fitness functions, crossover, and mutation.

3.3. Data coding and presentation

We found the perplexity score would be the best fit for our
use case, since the perplexity score is a float number, and each
sentence can have different perplexity values. It would allow
us to compare the fitness of the two genes in finding the better
solution.

We decided to use the average perplexity value of
individuals for fitness calculation. The individuals or
chromosomes are represented by a series of 0 or 1. Which
indicates if a particular gene is present (1) or absent (0). Each
sentence in the dataset is represented as a gene. Thus, to
represent an individual or chromosome we will need 800
genes as our dataset consists of 800 lines of text.

The perplexity score was calculated based on the model
that we had built which is based on Sequence-to-sequence [4]
transformer [2] from the Huggingface and was pretrained by
Facebook. For each sentence 3 sentences were paraphrased,
and its perplexity score was calculated. Since our dataset is not
dynamic and we don’t plan to change it during our experiment,
we computed the score for all the sentences in the corpus once
and stored it in a file along with the original sentence for which
the score was computed.

3.4. Data Poisoning

As described in the previous section, we applied data
poisoning techniques on the dataset to contaminate and
assume that it is copyrighted content which we would like the
model to identify and filter out. Almost 50% of the data was
poisoned by adding invisible characters. There were 3 zero-
width characters that we have used: zero-width space
(0x200B), zero-width joiner (0x200D), zero-width non-joiner
(0x200C). There are other zero-width characters as well as
other ways of manipulating data but for our work, we are
limiting ourselves to invisible zero-width characters.

To inject zero-width characters we have used uniform
distribution to identify an index where we would like to inject
the zero-width character.

EAI Endorsed Transactions on
AI and Robotics

| Volume 2 | 2023 |

U. Tank et al.

6

3.5. System Requirements

For our experiments, we needed a model that can
generate a text. Therefore, we built and trained a transformer-
based model for the text generation and computed the
perplexity score. Instead of reinventing the wheel, we used
existing BART based model developed by Facebook. Here
are some details about the model-

• Algorithms: Xformers, Huggingface transformer
• Model: Facebook bart-base [21]
• Dataset: Microsoft Research Paraphrase Corpus

(https://www.microsoft.com/en-
us/download/details.aspx?id=52398)

• Techniques: Imperceptible perturbation for data
poisoning which is zero-width non-joiner invisible
character in the input text.

• Model Type: Text generation
• Platform: Google colab

Training this model on a data set requires GPU hence we
used a free version of google colab which has GPUs. Since it
is a free version it has certain resource constraints, due to
which we just ran 2 epochs. Although there are more
powerful BART base models developed by Facebook which
can be employed if resources are not constrained.

Another algorithm we developed was the genetic
algorithm. The output from the text generation model is a set
of text which includes both poisoned and non-poisoned data.
The job of the algorithm is to find the set of text that can
generate a response that filter out the copyrighted text. We
have used our own machines to run genetic algorithms on the
dataset. We have used a small subset of the data to get results
in a reasonable amount of time and resources. Though we
used a small subset of the data, we did try different thresholds
for the stopping condition, up to an extent where we could see
significant improvements. You can find our work in the
following repo-
https://github.com/umeshgtank/content_awareness_study

3.6. GA Module

In the GA module, we apply genetic algorithms to the prepared
data. The final dataset includes the original text and its
perplexity score. We will use this perplexity score to evaluate
everyone in the population. We need to define certain
parameters for the genetic algorithms and need to set some
initial values for the hyperparameters. Below is a list of
hyperparameters along with the values we used during our
experiments.

• Population size: 10000

• Number of chromosomes: 800

• Selection method: Tournament selection with
tournament size 3

• Fitness function: Average perplexity score.
Minimize the average perplexity score for the
individuals.

• Crossover method: Two-point crossover. Cross two
individuals with a probability 0.5

• Mutation method: flip bit method with 0.05
chromosome mutation probability and 0.2 for
mutation of individual

• Termination conditions:

o The average perplexity score is < 4.

o 1000 Generation

As we have seen in the previous sections, the workflow of
Genetic Algorithms is relatively simple and straightforward to
implement but Genetic Algorithms have quite a few operators,
such as selection, crossover, mutation, etc. As noted in the
previous section, there are multiple algorithms and methods
for each of these operators. Each of the methods has its own
characteristics and produces a different result or can be applied
to a specific use case. Since implementing all of those methods
and algorithms is challenging, time-consuming and, error-
prone, it is a good idea to leverage a proven framework which
will allow us to focus on our core research and try out different
scenarios instead of worrying about the implementation of
those operators.

This is where theDEAP framework fills the gap. The DEAP
(Distributed Evolutionary Algorithm in Python) framework as
its name suggests is an open-source Python-based
development framework focused on evolutionary algorithms.
The DEAP framework implements data structures and
algorithms for genetic algorithms, thus we implemented our
workflow using the DEAP framework.

Let’s look at how we have implemented the GA workflow:

Defining Initial Population

As we have noted in the previous section, Genetic Algorithms
start with the initial population and search for the solution in
the initial population. The population is defined as a
chromosome and a chromosome represents the candidate
solution; therefore, the population represents the current
generation or current state of the solutions in the search space.
That is one chromosome is one of the candidate solutions in
the search space. If there are N chromosomes (that is N
individuals in the population) then there are N candidate
solutions. The initial population is a hyperparameter and that
needs to be tuned. The bigger the population, the more
varieties we can get in each generation and can represent more
solutions from the search space. Therefore, having the right
size of population increases our chance to find an optimal
solution. Below is how the initial population can be defined
using the DEAP framework.

 toolbox = base.Toolbox()
 toolbox.register("individual",

 tools.initRepeat,
 creator.Individual,
 toolbox.attr_bool,
 800)

EAI Endorsed Transactions on
AI and Robotics

| Volume 2 | 2023 |

https://www.microsoft.com/en-us/download/details.aspx?id=52398
https://www.microsoft.com/en-us/download/details.aspx?id=52398

 A Study Towards Building Content Aware Models in NLP using Genetic Algorithms

7

Gene
Chromosomes are represented as a sequence of a gene, very
similar to a biological system. A gene can be defined as a
sequence of binary digits, integers, or real numbers depending
on the problem at hand. The gene represents the contribution
of individual data points to the solution. Changing the value of
a gene changes the solution and it represents a different
solution than before. The main objective of Genetic
Algorithms is to find the values for the set of genes (called
chromosomes) which is the best solution in the given search
space.

As discussed in the problem statement section, we would like
to find a set of sentences from a corpus that can generate better
responses based on the perplexity score. Therefore, each
sentence can be represented as a gene. We decided to use a
binary string to represent each sentence in the corpus as a gene.
Thus, genes can be present or absent in the chromosome based
on the binary value assigned to it. As our dataset consists of
800 lines of text we have 800 genes in one chromosome or in
other words an individual consists of 800 genes.
The individual is a vector representation of a binary digit, and
the population can be a set of a vector. Thus, the population
can be represented as a matrix of individuals and genes. The
initial population can be visualized as shown in the below
Table-1. Each column in the table represents a sentence in the
corpus. Each row in the table represents an individual or
chromosome. The value in each column of the individual’s
row represents whether the given sentence is present or absent.
The entire row is a vector representation of a single individual
whose characteristic contributes to a solution (non-poisoned
sentences). The entire table is our population, and it is a matrix
of Boolean values.

Table-1: Population Presentation

Those
reports
were
denied
by the
interior
minister,
Prince
Nayef.

The year-
ago
compariso
ns were
restated to
include
Compaq
results.

It was
the best
advance
since
Oct. 1,
when the
index
gained
22.25.

…. Ricky
Clemons'
brief,
troubled
Missouri
basketball
career is
over.

Ind-1 0 1 0 … 1

Ind-2 0 0 1 … 1

Ind-3 1 1 0 … 0

..…

Ind-N 1 0 1

0

To define initial the population we uniformly sampled
sentences from the corpus and assigned them to an individual.
So, there is a 50% chance that a sentence will be present in the
individual. Using this approach N individuals are generated to
create the initial population. Below is how we defined genes
using the DEAP framework.

 toolbox.register("attr_bool",
 random.randint,
 0,
 1)

Fitness computation
Fitness is a function that we would like to optimize. At each
iteration of the Genetic Algorithm’s workflow individuals are
evaluated using the fitness function. Fitness helps formulate
the problem statement using which GA tries to find the
solution.

Since we are using a paraphrase dataset, we found that a
perplexity score is a better way of measuring the quality of
paraphrased sentences given an input sentence. Thus, the
perplexity score is applied to a gene and not the entire
chromosome. Therefore, we take an average perplexity score
for genes which is the fitness value for each individual. Here
is how we implemented the fitness function. Note that we have
computed the perplexity score upfront to avoid doing it for
every single comparison.

def sol_fitness(individual):
 indices = [i for i, x in enumerate(individual) if (x == 1)]
 ind_fitness_score = get_avg_score(indices)
 return ind_fitness_score,

Selecting Individuals from the Population
 Once we computed the fitness score for everyone, we needed
to select the fittest individuals who would represent the next
generation. There are several methods available to select an
individual from the population. For our use case, tournament
selection is best suited as we would like to select the fittest
individuals. In our algorithm, we randomly select 3
individuals and out of those we select the fittest individual
which will represent the next generation. The above process is
repeated to select everyone in the population. The size of the
population and selecting the fittest individual from the
randomly chosen individuals are hyperparameters and it can
be optimized for the given use case. Below code snippet below
demonstrates the tournament selection.

 toolbox.register("select",
 tools.selTournament,
 tournsize=3)

Crossover
We employed a two-point crossover method on the individuals
to get offspring. In the two-point crossover, we will identify
two points in the sequence and all the genes between these two
points are swapped with each other. For example, if two points
are 2 and 4 then all the genes between 2-4 are exchanged
between two selected individuals.

After crossover, the average value of the genes will change
which means the fitness of the individual will be changed as
well. During each iteration, we applied crossover on 50% of
the population. The crossover points were randomly selected
for each crossover operation. Meaning crossover points
selected for one pair of chromosomes may not be selected for

EAI Endorsed Transactions on
AI and Robotics

| Volume 2 | 2023 |

U. Tank et al.

8

the next pair of chromosomes but will be selected
randomly. Below code block below defines a two-point
crossover

 toolbox.register("crossover",
 tools.cxTwoPoint)

Mutation
 Like Selection and Crossover, there are several methods to
apply mutation. Some of these mutation methods and methods
of other genetic operators are described in more detail in [5].
Since we are representing individuals as binary string Flip bit
mutation fit perfectly well for our use case.

 As we can see a gene is chosen randomly and its value is
flipped which impacts the representation of that gene in the
individual that eventually impacts the fitness score of that
individual.

 We mutated around 20% of the individuals from the
population during each cycle and mutated only 2% of the
genes from the selected individuals. Since each individual
consists of 800 genes in our use case, we flipped roughly 16
genes of selected individuals during each cycle. Below code
snippet implements the same

 toolbox.register("mutate",
 tools.mutFlipBit, indpb=0.05)

Stopping Condition
 Genetic Algorithms can run for a long time or even forever
since the idea is to iterate over the existing solution in search
of a better solution and the final solution is not known.
Therefore, defining a stopping condition is critical to stop the
algorithm when it finds the optimal solution. In most cases, the
stopping condition is associated with the fitness function as
that is the function that we would like to optimize hence the
stopping condition can be some value of that fitness function.
During our experiments, we discovered that the perplexity
score for the sentences that perform better is mostly <2.
Therefore, our stopping condition is when the average score
of the individual is less than 2. It is likely that after many
iterations and producing many generations algorithm may not
be able to meet the condition, so to avoid GA running forever
it is a good idea to add an additional condition that breaks after
producing a certain number of generations. We will stop our
GA after 1000 generations. The stopping condition can also
sometimes be a hyperparameter. To get better results we may
want to set strict values and it can be relaxed to reduce the
computation cost.

4. Results

Since GA can be computationally expensive, we tried a
corpus with 800 sentences which is a mix of poisoned and non-
poisoned data. We would like to filter out poisoned data so
that we can have a dataset that can generate better results for
the given query. We can see the fitness of the solution
increases when more generations are produced. In our case,
better results are those where the dataset has a smaller number
of poisoned contents. We tried to bring down the average

fitness score to < 2 which resulted in producing 146
generations with just 800 lines of content. Fig. 3 below
demonstrates fitness improvement along with the increase in
a number of generations produced. We also tried to visualize
the average population evaluated in the same graph. When the
average perplexity score is <2, we can see produced results are
promising. We can see generated text does have some
poisoned text but despite that overall dataset is able to generate
a better response compared to the one trained on the mixed
dataset.

Figure. 3: Fitness (<2) vs Generation

The above chart illustrates the average fitness score over a
generation. Note that we would like to minimize the perplexity
score thus lower value indicates fitter individuals.

We can set a stricter value for the average perplexity
score to reduce the noise (poisoned data) in the results. We
tried different values (Fig.4) and discovered that decreasing
the average perplexity score improves the results
significantly at the same time it also needs to produce more
generations.

Figure. 4: Fitness (<3) vs Generation

Finding the ideal value for the stopping condition can be
challenging but if found it produces remarkably efficient
results. As we can see in the below image, when we reduce the
fitness threshold, we can see algorithm produces more
generations and there are a less number of poisoned contents
in the output. When we increase the threshold, we can see
more poisoned contents are generated. It is worth noting that
when we reduce the threshold non-poisoned data is not
impacted much. This mean when a genetic algorithm produces

EAI Endorsed Transactions on
AI and Robotics

| Volume 2 | 2023 |

 A Study Towards Building Content Aware Models in NLP using Genetic Algorithms

9

more generation, the population evolves by producing fitter
individuals, and we get closer to the optimum solution.
Remember, we are using a perplexity score hence we need to
reduce the threshold to get better results as the lower the
perplexity scores better the result. The below column chart
(fig.5) shows the number of generations, filtering of poison &
non-poisoned data, and fitness threshold.

Figure. 5: Fitness (<4) vs Generation

5. Discussions, Limitations and
Conclusions

5.1. The Search Space

As we discussed in previous sections Genetic Algorithms
are efficient in finding solutions in the huge search space. How
big the search space can be, let’s consider our use case. We
have 800 sentences in our dataset. Out of 800 sentences, we
will try to find the best set of sentences (candidates) that can
produce the best results when paraphrased. Assume all the
non-poisoned sentences (400 sentences in our dataset) can
potentially produce better results and all the poisoned
sentences can’t produce better results. Further, assume that we
would like to select around 300 sentences out of 800. Then
according to the combination formula 800 choose 300 (or
800C300) we are dealing with approximately 2.06 E+228
combinations. If we take a brute force approach, then we need
to go through 2.06 E+228 combinations to find the best
solution.

As we have already described in previous sections, the
Genetic Algorithm doesn't go through all these combinations
rather it tries to arrive at a better solution from the current
solution. Therefore, genetic algorithms really excel when the
search space is huge.

5.2. Future direction

The general idea here is to filter out certain contents or
categorize content that can alter the behavior of the model. The
same idea can be extended to build a content-aware model. In
our work, we have demonstrated a way of filtering out
copyrighted content by applying data poisoning techniques on
data and applying Genetic Algorithms to reduce the poisoned
content in the final data set.

For the demonstration purpose and due to resource
constraints, we have used a simple model to generate text,
perplexity score for the fitness computation, and many other
parameters that were allowed within our resource limits. We
can use more sophisticated models if resources are not a
constraint, more complex functions can be used instead of just
the perplexity score, different models can be employed for
better pattern matching and different hyperparameters can be
used to get better results or address different use cases. One of
the interesting directions that can be explored is to find the
correlation between the number of generations produced and
the amount of poisoned content filtered. This correlation may
provide some guidance in terms of the number of generations
required when given the percentage of poisoned data that
needs to be removed from the data set. This will also help in
managing the computational cost.

5.3. Limitations

There are certain inherent limitations of Genetic
algorithms [5] which our solution may suffer from are listed
below-

1. It requires a special definition for various components of
the algorithm. We need to devise appropriate
representation for population, fitness function,
Chromosome structure, as well as the selection crossover,
and mutation operators tailored to the problem domain.
This process can be demanding and time-intensive.

2. Genetic algorithms are influenced by a collection of
hyperparameters, including population size and mutation
rate, which govern their behavior. Determining the
optimal values for these hyperparameters is not governed
by strict rules when applying genetic algorithms to a
specific problem.

3. Performing operations on populations, especially when
dealing with large populations, and the iterative nature of
genetic algorithms can be computationally demanding
and time-consuming before achieving a satisfactory
outcome. However, there are strategies to alleviate these
challenges. Making appropriate choices for
hyperparameters, such as population size and mutation
rate, can optimize the algorithm's performance.
Additionally, implementing parallel processing
techniques can distribute the computational workload
across multiple processors or machines, speeding up the
execution. Furthermore, in certain cases, caching
intermediate results can be beneficial, allowing the reuse
of previously calculated values and reducing redundant
computations. In our implementation, we computed
certain results and cached them to avoid computing them
every time we needed them.

4. When a single individual in the population significantly
outperforms the rest in terms of fitness, there is a risk that
it will dominate the entire population, resulting in
premature convergence to a local maximum rather than
exploring the global solution space. To avoid this issue,
it is crucial to preserve the diversity within the
population.

EAI Endorsed Transactions on
AI and Robotics

| Volume 2 | 2023 |

U. Tank et al.

10

5. The application of genetic algorithms does not provide a
guarantee of finding the global maximum for the given
problem. However, this holds true for most search and
optimization algorithms unless there exists an analytical
solution specifically tailored to the problem. In general,
when genetic algorithms are properly applied, they are
recognized for their ability to generate satisfactory
solutions within a reasonable timeframe.

Other limitations are-
1. The amount of poisoned data left out in the final

response depends on the threshold defined for the
perplexity score. Therefore, the threshold is also a
hyperparameter, and fine-tuning the threshold could
be challenging.

2. All the contents that we would like to hide from the
model need to be poisoned. Since there is no single
source of content and virtually everyone holds
copyright for some content it is hard to implement
data poisoning techniques across content owners.

3. The current study focuses on protecting copyright
contents and current implementation doesn’t explore
categorizing copyrights and detecting a specific
copyright.

4. Note: we tried to capture limitations to the best of our

knowledge, there can be other limitations as well
which we haven’t discovered yet.

5.4. Deployment

 To apply the techniques outlined in this paper to real-world
application, the content owner who holds the copyright must
poison their content as described in the paper. As shown in the
example, data poisoning is straightforward and doesn’t require
special expertise. A web interface can be provided to generate
poisoned text, as demonstrated in [3].

Once contents are poisoned and if crawlers retrieve the
content to feed it to the LLMs then the model wouldn’t be able
to learn the actual context instead will learn some garbled text.
Therefore, the model wouldn’t be able to generate a
meaningful response from the learned text. For the model to
find a better response when input consists of poisoned and
non-poisoned data, we employed genetic algorithms. As
described genetic algorithm requires a way of comparing the
generated results. We achieved this using a perplexity score.
We cached perplexity scores in memory but for the real-world
application databases or caching solutions can be employed.
One can use any suitable algorithm instead of a perplexity
score.

5.5. Conclusions

When the threshold for the fitness function is high
algorithm has to produce more generation. That is a more
robust solution that needs more generation. Though Genetic
algorithms are computationally extensive, they are far better
than traditional algorithms when we would like to find a
solution from the large search space.

Genetic algorithms may or may not provide the best
solution but in most cases, the solution is good enough for the
given problem domain. For example, in our case, we would
like to filter out content that is not relevant. Even though some
unwanted content is left out in the final solution the ML model
should be able to tolerate that noise.

References

[1] Josh A Goldstein, Girish Sastry, Micah Musser, Renee DiResta,

Matthew Gentzel, and Katerina Sedova. Generative language models
and automated influence operations: Emerging threats and potential
mitigations. arXiv preprint arXiv:2301.04246, 2023.

[2] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention
is all you need. Advances in neural information processing systems, 30,
2017.

[3] Nicholas Boucher, Ilia Shumailov, Ross Anderson, and Nicolas
Papernot. Bad characters: Imperceptible nlp attacks. In 2022 IEEE
Symposium on Security and Privacy (SP), pages 1987–2004. IEEE,
2022.

[4] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad,
Abdelrahman Mohamed, Omer Levy, Ves Stoyanov, and Luke
Zettlemoyer. Bart: Denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehension. arXiv
preprint arXiv:1910.13461, 2019.

[5] Wirsansky, E., 2020. Hands-on genetic algorithms with Python:
applying genetic algorithms to solve real-world deep learning and
artificial intelligence problems. Packt Publishing Ltd.

[6] Chen, W., Ramos, K., Mullaguri, K.N. and Wu, A.S., 2021. Genetic al
gorithms for extractive summarization. arXiv preprint
arXiv:2105.02365.

[7] Manzoni, L., Jakobovic, D., Mariot, L., Picek, S. and Castelli, M., 2020,
June. Towards an evolutionary-based approach for natural language
processing. In Proceedings of the 2020 Genetic and Evolutionary
Computation Conference (pp. 985-993).

[8] Wallace, E., Zhao, T.Z., Feng, S. and Singh, S., 2020. Concealed data
poisoning attacks on nlp models. arXiv preprint arXiv:2010.12563.

[9] Xiang, T., Xie, C., Guo, S., Li, J. and Zhang, T., 2021. Protecting Your
NLG Models with Semantic and Robust Watermarks. arXiv preprint
arXiv:2112.05428.

[10] Pajola, L. and Conti, M., 2021, September. Fall of Giants: How popular
text-based MLaaS fall against a simple evasion attack. In 2021 IEEE
European Symposium on Security and Privacy (EuroS&P) (pp. 198-
211). IEEE.

[11] Michel, P., Li, X., Neubig, G. and Pino, J.M., 2019. On evaluation of
adversarial perturbations for sequence-to-sequence models. arXiv
preprint arXiv:1903.06620.

[12] Russo, A., 2023, June. Analysis and Detectability of Offline Data
Poisoning Attacks on Linear Dynamical Systems. In Learning for
Dynamics and Control Conference (pp. 1086-1098). PMLR.

[13] Evans, O., Cotton-Barratt, O., Finnveden, L., Bales, A., Balwit, A.,
Wills, P., Righetti, L. and Saunders, W., 2021. Truthful AI: Developing
and governing AI that does not lie. arXiv preprint arXiv:2110.06674.

[14] Bang, Y., Cahyawijaya, S., Lee, N., Dai, W., Su, D., Wilie, B., Lovenia,
H., Ji, Z., Yu, T., Chung, W. and Do, Q.V., 2023. A multitask,
multilingual, multimodal evaluation of chatgpt on reasoning,
hallucination, and interactivity. arXiv preprint arXiv:2302.04023.

[15] Megahed, F.M., Chen, Y.J., Ferris, J.A., Knoth, S. and Jones-Farmer,
L.A., 2023. How generative ai models such as chatgpt can be (mis) used
in spc practice, education, and research? an exploratory study. Quality
Engineering, pp.1-29.

[16] Borji, A., 2023. A categorical archive of chatgpt failures. arXiv preprint
arXiv:2302.03494.

[17] Sheera Frenkel, “Iranian Disinformation Effort Went Small to Stay
Under Big Tech’s Radar,” New York Times, June 30, 2021,

EAI Endorsed Transactions on
AI and Robotics

| Volume 2 | 2023 |

 A Study Towards Building Content Aware Models in NLP using Genetic Algorithms

11

https://www.nytimes.com/2021/06/30/technology/disinformation-
message-apps.html.

[18] Xiang, Tao, Chunlong Xie, Shangwei Guo, Jiwei Li, and Tianwei
Zhang. “Protecting Your NLG Models with Semantic and Robust
Watermarks.” arxiv:2112.05428 [cs.MM], December 10, 2021. https:
//doi.org/10.48550/arxiv.2112.05428.

[19] Sablayrolles, Alexandre, Matthijs Douze, Cordelia Schmid, and Hervé
Jégou. “Radioactive data: tracing through training.” 37th International
Conference on Machine Learning, ICML 2020 PartF168147-11
(February 3, 2020): 8296–8305.
https://doi.org/10.48550/arxiv.2002.00937.

[20] Ziegler, Z.M., Deng, Y. and Rush, A.M., 2019. Neural linguistic
steganography. arXiv preprint arXiv:1909.01496.

[21] Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy,
O., Stoyanov, V. and Zettlemoyer, L., 2019. Bart: Denoising sequence-
to-sequence pre-training for natural language generation, translation,
and comprehension. arXiv preprint arXiv:1910.13461.

EAI Endorsed Transactions on
AI and Robotics

| Volume 2 | 2023 |

	1) Selection
	2) Crossover
	3) Mutation

