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Abstract 
 
The paper provides a comprehensive overview of three neural network models, namely Point-E, 3DGen and Shap-E, with a 
focus on their overall processes, network structures, loss functions, as well as their strengths, weaknesses, and potential 
future research opportunities. Point-E, an efficient framework, generates 3D point clouds from complex text prompts, 
leveraging a text-to-image diffusion model followed by 3D point cloud creation. 3DGen, a novel architecture, integrates a 
Variational Autoencoder with a diffusion model to produce triplane features for conditional and unconditional 3D object 
generation. Shap-E, a conditional generative model, directly generates parameters of implicit functions, enabling the creation 
of textured meshes and neural radiance fields. While these models demonstrate significant advancements in 3D generation, 
areas for improvement include enhancing sample quality, optimizing computational efficiency, and handling more complex 
scenes. Future research could explore further integration of these models with other techniques and extend their capabilities 
to address these challenges. 
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1. Introduction 

The recent surge in the development of text-to-image 
generative models has revolutionized the process of creating 
and altering high-resolution images [21-30]. Nowadays, one 
can transform natural language descriptions into stunning 
visual representations within a matter of seconds [1-12]. 
Encouraged by these groundbreaking achievements, recent 
research efforts have delved into text-conditional generation 
across various other mediums, encompassing video and 3D 
objects alike [13-20]. In this study, we concentrate primarily 
on the intriguing problem of text-to-3D generation, which 
holds immense promise in democratizing the creation of 3D 
content for a diverse array of applications, ranging from 
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immersive virtual reality experiences to captivating gaming 
worlds and intricate industrial designs. 

Point-E, 3DGen, and Shap-E are three exemplary native 
3D methods typically utilized for creating 3D content. These 
methods represent innovative approaches in the field of 3D 
generation, each with its unique characteristics and 
capabilities. 

Point-E [1] emerges as an efficient framework for 
generating 3D point clouds from intricate text prompts. This 
method stands out through its ability to produce 3D models 
in a rapid timeframe of 1-2 minutes using a single GPU. The 
core of Point-E lies in its two-step generation process. 
Initially, it generates a synthetic view leveraging a text-to-
image diffusion model. Subsequently, this generated image 
serves as the basis for creating a 3D point cloud, thus bridging 
the gap between textual descriptions and three-dimensional 
representations. While Point-E offers remarkable efficiency, 
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Figure 1. Overview of Point-E [1] 

its sample quality might not yet match the state-of-the-art, 
presenting an area for future improvements. 

3DGen [2] introduces a novel architecture that integrates 
a Variational Autoencoder (VAE) with a diffusion model. 
This integration enables the generation of triplane features, 
which are crucial for image-conditioned, text-conditioned, 
and unconditional 3D object generation. The combination of 
these techniques allows 3DGen to capture a wide range of 
3D shapes and textures, offering greater flexibility and 
diversity in the generated outputs. However, the complexity 
of the architecture might pose challenges in terms of training 
and computational requirements. 

Shap-E [3] represents a conditional generative model 
tailored for creating 3D assets. Its key innovation lies in the 
direct generation of the parameters of implicit functions. This 
approach enables the creation of textured meshes and Neural 
Radiance Fields (NeRF) [34], significantly enhancing the 
realism and detail of the generated 3D objects. Shap-E offers 
a promising alternative to traditional 3D modeling 
techniques, particularly in scenarios where textural and 
geometric complexity are paramount. Nevertheless, the 
method might still face challenges in handling extremely 
complex compositions or detailed textures. 

Collectively, these three models represent significant 
advancements in the field of 3D generation from text 
prompts. Each model offers unique strengths and addresses 
specific challenges, opening up new research opportunities. 
Future work could explore enhancing the sample quality of 
Point-E, optimizing the training and computational 
efficiency of 3DGen, and extending the capabilities of Shap-
E to handle more complex scenes and textures. Additionally, 
there is potential for further integration of these models with 
other techniques, such as reinforcement learning or 
adversarial training, to further enhance their performance and 
applicability. 

2. Native Methods 

The three Native Methods of 3D Content Creation are Point-
e, 3DGen, and Shap-E. This section will analyze the 
workflow, neural network structure, loss function, and 
advantages of these three neural networks one by one. 

2.1. Point-E: A Streamlined Framework for 
Text-to-3D Generation 

Point-E [1] is a system designed to generate 3D point clouds 
from complex textual prompts. The method is significantly 
faster than state-of-the-art techniques, producing 3D models 
in just 1-2 minutes on a single GPU, compared to multiple 
GPU-hours required by leading approaches. Figure 1 
presents a schematic summary of the Point-E workflow that 
transforms textual cues into 3D point cloud formations. The 
diagram likely incorporates exemplars of the pipeline’s 
outcomes, juxtaposing the initial text query, the artificial 
image synthesised by GLIDE, and the corresponding 3D 
point cloud manifestation. This visual elucidation 
underscores the system’s ability to convert textual inputs into 
intricate three-dimensional depictions of objects. 

a) Verbal Description Input Stage: The first phase 
commences with a written description or directive that 
characterizes the sought-after 3D entity. This 
descriptive text serves as the compass for the 
subsequent 3D point cloud construction. 

b) Text-to-Visual Translation (GLIDE): The textual 
instruction is fed into the text-to-image model known as 
GLIDE. This model assumes the task of producing a 
simulated visualization of the 3D object based on the 
provided written details. GLIDE, having undergone 
extensive pre-training and fine-tuning on 3D-rendered 
samples, aligns its output closely with the target 
distribution of the dataset. 

c) Image-to-3D Conversion Layer: The artificial 
rendering delivered by GLIDE then serves as the 
conditional input to the succeeding segment of the 
pipeline. Here, a point cloud diffusion network takes 
this 2D image and evolves it into a 3D RGB point cloud 
representation. This specialized model is adept at 
interpreting the 2D imagery and reifying it into a point 
cloud encapsulating both the structural and chromatic 
properties of the object. 

d) Formation of 3D Point Cloud: The culmination of the 
image-to-3D model's operation is a 3D point cloud that 
faithfully mirrors the content of the original textual hint. 
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Each individual point in the cloud carries a distinct 
RGB color attribute, thereby enabling a simultaneous 
representation of the object’s hue and form. 

e) Pipeline Synopsis: Figure 1 encapsulates the dual-core 
operations within the Point-E methodology: first, 
deriving a fabricated 2D perspective from a textual 
command leveraging GLIDE, followed by the 
transformation of this 2D representation into a 3D point 
cloud employing a diffusion algorithm. This two-step 
strategy has been crafted for efficiency, empowering 
the swift conversion of intricate text-based instructions 
into tangible 3D point cloud constructs. 

Figure 2. Overview of the Point-E system's 
architecture for generating 3D point clouds using a 

diffusion model [1]. 

Figure 2 demonstrates the mechanism whereby the Point-
E system leverages a pre-trained Contrastive Language-
Image Pre-training (CLIP) model to draw out characteristics 
from a 2D image and subsequently applies a Transformer-
driven design to generate a 3D point cloud that adheres to 
these features. This system is engineered to estimate the 
noise distribution and mean value for each point within the 
cloud, thus incrementally reconstructing a 3D form from the 
noisy input data. 

a) Image Input: The entry point for the system is a 2D 
image that acts as the blueprint for the ensuing 3D 
object synthesis. Typically, this image is synthesized by 
a text-to-image model, responding to the specific 
textual command issued by the user. 

b) Employment of a Pre-trained CLIP Module: The 
input 2D image undergoes processing via a pre-trained 
Vision Transformer (ViT) component, specifically the 
ViT-L/14 configuration within CLIP paradigm. The 
CLIP module distills essential visual attributes from the 
image, which serve as guiding principles during the 
creation of the 3D point cloud. 

c) Extraction of Feature Vectors: The outcome from the 
CLIP model includes high-level feature vectors 
extracted from its terminal layer, presenting dimensions 
of 256 by D', where D' signifies the attribute vector size. 
These vectors are further linearly projected into a tensor 
of shape 256 by D, with D being the dimension utilized 
within the Transformer architecture. 

d) Core Transformer Mechanism: Central to the Point-
E framework is a Transformer-based model. This 
Transformer ingests the projected feature vectors 
emanating from the CLIP model, complemented by 
ancillary contextual data, such as the current time step 
𝐭𝐭 and the noised version of the input 𝒙𝒙𝒕𝒕, both of which 
are tokenized and introduced into the model. 

e) Processing of Input Parameters: Each point in the 
point cloud is subjected to a linear layer to produce a K 
× D dimensional input matrix, where K denotes the total 
number of points. Concurrently, the time step 𝐭𝐭  is 
channelled through a miniaturized Multi-Layer 
Perceptron (MLP) to generate a D-dimensional vector, 
which is prefixed to the Transformer's context array. 

f) Predictive Outputs: The Transformer model yields a 
succession of tokens, from which the conclusive K 
tokens are extracted and mapped to infer the predicted 
epsilon ϵ and sigma Σ values pertinent to the K input 
points. These variables facilitate the denoising of the 
point cloud and ultimately lead to the formation of the 
3D structure. 

g) Invariance to Permutations: Significantly, the 
absence of positional encodings makes the model 
permutation-invariant concerning the input point clouds. 
This characteristic enables the model to process 
unordered point clouds while maintaining consistency 
with the output sequence, though the ordering of the 
output follows the input sequence. 

Loss Function 
The development of the loss function centers around training 
a diffusion model to closely approximate the conditional 
distribution 𝐪𝐪(𝒙𝒙𝒕𝒕−𝟏𝟏|𝒙𝒙𝒕𝒕)  through the utilization of a neural 
network 𝒑𝒑𝜽𝜽(𝒙𝒙𝒕𝒕−𝟏𝟏|𝒙𝒙𝒕𝒕). The sampling procedure initiates with 
random Gaussian noise 𝒙𝒙𝑻𝑻  and gradually reverses the 
noising process, culminating in the acquisition of a noiseless 
sample 𝒙𝒙𝟎𝟎 . The conditional distribution's mean is 
parameterized by predicting the effective noise added to a 
sample 𝒙𝒙𝒕𝒕  denoted as ϵ. Although the variance Σ of 
𝒑𝒑𝜽𝜽(𝒙𝒙𝒕𝒕−𝟏𝟏|𝒙𝒙𝒕𝒕) can be set to a heuristic value, superior results 
are achieved by predicting both the mean and variance. The 
diffusion sampling process can be interpreted through the 
framework of differential equations, enabling the 
employment of diverse solvers for sampling from these 
models. 

Furthermore, the loss function incorporates guidance 
strategies such as classifier guidance and classifier-free 
guidance to strike a balance between sample diversity and 
fidelity in diffusion models. Classifier guidance involves the 
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utilization of gradients from a noise-aware classifier to 
perturb each sampling step, whereas classifier-free guidance 
conditions the model on class labels during sampling. The 
guidance scale parameter s regulates the influence of 
conditional predictions on the model's output. 

In summary, the loss function strives to optimize the 
diffusion model by predicting the mean and variance of the 
conditional distribution, incorporating guidance strategies to 
enhance generation fidelity, and leveraging differential 
equations for sampling efficiency. 

Experiment 
Table 1 juxtaposes Point-E with other 3D generative models, 
demonstrating that Point-E constitutes a considerably 
speedier option for creating 3D point clouds from text 
prompts, albeit conceding somewhat on quality as quantified 
by the CLIP R-Precision [32] metric. 

Table 1: comparison of Point-E with other 3D 
generative models [1]. 

Method ViT-
B/32 

ViT-
L/14 Latency 

DreamFields [17] 78.6% 82.9% ~200 V100-hr† 
CLIP-Mesh [31] 67.8% 74.5% ~17 V100-min* 

DreamFusion [16] 75.1% 79.7% ~12 V100-hr† 
Point-E (40M, 

text-only) 15.4% 16.2% 16 V100-sec 

Point-E (40M) 35.5% 38.8% 1.0 V100-min 
Point-E (300M) 40.3% 45.6% 1.2 V100-min 

Point-E (1B) 41.1% 46.8% 1.5 V100-min 
Conditioning 

Images 69.6% 86.6% - 

 
Table 1 furnishes a comparative examination of the Point-

E system vis-à-vis alternative 3D generative methodologies, 
grounded on the CLIP R-Precision measure. The tabular 
presentation aims to illustrate the effectiveness of diverse 
methods in crafting 3D content from textual commands, 
coupled with their respective computational efficiency. 

a) Technique Enumeration: This column enumerates the 
numerous methodologies and systems that have 
undergone scrutiny for their capacity to generate 3D 
structures prompted by text. 

b) CLIP R-Precision (ViT-B/32): This column 
showcases the CLIP R-Precision scores attained by 
each method upon evaluation using a ViT-B/32 variant 
of the CLIP model. This metric gauges the efficacy of 
text-to-visual (specifically, text-to-3D in this scenario) 
generation models by juxtaposing the synthesized 
outputs against a benchmark collection of reference 
images. 

c) CLIP R-Precision (ViT-L/14): Analogous to the 
preceding column, this section presents the CLIP R-
Precision score yet resorts to a more sophisticated ViT-
L/14 CLIP model, offering a potentially more refined 
appraisal of the generated material. 

d) Computational Latency: This column delineates the 
processing duration or latency incurred by every 
method to produce a solitary sample. Reported times 
vary in minutes for certain methods, while others are 
converted to V100-minute units—a standard of 
computational time pegged to the performance of 
NVIDIA V100 GPUs—to facilitate uniform 
comparisons. 

e) Methodological Comparison: The table juxtaposes 
Point-E against other cutting-edge approaches, 
including DreamFields [17], CLIP-Mesh [31], and 
DreamFusion [16]. Despite displaying marginally 
lower CLIP R-Precision scores, indicative of a potential 
inferiority in the quality of generated 3D models 
compared to top performers, Point-E boasts 
significantly shorter latencies, rendering it vastly 
swifter. 

f) Point-E Model Variants: The table further dissects the 
performance profiles of differing Point-E iterations, 
differentiated by the scale of their neural network 
architectures (for instance, 40M, 300M, 1B denote 
parameter counts in millions). As model complexity 
escalates, CLIP R-Precision tends to improve, but this 
enhancement comes concurrent with a rise in 
computational time requirements. 

g) Efficiency-Quality Trade-off: The table accentuates 
the balance between speed and accuracy. Methods like 
DreamFields indeed attain superior CLIP R-Precision 
scores, but they necessitate substantial computational 
resources and extended processing times, thereby 
compromising practicality in situations where 
expediency is paramount. 

Advantages 
The method exhibits several notable advantages: 

a) Efficiency: With the utilization of a single GPU, the 
method is capable of generating 3D models in a 
remarkable timeframe of just 1-2 minutes. This 
represents a significant acceleration of one to two 
orders of magnitude compared to current state-of-the-
art techniques. 

b) Balanced Performance: Although the method may not 
achieve the pinnacle of sample quality compared to 
existing methods, its sampling speed offers a practical 
compromise for certain applications, making it a 
suitable choice for specific use cases. 

c) Reliable and High-quality Outcomes: The model 
demonstrates remarkable consistency and produces 
high-quality 3D shapes in response to complex prompts. 
This demonstrates its proficiency in inferring a diverse 
range of shapes while accurately associating colors with 
pertinent aspects of the shapes. 

d) Guidance Strategies: The method incorporates 
sophisticated guidance strategies, such as classifier 
guidance and classifier-free guidance, to strike a  
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Figure 3. Two-stage Pipeline of 3DGen Architecture [2]. 

harmonious balance between sample diversity and 
fidelity in diffusion models. This integration has the 
potential to enhance the overall quality of generated 
content. 

e) Availability of Pre-trained Models: The authors have 
generously shared their pre-trained point cloud 
diffusion models, along with evaluation code and 
models, to facilitate further research and development 
within the community. 

 
In conclusion, the method shines in terms of its 

remarkable efficiency, practicality, capability to produce 
high-quality results, seamless integration of guidance 
strategies, and the generous release of pre-trained models for 
wider utilization. 

2.2. 3DGen: Integrating VAEs and Diffusion 
for Conditional 3D Object Creation 

The 3DGen [2] model demonstrates the ability to generate 
high-quality textured or untextured 3D meshes across 
multiple categories quickly and efficiently, outperforming 
previous methods in both geometry and texture generation. 

a) Introduction and Background: Despite significant 
strides made in 3D creation technologies, including 
Point Cloud VAEs, triplane representations, neural 
implicit surfaces, and differentiable rendering, a 
scalable and efficacious solution to jointly produce top-
notch textured and untextured 3D meshes remains 
unresolved. 

b) 3DGen Framework Composition: The 3DGen model 
operates through two core phases (Figure 3): 

● Phase One - Triplane VAE Construction: An 
optimised VAE mechanism is employed to 
transform an optionally color-infused point cloud 

derived from the source mesh into a triplane 
Gaussian latent domain. It subsequently masters the 
process of reassembling a seamless, textured 3D 
mesh from this encoded data. 

● Phase Two - Conditional Diffusion Process: A 
diffusion model undergoes training to forge triplane 
characteristics, which can be calibrated based on a 
provided image-text embedding. This functionality 
empowers image-guided, text-guided, and 
unconditional generation tasks.  

c) Approach: 
● Employment of Neural Fields: Leveraging the 

triplane representation to implicitly depict 3D 
entities or environments, the method uses three 
orthogonal feature planes for resourceful rendering 
purposes. 

● Triplane VAE Processing: The encoder transposes 
point clouds into a distribution of triplane-encoded 
features, whereupon the decoder reconstructs the 
mesh by employing differentiable rendering 
techniques. 

● Texture Forecasting: The VAE's capabilities are 
augmented to accommodate color-laden point 
clouds and anticipate surface hues as a texture map. 

● Diffusion on Triplanes: A diffusion model is tutored 
on flattened triplanes—essentially 2D images that 
facilitate the application of existing image diffusion 
methodologies. This model integrates 3D-aware 
convolutions to bolster spatial consistency. 

f) Experimental Procedures: 
● Datasets such as ShapeNetCore and Objaverse are 

utilised for training and scalability assessments. 
● The VAE training incorporates a rendering-based 

recovery loss, while the diffusion model is educated 
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with a predictive goal and a cosine-based noise 
scheduling. 

● Experiments encompass both unconditional and 
conditional generations, demonstrating that the 
model significantly surpasses prior cutting-edge 
methods concerning geometric accuracy and texture 
synthesis. 

g) Evaluation and Insights: 
● The study underscores the advantages of 

incorporating render losses and the progressive 
training strategy of the VAE decoder to enhance 
mesh refinement. 

● It emphasizes the criticality of selecting a 
conditioning encoder capable of capturing subtle 
variations in inputs.  

Loss Function 
The loss function described in this paper comprises multiple 
components, aiming to effectively train both the Tri-plane 
VAE and the Triplane Diffusion model. Regarding the 
Triplane VAE, the loss function incorporates a rendering-
based reconstruction loss. This loss is facilitated by a 
differentiable renderer and the differentiable marching 
tetrahedra algorithm, enabling the preservation of intricate 
mesh details without resorting to pre-processing steps. 
Furthermore, a KL divergence loss is introduced to ensure 
that the encoder learns a distribution of triplane features that 
closely resembles a Gaussian prior. Additionally, a Laplacian 
mesh smoothing loss is integrated to enhance the smoothness 
of the reconstructed meshes. When training a textured VAE 
for color prediction, an additional loss term, referred to as 
𝓛𝓛𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄, is included. This loss compares the predicted surface 
colors with the ground truth surface colors, assisting the 
model in gener-ating semantically consistent textures 
alongside shapes. 

The loss function 𝓛𝓛𝒗𝒗𝒗𝒗𝒗𝒗  is used to train the VAE 
component of the model. It is a combined loss that includes 
several terms to ensure the model learns to reconstruct the 
input mesh accurately and maintain a certain distribution for 
the latent space. 

𝓛𝓛𝒗𝒗𝒗𝒗𝒗𝒗 = �𝒎𝒎𝒙𝒙 −𝒎𝒎𝒙𝒙
𝒈𝒈𝒕𝒕�

𝟐𝟐

𝟐𝟐
+ �𝒅𝒅𝒙𝒙 − 𝒅𝒅𝒙𝒙

𝒈𝒈𝒕𝒕�
𝟏𝟏

+ 𝝀𝝀𝓛𝓛𝒔𝒔𝒎𝒎𝒄𝒄𝒄𝒄𝒕𝒕𝒔𝒔 −

                                    𝜸𝜸𝑫𝑫𝑲𝑲𝑲𝑲 �𝒒𝒒𝝍𝝍𝒗𝒗𝒆𝒆𝒄𝒄(𝒛𝒛|𝒙𝒙)�𝒑𝒑(𝒔𝒔)�                  (1) 

● �𝒎𝒎𝒙𝒙 −𝒎𝒎𝒙𝒙
𝒈𝒈𝒕𝒕�

𝟐𝟐

𝟐𝟐
: This term represents the mean squared 

error between the predicted mask silhouette 𝒎𝒎𝒙𝒙 and the 
ground truth mask silhouette 𝒎𝒎𝒙𝒙

𝒈𝒈𝒕𝒕 . It measures the 
difference in the silhouettes of the reconstructed mesh 
and the original mesh. 

● �𝒅𝒅𝒙𝒙 − 𝒅𝒅𝒙𝒙
𝒈𝒈𝒕𝒕�

𝟏𝟏
: This term represents the mean absolute 

error (L1 loss) between the predicted depth map 𝒅𝒅𝒙𝒙 and 
the ground truth depth map 𝒅𝒅𝒙𝒙

𝒈𝒈𝒕𝒕 . It measures the 
difference in depth information between the 
reconstructed mesh and the original mesh. 

● 𝝀𝝀ℒ𝒔𝒔𝒎𝒎𝒄𝒄𝒄𝒄𝒕𝒕𝒔𝒔: This is a smoothing loss that is multiplied by 
a scalar 𝝀𝝀. The smoothing loss encourages the generated 

mesh to be smooth, which is important for the quality of 
the final 3D model. 

● 𝜸𝜸𝑫𝑫𝑲𝑲𝑲𝑲 �𝒒𝒒𝝍𝝍𝒗𝒗𝒆𝒆𝒄𝒄(𝒛𝒛|𝒙𝒙)�𝒑𝒑(𝒔𝒔)�: This term is the Kullback-
Leibler divergence between the learned latent 
distribution 𝒒𝒒𝝍𝝍𝒗𝒗𝒆𝒆𝒄𝒄(𝒛𝒛|𝒙𝒙) and a Gaussian prior 𝒑𝒑(𝒔𝒔). The 
KL divergence measures how one probability 
distribution diverges from a second, expected 
probability distribution. The scalar 𝜸𝜸 weights this term. 
The goal is to keep the learned latent representation 
close to a Gaussian distribution. 

The loss function ℒ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  is used when training the model to 
predict textures on the mesh surface. It measures the 
difference between the predicted texture colors and the 
ground truth texture colors. 

                     ℒ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = �𝑐𝑐𝑥𝑥 − 𝑐𝑐𝑥𝑥
𝑔𝑔𝑔𝑔�

1
+ �𝑐𝑐𝑥𝑥 − 𝑐𝑐𝑥𝑥

𝑔𝑔𝑔𝑔�
2

2
           (2) 

● �𝑐𝑐𝑥𝑥 − 𝑐𝑐𝑥𝑥
𝑔𝑔𝑔𝑔�

1
: This term represents the mean absolute 

error (L1 loss) between the predicted texture color 𝑐𝑐𝑥𝑥 
and the ground truth texture color 𝑐𝑐𝑥𝑥

𝑔𝑔𝑔𝑔 . It captures the 
difference in color values between the predicted and 
actual texture. 

● �𝑐𝑐𝑥𝑥 − 𝑐𝑐𝑥𝑥
𝑔𝑔𝑔𝑔�

2

2
: This term represents the mean squared 

error (L2 loss) between the predicted texture color 𝑐𝑐𝑥𝑥 
and the ground truth texture color 𝑐𝑐𝑥𝑥

𝑔𝑔𝑔𝑔 . It is another 
measure of the color difference, but it squares the 
differences, penalizing larger errors more heavily than 
the L1 loss. 

Advantages 
Table 2 presents a comparative analysis of different models 
on the task of image-conditioned mesh generation. The table 
is structured to show the performance of various models in 
terms of two key metrics: Chamfer-L1 distance and Shading 
Fréchet Inception Distance (FiD), for both head categories 
and tail categories. The table demonstrates that the 3DGen 
model, both with and without pretraining, outperforms the 
other models in terms of both geometric accuracy (lower 
Chamfer-L1 distances) and shading quality (lower FiD 
scores), especially for the head categories. The pretraining 
further improves the 3DGen model's performance, with 
notable reductions in both metrics compared to the non-
pretrained version. 

Table 2: Comparison between 3DGen and 3DILG [2]. 

Model 
Head Categories Tail Categories 

Chamfer-
L1 (↓) 

Shading-
FiD (↓) 

Chamfer-
L1 (↓) 

Shading-
FiD (↓) 

CLIP-Forge†

[14] 0.244 188.89 - - 

3DILG [33] 0.219 93.56 0.244 100.59 
3DGen 0.181 80.31 0.192 94.88 

3DGen+ 
pretraining 0.172 76.44 0.184 85.92 
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● Model: This column lists the names of the models 
being compared. 

● Chamfer-L1 (↓): This column shows the Chamfer-
L1 distance for each model. The Chamfer-L1 
distance is a measure of the similarity between two 
point sets, and in this context, it's used to quantify 
the geometric similarity between the generated 
meshes and the ground truth meshes. Lower values 
are better, indicating a closer match to the ground 
truth. 

● Shading-FiD ( ↓ ): This column displays the 
Shading FiD scores for each model. FiD is a 
measure of the similarity between two probability 
distributions and is often used to evaluate the 
quality of generated images or, in this case, the 
quality of the shading on generated meshes when 
rendered. Again, lower values are better, signifying 
more realistic and higher quality shading. 

The method exhibits numerous advantages: 
a) Exceptional Mesh Generation Quality: The 

utilization of the Triplane VAE and Triplane Diffusion 
models ensures the production of 3D meshes that are 
not only of high quality but also possess intricate details, 
realistic textures, and semantic consistency. 

b) Unique Differentiable Rendering Loss: By opting for 
a rendering-based reconstruction loss, rather than 
relying on SDF or occupancy regression losses, the 
method maintains fine details in the mesh output 
without the need for preparatory steps like 
watertighting. This approach significantly enhances the 
quality of reconstruction. 

c) Versatile Texture Prediction: The framework's 
adaptability extends to texture prediction, enabling the 
concurrent generation of semantically coherent textures 
alongside shapes. 

d) Efficient Model Training: The models are trained 
efficiently, utilizing a comprehensive loss function that 
encompasses rendering-based reconstruction loss, KL 
divergence loss, Laplacian mesh smoothing loss, and 
color prediction loss. This approach ensures that all 
relevant aspects of mesh generation are addressed 
during training. 

e) Compatibility with Advanced Image Diffusion 
Models: The latent space learned by the VAE, 
specifically the triplane format, aligns well with 
diffusion models, enabling seamless integration with 
cutting-edge image diffusion models. 

f) Staged VAE Training: The method incorporates a 
staged training approach for the VAE, where the 
decoder undergoes separate fine-tuning to enhance fine 
details and mesh smoothness. This approach avoids the 
computational overhead associated with training 
directly at a higher tetrahedral resolution. 

g) Potent Conditioning Model: The choice of 
conditioning encoder is paramount during diffusion 
training as it significantly affects the ability to capture 

subtle nuances in the input, leading to improved mesh 
alignment. 

 
In summary, the method excels in its capability to produce 
high-quality 3D meshes, train models efficiently, preserve 
intricate details, enable texture prediction, and maintain 
compatibility with state-of-the-art image diffusion models. 

2.3. Shap-E: Direct Generation of Implicit 
Function Parameters for High-Quality 3D 
Rendering 

The neural network architecture of Shap-E [3] is comprised 
of an encoder that takes as input both point clouds and 
rendered views of a 3D asset. The encoder processes the 
input data via cross-attention and a transformer backbone, 
generating latent representations. These latent 
representations are subsequently passed through a latent 
bottleneck and projection layer, resulting in the 
determination of the MLP's weights. During the training 
phase, the MLP is queried, and its outputs are utilized in 
either an image reconstruction loss or a distillation loss. The 
encoder is pre-trained using the Adam optimizer, with 
specific hyperparameters and training iterations. The implicit 
neural representations are represented by 6-layer MLPs, 
employing specific activation functions and input coordinate 
expansions. Furthermore, the density head of the MLPs can 
be influenced by ray direction embeddings, ensuring view-
consistency during testing. Figure 4 presents an elucidation 
of the encoding architecture adopted within the Shap-E 
model. This structure accepts dual forms of input to embody 
a 3D entity: point cloud data and several rendered 
perspectives. The illustration underscores the intricacy 
involved in transforming 3D assets into a format amenable to 
the generative prowess of the Shap-E model, thereby 
enabling the production of premium-grade 3D renditions. 
 
a) Input from Point Cloud: The encoding process 

initiates with the receipt of a point cloud portrayal of 
the 3D object. This particular point cloud, featuring 
16,384 points accompanied by RGB values, is 
subjected to preprocessing through a point 
convolutional layer, reducing its dimensionality to a 
cluster of 1,000 embeddings. 

b) Multi-perspective Point Cloud Input: Beyond the 
point cloud, the encoder also ingests numerous rendered 
viewpoints of the same 3D asset. These snapshots are 
captured at randomly selected camera angles, with each 
foreground pixel enriched by surface coordinate 
information, culminating in a 256x256x7 image. An 
8x8 patch embedding technique is applied to these 
rendered visuals, generating a series that encapsulates 
the multi-perspective point cloud essence. 

c) Cross-Attention Operation: Thereafter, the encoder 
engages in cross-attention operations over the 
processed point cloud embeddings and the multiview 
point cloud sequence. This strategic mechanism 
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empowers the model to selectively attend to various 
aspects of the input while calculating the latent 
representation. 

Figure 4. Overview of Shap-E Encoder Architecture [3] 

d) Application of Transformer Core: Once the cross-
attention layers have been traversed, a transformer core 
is brought into play to refine the now-updated 
embeddings. This transformer iteratively manipulates 
the sequence of vectors to yield a corresponding 
sequence of latent descriptors. 

e) Latent Compression and Projection Phase: Every 
vector in the sequence of latent representations 
undergoes a latent compression and projection stage. 
The end product of this layer serves as an individual 
row in the ensuing MLP weight matrices assembly. 

f) Derivation of MLP Parameters: The ultimate output 
from the encoder constitutes the parameters for an MLP 
that interprets the 3D asset as an implicit function. This 
MLP thereafter becomes instrumental in rendering the 
3D asset in the form of both NeRF and a Signed Texture 
Field (STF). 

g) Rendering Execution: The MLP parameters are 
deployed in the actual rendering of the 3D asset. During 
NeRF rendering, the model interrogates the MLP along 
camera ray paths to derive density and color estimates. 
Conversely, for STF rendering, the MLP-predicted 
SDF values and texture hues are harnessed to fabricate 
a mesh, which is then rendered utilizing a differentiable 
rendering engine. 

Loss Function 
The loss function employed during training encompasses 
either an image reconstruction loss or a distillation loss. The 
encoder generates latent representations of 3D assets, which 
are subsequently utilized to interrogate the MLP and obtain 
outputs. These outputs are subsequently contrasted with the 
ground truth data, utilizing the designated loss functions, to 
refine the model parameters. The loss function serves as a 
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pivotal component in directing the training procedure of the 
neural network architecture, ensuring that the implicit 
representations generated by the encoder align meticulously 
with the input data and desired outputs. Eq.3 is used to 
measure the difference between the predicted RGB colors 
and the actual RGB colors of the rendered 3D asset. The goal 
is to minimize the discrepancy between the generated image 
and the ground truth. The loss is calculated using the L1 norm, 
which is the sum of the absolute differences between the 
predicted and actual colors for both coarse and fine 
renderings. 

     𝐿𝐿RGB = 𝐸𝐸r∈𝑅𝑅 ���̂�𝐶𝑐𝑐(r) − 𝐶𝐶(r)�
1

+ ��̂�𝐶𝑓𝑓(r) − 𝐶𝐶(r)�
1
�   (3) 

Where, 

● r: Represents a ray in the rendering process. 
● �̂�𝐶𝑐𝑐(r) : The predicted RGB color for a coarse 

rendering of ray r. 
● �̂�𝐶𝑓𝑓(r): The predicted RGB color for a fine rendering 

of ray r. 
● 𝐶𝐶(r) : The actual RGB color of the rendered 3D 

asset for ray r. 

Eq.4 evaluates how well the model predicts the transmittance, 
which is related to the density of the volume along a ray and 
affects how much light passes through it. 

       𝐿𝐿𝑇𝑇 = 𝐸𝐸r∈𝑅𝑅 ��𝑇𝑇�𝑐𝑐(r) − 𝑇𝑇(r)�
1

+ �𝑇𝑇�𝑓𝑓(r) − 𝑇𝑇(r)�
1
�      (4) 

Where, 

• r: A ray in the rendering process. 
• 𝑇𝑇�𝑐𝑐(r) : The predicted transmittance for a coarse 

rendering of ray r. 
• 𝑇𝑇�𝑓𝑓(r): The predicted transmittance for a fine rendering 

of ray r. 
• 𝑇𝑇(r): The actual transmittance value for ray r, derived 

from the alpha channel of the ground truth renderings. 

Eq5. is specific to the rendering of 3D assets using SDF 
representation. It compares the rendered images of the 
reconstructed mesh generated by the SDF with the target 
RGBA renderings. The loss is computed using the L2 norm, 
which is the sum of the squared differences between the 
rendered mesh images and the target images, scaled by the 
square of the image resolution and the number of images. 

𝑲𝑲 = 𝟏𝟏
𝑵𝑵⋅𝒔𝒔𝟐𝟐

� ‖𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑(𝐌𝐌𝐑𝐑𝐌𝐌𝐌𝐌𝒊𝒊) − 𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐑𝐑𝒊𝒊‖𝟐𝟐𝟐𝟐
𝑵𝑵
𝒊𝒊=𝟏𝟏 + 𝑲𝑲𝐑𝐑𝐑𝐑𝐑𝐑 +

                                                     𝑲𝑲𝐓𝐓                                        (𝟓𝟓)                                                      

Where, 

• N: The number of images in the dataset used for training. 
• 𝑠𝑠: The image resolution, which is used to scale the loss. 

• Mesh𝑖𝑖: The mesh constructed from the SDF for sample 
𝑖𝑖. 

• Image𝑖𝑖: The target RGBA rendering for image 𝑖𝑖. 
• Render(𝑥𝑥): A function that renders a mesh 𝑥𝑥 using a 

differentiable renderer. 

Advantages 
Table 3 furnishes an appraisal of the encoder’s performance 
across distinct epochs of the training regimen. It scrutinizes 
two key indicators: the Peak Signal-to-Noise Ratio (PSNR) 
and the CLIP R-Precision [32] measure. These metrics serve 
to gauge the fidelity of 3D asset reconstructions generated by 
the encoder vis-à-vis the genuine reference renders. As Table 
1 exhibits, the efficacy of the encoder in crafting high-fidelity 
3D reconstructions progresses incrementally throughout the 
entire learning cycle. 

Table 3: Evaluating encoder [3] 

Stage NeRF 
PSNR/dB 

STF 
PSNR/dB 

NeRF 
Point-E 
CLIP R-
Precision 

STF 
Point-E 
CLIP R-
Precision 

Pre-
training 
(300K) 

33.2 - 44.3% - 

Pre-
training 
(600K) 

34.5 - 45.2% - 

Distillation 32.9 23.9 42.6% 41.1% 
Fine-
tuning 35.4 31.3 45.3% 44.0% 

a) Stage: This column delineates the specific juncture of 
the training progression: 
● Pre-training (300K): The preliminary phase where 

the encoder commences its education over 
300,000 iterative steps. 

● Pre-training (600K): A subsequent extension of 
the preparatory training up to 600,000 iterations. 

● Distillation Phase: A stage where the encoder 
assimilates distillation strategies to hone its 
predictive prowess. 

● Fine-tuning: The conclusive adjustment phase 
wherein the encoder parameters are meticulously 
adjusted for optimal compatibility with both NeRF 
and STF rendering techniques. 

b) NeRF PSNR/dB: Reflects the Peak Signal-to-Noise 
Ratio, expressed in decibels, pertaining to the NeRF 
rendering methodology. PSNR, a widely recognized 
standard, gauges the restoration quality of images or, in 
this context, synthesized 3D scenes; higher PSNR 
readings denote superior reconstruction. 

c) STF PSNR/dB: Denotes the PSNR relevant to the 
Signed Distance Function rendering approach, 
assessing how closely the regenerated 3D structures 
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align with the original regarding both form and textural 
detail. 

d) NeRF Point·E CLIP R-Precision: Presents the CLIP 
R-Precision score for the 3D assets once rendered using 
the NeRF method. Based on the CLIP model, this 

metric quantifies the extent to which the rendered 
visuals correspond to the textual characterizations of 
the 3D assets. 

 

Table 4. Comparison of Point-E, 3DGen and Shap-E. 

 Point-E 3DGen Shap-E 

Method 
Principle 

It creates 3D point clouds by first 
generating a synthetic view from 
text and then generating a point 
cloud based on that image using 

another model. 

A two-step pipeline is used, involving 
a triplane VAE to learn latent 

representations of textured meshes 
and a conditional diffusion model for 

generating triplane features. 

 
 

It is a conditional model for 3D 
assets, generating parameters of 

implicit functions for textured 
meshes or neural radiance 

fields. It employs a two-stage 
training with an encoder and a 

conditional diffusion model. 

Experiment 
Effects 

It can produce 3D models in 1-2 
minutes on a single GPU, offering 

a practical trade-off between 
speed and sample quality. 

It enables high-quality textured or 
untextured 3D mesh generation 

across diverse categories quickly 
and efficiently. 

It demonstrated the ability to 
generate complex and diverse 
3D assets quickly when trained 
on a large dataset of paired 3D 

and text data. 

Advantages 

Significantly faster sampling time 
compared to state-of-the-art 

methods, making it more 
accessible for some use cases. 

Outperforms previous work 
substantially in image-conditioned 
and unconditional generation on 

mesh quality and texture generation. 

It converges faster and achieves 
comparable or better sample 

quality than Point-E, a 
generative model over point 
clouds, despite modeling a 
higher-dimensional output 

space. 

Limitations 

The method still falls short of the 
state-of-the-art in terms of 

sample quality and requires 
synthetic renderings. 

The generality of the model is not 
yet on par with state-of-the-art image 
generation models, indicating room 

for improvement. 

The sample quality of Shap-E 
still falls short of optimization-

based approaches for text-
conditional 3D generation. 

Application 
Areas 

Suitable for applications where 
rapid generation of 3D content is 
more critical than achieving the 

highest quality. 

Game design, AR, and VR are 
potential application areas. 

Potential applications include 3D 
content creation for gaming, 
virtual reality, and industrial 

design. 

Future 
Research 
Directions 

Training 3D generators on real-
world images and extending the 
method to produce high-quality 
3D representations like meshes 

or NeRFs could be future 
directions. 

Closing the gap between the 
generality of 3DGen and state-of-
the-art image generation models, 
using 2D image datasets as weak 

supervision, or utilizing 2D 
generative models to aid 3D 

generation could be future research 
focuses. 

Combining Shap-E with 
optimization-based 3D 

generative techniques could lead 
to faster convergence and 
improved sample quality. 

 
e) STF Point·E CLIP R-Precision: Offers the CLIP R-

Precision value for the 3D assets after rendering them 
via the STF method. This score speaks to the degree of 
semantic correspondence between the recreated 
elements within the 3D shapes. 

The tabular data reveals a consistent enhancement in the 
encoder's proficiency transitioning from the early pre-
training to the fine-tuning stages for both NeRF and STF 
rendering modalities, as manifested by ascending PSNR 
values and CLIP R-Precision scores. Notably, however, the 
distillation phase appears to temporarily impede the NeRF 
reconstruction quality, as evidenced by a dip in both NeRF 
PSNR and CLIP R-Precision. Nevertheless, this setback is 
rectified and marginally exceeded during the final fine-

tuning stage. This method boasts several advantages. Firstly, 
it is capable of enhancing sample quality by employing 
guidance techniques in conditional diffusion models. 
Secondly, the latent diffusion model proposed by the author 
demonstrates the ability to generate samples in a continuous 
latent space, offering a versatile means of producing diverse 
outputs. Furthermore, the author's text-conditional Shap-E 
model surpasses comparable models in terms of CLIP R-
Precision and exhibits qualitatively distinct behavior for 
specific text prompts, highlighting the efficacy of their 
approach. Additionally, Shap-E boasts faster inference 
compared to Point-E as it does not necessitate an additional 
upsampling diffusion model, thus enhancing efficiency. 
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3. Comparative Analysis 

The three Models share a commonality in utilizing 
diffusion models for 3D generation, yet they diverge in 
their approach to latent space representation and 
conditioning (Table 4). Shap-E and 3DGen adopt 
implicit representations, whereas Point-E opts for point 
clouds. In terms of speed versus quality, Point-E 
prioritizes speed, making it apt for rapid prototyping or 
time-sensitive applications. Conversely, Shap-E and 
3DGen strive for a balance between the two. Textual 
conditioning is a focal point for Shap-E and Point-E, 
while 3DGen extends its capabilities to include image-
conditioned generation. Scalability is highlighted by 
3DGen, which demonstrates the potential of pre-training 
on vast datasets to enhance model generalizability.  

Looking ahead, all Models suggest that future 
research should explore the integration of larger 
datasets, the enhancement of model generality, and the 
improvement of texture generation. Additionally, the 
potential of combining these models with other 
generative techniques or leveraging 2D models for 3D 
generation is emphasized as a promising direction for 
further exploration. 

4. Conclusion 

The three Models present innovative approaches to 3D 
generative modeling, each leveraging diffusion models 
to varying extents. Shap-E introduces a two-stage model 
that generates high-dimensional, multi-representational 
outputs for 3D assets, excelling in sample quality and 
convergence speed. Point-E, on the other hand, 
prioritizes rapid generation of 3D point clouds from 
textual prompts, offering a practical trade-off between 
speed and detail. Lastly, 3DGen employs a triplane VAE 
and conditional diffusion model to achieve efficient and 
high-quality generation of textured meshes, 
demonstrating significant improvements over previous 
methods and showcasing the potential for scalability. 
Collectively, these works advance the field of 3D 
content creation, offering solutions for diverse 
applications ranging from gaming to virtual reality, 
while also identifying areas for future research to bridge 
the gap towards the versatility of state-of-the-art image 
generation models. 
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