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Abstract 
 
This paper explores recent advances in generative modeling, focusing on DDPMs, HighLDM, and Imagen. DDPMs utilize 
denoising score matching and iterative refinement to reverse diffusion processes, enhancing likelihood estimation and loss-
less compression capabilities. HighLDM breaks new ground with high-res image synthesis by conditioning latent diffusion 
on efficient autoencoders, excelling in tasks through latent space denoising with cross-attention for adaptability to diverse 
conditions. Imagen combines transformer-based language models with HD diffusion for cutting-edge text-to-image genera-
tion. It uses pre-trained language encoders to generate highly realistic and semantically coherent images, surpassing com-
petitors based on FID scores and human evaluations in DrawBench and similar benchmarks. The review critically examines 
each model's methods, contributions, performance, and limitations, providing a comprehensive comparison of their theoret-
ical underpinnings and practical implications. The aim is to inform future generative modeling research across various ap-
plications. 
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1. Introduction 
 
The field of generative modeling has seen remarkable ad-
vancements in recent years, particularly with the advent of 
sophisticated deep learning architectures and techniques 
that enable the synthesis of high-quality, intricate data sam-
ples. The diffusion models [1], constructed using a tiered 
arrangement of denoising autoencoder architectures, have 
demonstrated remarkable outcomes not only in image syn-
thesis [2,3] but also beyond [4,5,6,7], thus establishing the 
contemporary pinnacle in class-conditioned synthesis [8,9] 
and high-resolution [10] enhancement tasks. This review 
paper aims to provide a comprehensive analysis and com-
parative discussion of three pioneering models at the fore-
front of this revolution: Denoising Diffusion Probabilistic 
Models (DDPM) [11], High-Resolution Latent Diffusion 
Models (HighLDM) [12], and Imagen [13]. 
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Denoising Diffusion Probabilistic Models have emerged as 
a breakthrough innovation in the generative landscape, lev-
eraging principles from denoising score matching and 
Langevin dynamics to iteratively refine noise into realistic 
data points. DDPMs introduce novel parameterizations that 
ensure uniform input consistency during the reverse pro-
cess, effectively computing accurate log likelihoods for 
both continuous and discrete data. These models not only 
enhance the understanding of diffusion processes but also 
demonstrate potential for lossless compression through the 
integration of autoregressive components and Variational 
Autoencoders (VAEs). 
HighLDM represents a significant leap in synthesizing 
high-resolution images by strategically employing latent 
diffusion models conditioned on highly efficient pretrained 
autoencoders. By decomposing the image generation task 
into a series of denoising steps and diffusion processes, 
HighLDM achieves state-of-the-art performance in tasks 
such as image generation, inpainting, and super-resolution, 

EAI Endorsed Transactions on 
AI and Robotics 

| Volume 3 | 2024 |

https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:fangshun@pku.org.cn


 
S. Fang 

2 

all while minimizing computational requirements. Its 
unique strength lies in training diffusion models within a 
latent space, striking a balance between complexity reduc-
tion and detail retention, further augmented by cross-atten-
tion mechanisms that increase adaptability to diverse con-
ditioning inputs like text or bounding boxes. 
On the other hand, the Imagen framework introduces an in-
novative approach to text-to-image synthesis by integrating 
transformer-based language models with high-definition 
diffusion models. A key novelty in Imagen is its efficacious 
use of pre-trained language models to encode textual infor-
mation, leading to outstanding sample authenticity and 
alignment between generated images and their correspond-
ing descriptions. With its large-scale language model com-
ponents, Imagen attains impressive Frechet Inception Dis-
tance (FID) scores on datasets like COCO without direct 
fine-tuning, thereby demonstrating its capacity to create 
exceptionally detailed, photorealistic images tightly cou-
pled with linguistic inputs. Human evaluations on the 
DrawBench benchmark confirm Imagen's superiority over 
contemporaneous methods in terms of visual quality and 
semantic correspondence. 
Throughout this review, we will examine these models' un-
derlying methodologies, their contributions to the genera-
tive modeling domain, and the empirical results they yield. 
We will critically assess their strengths, limitations, and 
implications for future research directions, aiming to pro-
vide insights into how these cutting-edge techniques can 
inform and advance the development of generative models 
across various applications. The subsequent sections will 
thus delve deeply into the theoretical underpinnings, exper-
imental outcomes, and comparative analyses of DDPM, 
HighLDM, and Imagen. 

2. Methods 
 
We will delve into the fundamental principles and analyze 
the experimental outcomes of three pivotal generative 
models: DDPM, HighLDM, and Imagen. 

2.1 Denoising Diffusion Probabilistic Models 
 
Denoising Diffusion Probabilistic Models (DDPM) [11] 
introduce an innovative methodology for training a reverse 
process mean function estimator that aims at estimating ei-
ther ˜µt or ϵ, with experimental evidence suggesting supe-
rior outcomes when predicting ϵ in the early stages. In 
terms of data preprocessing, the method involves linear 
scaling of image information to guarantee uniform input 
consistency for the neural network's reverse phase, incor-
porating a discrete decoder to compute precise discrete log 
likelihoods. The research borrows from principles found in 
Langevin dynamics and denoising score matching, present-
ing a streamlined parameterization which simplifies the 
variational bound inherent in diffusion models. Moreover, 
the study explores leveraging autoregressive architectures 
alongside VAE decoders to guarantee lossless compression 

of discrete datasets. Additionally, the DDPM acknowl-
edges and relates to pertinent literature within the field, 
such as those concentrating on energy-based frameworks, 
generative modeling paradigms, and deep learning net-
works. To summarize, the DDPM significantly advances 
generative modeling methodologies by proposing a fresh 
parameterization strategy and examining its efficacy within 
the context of both diffusion models and variational con-
straints. 
The DDPM methodology introduces the concept of diffu-
sion probabilistic modeling, also referred to as diffusion 
frameworks, which are parameterized Markov chains 
trained via variational inference mechanisms. These mod-
els are designed to synthesize samples that closely align 
with the target data distribution following a certain dura-
tion of processing time. A notable benefit of these diffusion 
models lies in their training efficiency and ease of defini-
tion, rendering them highly amenable to straightforward 
implementation and optimization efforts. 
The research showcases the capacity of diffusion models to 
generate high-quality output samples, occasionally surpas-
sing the performance of alternative generative model archi-
tectures. Furthermore, a particular configuration of diffu-
sion models establishes an intriguing connection with de-
noising score matching techniques and annealed Langevin 
dynamics, thereby contributing to enhanced sample fidelity. 
Despite not attaining log likelihood scores on par with 
other likelihood-centric models, diffusion models exhibit 
considerable potential in generating superior quality sam-
ples. 
Of particular interest is the sampling process within diffu-
sion models, which can be viewed as a form of gradual de-
coding—a characteristic that amplifies their generative 
prowess beyond conventional autoregressive methodolo-
gies. In summary, the method's effectiveness in training, its 
capability to consistently produce high-quality samples, 
and its innovative sampling procedure collectively consti-
tute significant contributions and strengths of this proposed 
approach within the realm of generative modeling research. 
The neural architecture within the DDPM framework in-
volves training a reverse process mean function approxi-
mator, denoted by µθ, which targets the prediction of either 
˜µt or ϵ, and optionally can be adapted to estimate x0 as 
well. In terms of data normalization, it is ensured that im-
age data, originally encoded as integers spanning from 0 to 
255, undergoes linear transformation to a consistent input 
range. For attaining precise discrete log-likelihoods, a 
Gaussian-inspired discrete decoder is incorporated at the 
terminal stage of the reverse procedure, thus enabling loss-
less encoding of discrete information without necessitating 
supplementary noise injection or Jacobian corrections. 

𝑳𝑳𝒕𝒕−𝟏𝟏 = 𝔼𝔼𝒒𝒒 �
𝟏𝟏
𝟐𝟐𝝈𝝈𝒕𝒕𝟐𝟐

∥ 𝝁𝝁�𝒕𝒕(𝐱𝐱𝒕𝒕, 𝐱𝐱𝟎𝟎) − 𝝁𝝁𝜽𝜽(𝐱𝐱𝒕𝒕, 𝒕𝒕) ∥𝟐𝟐� + 𝑪𝑪 (𝟏𝟏) 

This equation represents a term in the variational bound of 
the diffusion model. Here, 𝑳𝑳𝒕𝒕−𝟏𝟏 is a part of the overall loss 
function that the model aims to minimize during training. 
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The expectation 𝔼𝔼𝒒𝒒  is taken with respect to the approxi-
mate posterior distribution 𝒒𝒒. The term inside the expecta-
tion represents the mean squared error between the forward 
process posterior mean 𝝁𝝁�𝒕𝒕(𝐱𝐱𝒕𝒕, 𝐱𝐱𝟎𝟎) and the reverse process 
mean 𝝁𝝁𝜽𝜽(𝐱𝐱𝒕𝒕, 𝒕𝒕), scaled by the inverse of twice the variance 
𝝈𝝈𝒕𝒕𝟐𝟐. The constant 𝑪𝑪 is a term that does not depend on the 
model parameters 𝜽𝜽 and can be ignored during optimiza-
tion. 

𝑳𝑳𝒕𝒕−𝟏𝟏 − 𝑪𝑪 = 𝔼𝔼𝐱𝐱𝟎𝟎,𝝐𝝐 �
𝟏𝟏
𝟐𝟐𝝈𝝈𝒕𝒕

𝟐𝟐 ∥∥
∥ 𝟏𝟏
�𝜶𝜶𝒕𝒕

�𝐱𝐱𝒕𝒕(𝐱𝐱𝟎𝟎, 𝝐𝝐) − 𝜷𝜷𝒕𝒕
�𝟏𝟏−𝜶𝜶�𝒕𝒕

𝝐𝝐� −

                             𝝁𝝁𝜽𝜽(𝐱𝐱𝒕𝒕(𝐱𝐱𝟎𝟎, 𝝐𝝐), 𝒕𝒕)∥∥
∥𝟐𝟐�                                  (2) 

Eq. (2) expands Eq. (1) by incorporating the reparameteri-
zation of the forward process. Here, 𝝐𝝐 is a noise term sam-
pled from a standard normal distribution, and𝐱𝐱𝒕𝒕(𝐱𝐱𝟎𝟎, 𝝐𝝐) rep-
resents the application of the forward process starting from 
𝐱𝐱𝟎𝟎 with noise 𝝐𝝐. The term 𝟏𝟏

�𝜶𝜶𝒕𝒕
 and �𝟏𝟏 − 𝜶𝜶�𝒕𝒕 are factors de-

rived from the diffusion process's time-dependent parame-
ters. This equation shows that the loss function can be ex-
pressed in terms of the data density gradient, which is a key 
concept in denoising score matching. 
The significance of Eq. (1) and Eq. (2) lies in their connec-
tion to denoising score matching, a technique used in en-
ergy-based models. By optimizing an objective similar to 
denoising score matching, the authors are able to train a 
diffusion model that can reverse the noise diffusion process 
and generate high-quality samples. This is achieved by 
learning the parameters 𝜽𝜽  of the reverse process mean 
function to predict the noise term 𝝐𝝐 given the current state 
𝐱𝐱𝒕𝒕 of the diffusion process. The model effectively learns to 
estimate the gradient of the data distribution, which is a 
powerful inductive bias for generative modeling.  
The learning algorithm engages gradient descent steps that 
are guided by the inferred gradient of the underlying data 
density, emulating the principles of Langevin dynamics in 
its approach. The sampling scheme comprises calculating 
xt−1 based on the predicted ϵ and stochastic perturbations, 
effectively implementing a multi-scale version of de-
noising score matching. This holistic methodology amal-
gamates core concepts from diffusion models, denoising 
autoencoder methodologies, and variational inference tech-
niques to drive advancements in generative modeling prac-
tices. 

𝝁𝝁𝜽𝜽(𝐱𝐱𝒕𝒕, 𝒕𝒕) = 𝝁𝝁�𝒕𝒕 �𝐱𝐱𝒕𝒕,
𝟏𝟏

�𝜶𝜶�𝒕𝒕
�𝐱𝐱𝒕𝒕 − �𝟏𝟏 − 𝜶𝜶�𝒕𝒕𝝐𝝐𝜽𝜽(𝐱𝐱𝒕𝒕)��

=
𝟏𝟏

�𝜶𝜶𝒕𝒕
�𝐱𝐱𝒕𝒕 −

𝜷𝜷𝒕𝒕
�𝟏𝟏 − 𝜶𝜶�𝒕𝒕

𝝐𝝐𝜽𝜽(𝐱𝐱𝒕𝒕, 𝒕𝒕)� (𝟑𝟑)

 

Eq. (3) defines the mean function of the reverse process, 
which is a key component of the diffusion model. The func-
tion 𝝁𝝁𝜽𝜽  is the model's parameterized mean, which is de-
signed to predict the denoised version of the data given the 
current state 𝐱𝐱𝒕𝒕 and time step 𝒕𝒕. The term 𝝁𝝁�𝒕𝒕 represents the 
mean of the forward process posterior, and 𝝐𝝐𝜽𝜽 is a function 
approximator that predicts the noise 𝜽𝜽 added during the 

diffusion process. The parameters 𝜶𝜶�𝒕𝒕 and 𝜷𝜷𝒕𝒕 are related to 
the noise schedule of the diffusion process. This equation 
essentially captures the idea that the model should learn to 
reverse the noise accumulation process to recover the orig-
inal data distribution. 

𝔼𝔼𝐱𝐱𝟎𝟎,𝝐𝝐 �
𝜷𝜷𝒕𝒕
𝟐𝟐

𝟐𝟐𝝈𝝈𝒕𝒕
𝟐𝟐𝜶𝜶𝒕𝒕(𝟏𝟏−𝜶𝜶�𝒕𝒕) ∥

∥𝝐𝝐 − 𝝐𝝐𝜽𝜽��𝜶𝜶�𝒕𝒕𝐱𝐱𝟎𝟎 + �𝟏𝟏 − 𝜶𝜶�𝒕𝒕𝝐𝝐, 𝒕𝒕�∥∥
𝟐𝟐
�     (4) 

Eq. (4) further refines the loss function by incorporating the 
noise term 𝝐𝝐 and the parameters of the diffusion process. It 
represents the expected squared difference between the ac-
tual noise and the model's prediction of the noise, scaled by 
the variance 𝝈𝝈𝒕𝒕𝟐𝟐 and the noise schedule parameters 𝜷𝜷𝒕𝒕 and 
𝜶𝜶�𝒕𝒕. The term 𝜶𝜶𝒕𝒕 is a function of the noise schedule that de-
termines the rate at which noise is added to the data. This 
equation is similar to the denoising score matching objec-
tive, where the goal is to minimize the difference between 
the predicted noise and the actual noise that was added to 
the data. By optimizing this objective, the model learns to 
reverse engineer the noise diffusion process, thereby learn-
ing to generate data that matches the original distribution. 

𝑳𝑳𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬(𝜽𝜽) ≔ 𝔼𝔼𝒕𝒕,𝐱𝐱𝟎𝟎,𝝐𝝐 �∥∥𝝐𝝐 − 𝝐𝝐𝜽𝜽��𝜶𝜶�𝒕𝒕𝐱𝐱𝟎𝟎 +

                                    �𝟏𝟏 − 𝜶𝜶�𝒕𝒕𝝐𝝐, 𝒕𝒕�∥∥
𝟐𝟐
�                               (5) 

Eq. (5) represents a simplified version of the variational 
bound used for training the diffusion model, referred to as 
𝑳𝑳𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 . It is a key component of the model's objective 
function, which the authors aim to minimize during the 
training process. 
Here's a breakdown of the components within the equation: 
 𝑳𝑳𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬(𝜽𝜽): This is the simplified loss function for the dif-

fusion model, dependent on the model parameters 𝜽𝜽. 
 𝔼𝔼𝒕𝒕,𝐱𝐱𝟎𝟎,𝝐𝝐 : This denotes the expectation taken over the 

random variables 𝒕𝒕  (time step), 𝐱𝐱𝟎𝟎  (the initial data 
point), and 𝝐𝝐 (noise). 

 𝝐𝝐: This is the noise term from the diffusion process. 
 𝝐𝝐𝜽𝜽: This is the model's parameterized prediction of the 

noise term 𝝐𝝐, given the data point 𝐱𝐱𝟎𝟎 and the noise 𝝐𝝐 
at time step 𝒕𝒕. 

 �𝜶𝜶�𝒕𝒕: This term is related to the noise schedule of the 
diffusion process and scales the initial data point 𝐱𝐱𝟎𝟎. 

 �𝟏𝟏 − 𝜶𝜶�𝒕𝒕: This term also relates to the noise schedule 
and scales the noise 𝝐𝝐. 

 𝒕𝒕: This is the time step in the diffusion process, and 
the expectation is taken over a uniform distribution 
between 1 and 𝐓𝐓, where 𝐓𝐓 is the total number of time 
steps in the diffusion process. 

The essence of Eq. (5) is to minimize the mean squared er-
ror between the actual noise 𝝐𝝐 added to the data during the 
diffusion process and the noise predicted by the model 𝝐𝝐𝜽𝜽. 
By optimizing this loss function, the model learns to re-
verse the diffusion process effectively, which means it 
learns to generate high-quality samples that match the orig-
inal data distribution. 
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The research delves into data rescaling, applying it such 
that image data is consistently scaled for neural network 
processing. This involves using a discrete decoder de-
signed from a Gaussian distribution to accurately derive 
discrete log likelihoods and ensure lossless encoding 
lengths for discrete data items. The learning process is gov-
erned by gradient descent steps informed by the estimated 
gradient of the data density, echoing the iterative nature of 
Langevin dynamics. 

𝐱𝐱𝟎𝟎 ≈ 𝐱𝐱�𝟎𝟎 =
�𝐱𝐱𝒕𝒕 − �𝟏𝟏 − 𝜶𝜶�𝒕𝒕𝝐𝝐𝜽𝜽(𝐱𝐱𝒕𝒕)�

�𝜶𝜶�𝒕𝒕
(𝟔𝟔) 

Eq. (6) describes the progressive estimation of the original 
data point 𝐱𝐱�𝟎𝟎 in the context of the reverse process of the 
diffusion model. This equation is used to reconstruct the 
data point 𝐱𝐱𝟎𝟎 from the sequence of noisy points 𝐱𝐱𝒕𝒕 gener-
ated by the model during the reverse process. The recon-
struction is done progressively, starting from the final point 
𝐱𝐱𝑻𝑻 and working backwards towards the original point 𝐱𝐱𝟎𝟎. 
 𝐱𝐱�𝟎𝟎: This is the estimated or reconstructed version of 

the original data point. 
 𝐱𝐱𝒕𝒕: This represents the noisy version of the data point 

at each time step 𝒕𝒕 in the reverse process. 
 �𝟏𝟏 − 𝜶𝜶�𝒕𝒕: This term is related to the noise schedule of 

the diffusion process and scales the function approxi-
mator's output 𝝐𝝐𝜽𝜽(𝐱𝐱𝒕𝒕). 

 𝝐𝝐𝜽𝜽(𝐱𝐱𝒕𝒕): This is the model's parameterized prediction 
of the noise term at each time step 𝒕𝒕. 

 �𝜶𝜶�𝒕𝒕: This term scales the reconstructed data point 𝐱𝐱�𝟎𝟎 
by the inverse of the square root of 𝜶𝜶�𝒕𝒕 , which is a 
function of the noise schedule. 

 Eq. (6) effectively calculates a running total of the noisy 
data points, with each point being denoised as it is included 
in the sum. This progressive approach allows for the gen-
eration of data that starts from a highly noisy state and 
gradually becomes clearer as more information from the 
reverse process is incorporated. 

𝑳𝑳 = 𝑫𝑫𝐊𝐊𝐊𝐊�𝒒𝒒(𝐱𝐱𝑻𝑻) ∥ 𝒑𝒑(𝐱𝐱𝑻𝑻)� + 𝔼𝔼𝒒𝒒�∑  𝒕𝒕≥𝟏𝟏 𝑫𝑫𝐊𝐊𝐊𝐊�𝒒𝒒(𝐱𝐱𝒕𝒕−𝟏𝟏|𝐱𝐱𝒕𝒕) ∥

                                 𝒑𝒑𝜽𝜽(𝐱𝐱𝒕𝒕−𝟏𝟏|𝐱𝐱𝒕𝒕)�� + 𝑯𝑯(𝐱𝐱𝟎𝟎)                      (7) 

 𝑫𝑫𝐊𝐊𝐊𝐊�𝒒𝒒(𝐱𝐱𝑻𝑻) ∥ 𝒑𝒑(𝐱𝐱𝑻𝑻)� : This is the Kullback-Leibler 
(KL) divergence between the final distribution  𝒒𝒒(𝐱𝐱𝑻𝑻) 
and the true data distribution 𝒑𝒑(𝐱𝐱𝑻𝑻) . This term 
measures the difference between the noise distribu-
tion at the end of the diffusion process and the actual 
noise distribution.  

 𝔼𝔼𝒒𝒒�∑  𝒕𝒕≥𝟏𝟏 𝑫𝑫𝐊𝐊𝐊𝐊�𝒒𝒒(𝐱𝐱𝒕𝒕−𝟏𝟏|𝐱𝐱𝒕𝒕) ∥ 𝒑𝒑𝜽𝜽(𝐱𝐱𝒕𝒕−𝟏𝟏|𝐱𝐱𝒕𝒕)�� : This is 
the expected value, taken under the distribution 𝒒𝒒, of 
the sum of KL divergences between the approximate 
posterior 𝒒𝒒(𝐱𝐱𝒕𝒕−𝟏𝟏|𝐱𝐱𝒕𝒕) and the reverse process distribu-
tion 𝒑𝒑𝜽𝜽(𝐱𝐱𝒕𝒕−𝟏𝟏|𝐱𝐱𝒕𝒕) at each time step. This term encour-
ages the model to learn the reverse process that can 
effectively undo the noise added by the diffusion pro-
cess. 

 𝑯𝑯(𝐱𝐱𝟎𝟎): This is the entropy of the original data distri-
bution, which is a measure of the uncertainty in the 
data. 

The goal during training is to minimize this variational 
bound, which effectively trains the model to generate data 
that is similar to the true data distribution. By optimizing 
this objective, the model learns to reverse the diffusion pro-
cess by learning to predict the noise that was added to the 
data at each time step and gradually removing it to recover 
the original, noise-free data. 
The sampling methodology consists of calculating xt−1 
based on the predicted ϵ and stochastic noise variables, 
mimicking a multi-scale application of denoising score 
matching principles. Ultimately, the DDPM consolidates 
critical aspects from diffusion models, denoising autoen-
coders, and variational inference methodologies to propel 
advancements in generative modeling techniques. 
 
Table 1. this table presents a comparison of the FID 

scores for different models on the LSUN dataset, 
which is a large-scale image dataset designed for 

testing the performance of generative models. 
 

Model LSUN 
Church 

LSUN 
Cat 

LSUN 
Bedroom 

DDPM 7.89 19,75 6.36 
DDPM(Large) - - 4.90 
StyleGAN [14] 4.21 8.53 2.65 
StyleGAN2 [15] 3.86 6.93 - 
ProgressiveGAN 

[16] 6.42 37.52 8.34 

The header of Table 1 includes Model, LSUN Bedroom, 
LSUN Church, and LSUN Cat. The “Model” column lists 
the names of the different generative models under com-
parison. The columns for “LSUN Bedroom”, “LSUN 
Church” and “LSUN Cat” represent the FID scores 
achieved by the respective models on three different sub-
sets of the LSUN dataset: Bedroom, Church, and Cat. The 
FID score is a measure of the quality of the generated im-
ages; a lower FID score indicates better performance, i.e., 
the generated images are more similar to the real images in 
the dataset. 
Table 1 includes the following models and their corre-
sponding FID scores: 
ProgressiveGAN: A GAN-based model that generates im-
ages progressively, starting from a low-resolution version 
and refining it step by step. The FID scores for Progressive-
GAN on the Bedroom, Church, and Cat subsets are 8.34, 
6.42, and 37.52, respectively. 
StyleGAN: A variant of GAN that uses a style-based gen-
erator architecture. The FID scores for StyleGAN are not 
provided in the table, but the paper refers to the scores re-
ported in the StyleGAN paper as baselines (4.21 for Church 
and 8.53 for Cat). 

EAI Endorsed Transactions on 
AI and Robotics 

| Volume 3 | 2024 |



 A Survey of Data-Driven 2D Diffusion Models for Generating Images from Text 
 
 
 

5 

StyleGAN2: An improved version of StyleGAN with bet-
ter image quality and stability. The FID scores for Style-
GAN2 on the Bedroom and Church subsets are 3.86 and 
6.93, respectively. 
DDPM: This refers to the diffusion model proposed in the 
paper using the simplified training objective. The FID 
scores for this model on the Bedroom, Church, and Cat sub-
sets are 6.36, 7.89, and 19.75, respectively. 
DDPM, large: This is a larger variant of the diffusion 
model with more parameters, trained specifically on the 
Bedroom subset. The FID score for this model is 4.90, in-
dicating improved performance over the smaller version. 
The table demonstrates that the proposed diffusion model 
achieves competitive or superior FID scores compared to 
existing models like ProgressiveGAN and StyleGAN2, 
particularly on the Bedroom and Church datasets. This sug-
gests that the diffusion model is effective in generating 
high-quality images that closely resemble the real images 
in the LSUN dataset. 
The hyperparameter optimization routine entailed fine-tun-
ing for sample quality on CIFAR10 and subsequently 
transferring these optimized configurations to alternative 
datasets. A variety of hyperparameters underwent calibra-
tion, such as the βt schedule, dropout ratio, data enhance-
ment strategies like random flipping along the horizontal 
axis, and the selection of the optimization technique – 
Adam being the choice made. In most experimental set-
tings, the learning rate was fixed at 2 × 10^-4, while for 
experiments dealing with 256 by 256 pixel images, a lower 
rate of 2 × 10^-5 was adopted. 
 
2.2 High-Resolution Latent Diffusion Models 
 
High-Resolution Latent Diffusion Models (HighLDM) [12] 
introduce an innovative technique for image synthesis 
through the strategic utilization of Latent Diffusion Models 
(LDMs) which have been conditioned on highly effective 
pretrained autoencoders. By fractionating the process of 
image construction into denoising autoencoder compo-
nents and diffusion modeling, this HighLDM has accom-
plished unprecedented results in generating high-resolution 
images, inpainting, super-resolution tasks, among others, 
concurrently reducing computational needs significantly. 
The pivotal novelty is encapsulated in training the diffusion 
models within a latent space, thereby facilitating an equi-
librium between complexity minimization and intricate de-
tail retention. 
Moreover, the integration of cross-attention mechanisms 
amplifies the adaptability of LDMs when subjected to var-
ious conditioning inputs such as textual descriptions or 
bounding box constraints, culminating in strong competi-
tive outcomes across different synthesis scenarios. Not 
only does the HighLDM delve deeply into the intricacies 
of model architectural design and the underlying learning 
strategy, but it also furnishes pretrained instances that ex-
tend its applicability beyond the confines of mere image 
synthesis problems. 

The presented methodology introduces LDMs that capital-
ize on the latent dimensions of robustly pretrained autoen-
coders to generate high-quality images with minimized 
computational expenses (Figure 1). By partitioning the im-
age generation process and integrating cross-attention 
modules within its design, LDMs facilitate meticulous con-
trol over synthesis without necessitating retraining, thereby 
achieving a near-optimal equilibrium between complexity 
minimization and fine detail retention. This strategy sub-
stantially enhances visual authenticity, thus attaining top-
tier performance across applications like image restoration, 
class-controlled image creation, text-guided image synthe-
sis, unconditional image generation, and super-resolution 
enhancement. 
Moreover, LDMs exhibit strong competitiveness across 
multiple datasets while diminishing both training and in-
ference costs in comparison to pixel-wise diffusion models. 
Additionally, the adoption of a versatile conditioning 
mechanism rooted in cross-attention enables multi-modal 
learning for diverse tasks including class-conditioned, text-
driven, and layout-based image synthesis, further high-
lighting the flexibility and efficacy of this proposed tech-
nique. 
The proposed technique introduces LDMs that capitalize 
on the latent dimensions of advanced pretrained autoencod-
ers to facilitate high-resolution image synthesis while min-
imizing computational demands. By disassembling the im-
age construction process and incorporating cross-attention 
mechanisms within its structural design, LDMs allow for 
meticulous control over image generation without necessi-
tating retraining, thereby achieving a nearly ideal equilib-
rium between complexity minimization and fine detail con-
servation. This methodology substantially bolsters visual 
accuracy, thus enabling leading-edge performance in appli-
cations such as image completion, class-guided image syn-
thesis, text-to-image translation, unconditional image crea-
tion, and super-resolution enhancement. 
Furthermore, LDMs exhibit strong competitiveness across 
numerous datasets while simultaneously reducing both the 
training overhead and inference expenses when compared 
with pixel-level diffusion models. Additionally, the de-
ployment of a broadly applicable conditioning system 
based on cross-attention supports multi-modal learning 
scenarios in tasks like conditional image synthesis based on 
classes, texts, or layouts, further underscoring the adapta-
bility and robustness of this presented method. 
LDMs introduce a novel technique for synthesizing high-
resolution images by harnessing diffusion processes within 
the latent dimensions of pre-trained autoencoders, thus 
striking a balance between complexity minimization and 
maintaining fine details. This methodology is characterized 
by a dual-phase training regimen: initially, an autoencoder 
is trained to create a reduced-dimensional yet perceptually 
congruent representation, followed by the training of diffu-
sion models within this space, which are then referred to as 
LDMs. 
Diffusion Models (DMs) are probabilistic frameworks that 
progressively denoise a Gaussian-distributed variable in 
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order to learn a given data distribution, with successful it-
erations often relying on cascades of denoising autoencod-
ers. The LDMs employ a time-variant UNet architecture at 

their core to facilitate efficient image generation directly 
from the latent domain. Conditional control mechanisms 
are integrated into these models, allowing them to respond  

 
Figure 1. Overview of HighLDM [12] 

 
to inputs like text descriptions or semantic maps, thereby 
enhancing the versatility of LDMs as conditional image 
generators. 
The HighLDM approach centers around the strategic train-
ing of LDMs within a latent space, aiming to optimize com-
putational efficiency and maintain fidelity to fine details. It 
particularly underscores the application of various condi-
tioning mechanisms to guide the conditional synthesis of 
images, showcasing the enhanced capabilities of LDMs in 
this context. 
The strategy involves training diffusion models within the 
latent realm of pretrained autoencoders, striking a balance 
between complexity minimization and maintaining intri-
cate details. The process commences with teaching an au-
toencoder to construct a dimensionally reduced yet percep-
tually equivalent domain, succeeded by the education of 
diffusion models within this reduced space. LDMs utilize 
a time-dependent UNet framework as their core structure 
for generating images effectively from the latent level, in-
corporating conditioning mechanisms that regulate the syn-
thesis procedure according to inputs such as textual de-
scriptions or semantic layouts. 
Conditioning signals are integrated into the UNet through 
a cross-attention mechanism, enabling multimodal learning 
and supporting tasks like class-specific image generation, 
text-to-image conversion, and layout-to-image transfigura-
tion. The UNet's foundational architecture is primarily 
composed of two-dimensional convolutional layers, focus-
ing on the most perceptually significant features using a re-
weighted boundary constraint. Furthermore, it encom-
passes a shallow transformer layering self-attention mod-
ules, position-wise multilayer perceptrons, and cross-atten-
tion layers specifically designed for conditioning purposes. 

This model design facilitates both efficient image creation 
and versatile conditioning methodologies for diverse tasks, 
demonstrating competitive performance across multiple 
image synthesis challenges while significantly curtailing 
computational expenses. 
The optimization criterion incorporates the training of dif-
fusion models within the latent domain of pretrained auto-
encoders for high-resolution image generation. The strat-
egy targets computational efficiency by dividing the learn-
ing process into distinct compressive and generative stages. 
The perceptual compression module relies on an autoen-
coder that has been tutored using a hybrid loss function 
composed of perceptual metrics and patch-wise adversarial 
goals, ensuring lifelike reconstructions and mitigating blur-
riness. 

𝑳𝑳𝑫𝑫𝑫𝑫 = 𝔼𝔼𝒙𝒙,𝝐𝝐∼𝓝𝓝(𝟎𝟎,𝟏𝟏),𝒕𝒕�∥ 𝝐𝝐 − 𝝐𝝐𝜽𝜽(𝒙𝒙𝒕𝒕, 𝒕𝒕) ∥𝟐𝟐𝟐𝟐� (𝟖𝟖) 

Eq. (8) represents the loss function for the latent diffusion 
model (LDM). It is an expectation over the noise variable 
𝝐𝝐 drawn from a standard normal distribution, the denoised 
sample 𝝐𝝐𝜽𝜽(𝒙𝒙𝒕𝒕, 𝒕𝒕) at time step 𝒕𝒕 and the initial data sample 
𝒙𝒙. The loss is calculated as the mean squared error between 
the noise 𝝐𝝐 and the denoised sample 𝝐𝝐𝜽𝜽(𝒙𝒙𝒕𝒕, 𝒕𝒕). This loss 
function is used to train the model to reverse the diffusion 
process and synthesize high-resolution images. The varia-
ble T denotes the total number of time steps in the diffusion 
process. 

𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 ≔ 𝔼𝔼𝓔𝓔(𝒙𝒙),𝝐𝝐∼𝓝𝓝(𝟎𝟎,𝟏𝟏),𝒕𝒕�∥ 𝝐𝝐 − 𝝐𝝐𝜽𝜽(𝒛𝒛𝒕𝒕, 𝒕𝒕) ∥𝟐𝟐𝟐𝟐� (𝟗𝟗) 
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Eq. (9) is a variant of Formula 1, where the loss is com-
puted in the latent space after the encoder 𝔼𝔼 has been ap-
plied to the data. Here, 𝒛𝒛𝒕𝒕 represents the latent representa-
tion of the data at time step 𝒕𝒕. The encoder 𝔼𝔼 compresses 
the high-dimensional image data into a lower-dimensional 
latent representation, which is then used by the diffusion 
model 𝝐𝝐𝜽𝜽 to generate the denoised samples. This formula-
tion allows the model to focus on the semantic and struc-
tural information in the data, rather than the high-frequency 
details that may not be perceptually significant. 

𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 ≔ 𝔼𝔼𝓔𝓔(𝒙𝒙),𝒚𝒚,𝝐𝝐∼𝓝𝓝(𝟎𝟎,𝟏𝟏),𝒕𝒕�∥ 𝝐𝝐 − 𝝐𝝐𝜽𝜽�𝒛𝒛𝒕𝒕, 𝒕𝒕, 𝝉𝝉𝜽𝜽(𝒚𝒚)� ∥𝟐𝟐𝟐𝟐� (𝟏𝟏𝟏𝟏) 

Eq. (10) extends the loss function to incorporate condition-
ing on an input 𝒚𝒚, which can be text, semantic maps, or 
other forms of guidance. The term 𝝉𝝉𝜽𝜽(𝒚𝒚) represents a con-
ditioning mechanism that maps the input 𝒚𝒚 to an interme-
diate representation that is used by the diffusion model 𝝐𝝐𝜽𝜽. 
This allows the LDM to generate images that are not only 
high-resolution and perceptually realistic but also aligned 
with the specific context or content specified by 𝒚𝒚. This 
conditional loss function enables the model to perform 
tasks such as text-to-image synthesis, where the generated 
images are guided by textual descriptions. 
The autoencoder networks are adversarially fine-tuned 
with constraints imposed on the latent manifold to preserve 
low variance and yield high-quality reconstructions. When 
it comes to training diffusion models in the latent space, 
two distinctive scenarios are identified based on different 
regularization techniques: one involving KL-divergence 
regularization in the latent realm and another leveraging 
Vector Quantization (VQ) regularization. In the scenario 
where KL-regularization is employed, sampling takes 
place according to the mean and standard deviation within 
the latent field; conversely, in the VQ-regularized case, the 
quantization step is integrated directly into the decoding 
phase. 

𝑳𝑳Autoencoder& = 𝒎𝒎𝒎𝒎𝒎𝒎
𝓔𝓔,𝓓𝓓

 𝒎𝒎𝒎𝒎𝒎𝒎
𝝍𝝍

 �𝑳𝑳𝒓𝒓𝒓𝒓𝒓𝒓 �𝒙𝒙,𝓓𝓓�𝓔𝓔(𝒙𝒙)�� −

   𝑳𝑳𝒂𝒂𝒂𝒂𝒂𝒂 �𝓓𝓓�𝓔𝓔(𝒙𝒙)�� + 𝐥𝐥𝐥𝐥𝐥𝐥 𝑫𝑫𝝍𝝍(𝒙𝒙) + 𝑳𝑳𝒓𝒓𝒓𝒓𝒓𝒓(𝒙𝒙;𝓔𝓔,𝓓𝓓)�       
(11) 

Eq. (11) represents the full objective function for training 
the autoencoder model, which is a critical component in the 
proposed LDMs. The autoencoder consists of an encoder 𝓔𝓔 
and a decoder 𝓓𝓓. 
 𝑳𝑳𝒓𝒓𝒓𝒓𝒓𝒓 �𝒙𝒙,𝓓𝓓�𝓔𝓔(𝒙𝒙)��: This term represents the recon-

struction loss, which measures the difference between 
the original input image 𝒙𝒙 and the reconstructed im-
age 𝓓𝓓�𝓔𝓔(𝒙𝒙)�. The reconstruction loss encourages the 
decoder 𝓓𝓓 to produce outputs that are as close as pos-
sible to the original images. 

 𝑳𝑳𝒂𝒂𝒂𝒂𝒂𝒂 �𝓓𝓓�𝓔𝓔(𝒙𝒙)��: This term is the adversarial loss, 
where the decoder 𝓓𝓓 is encouraged to generate im-
ages that can fool a discriminator 𝝍𝝍. The discrimina-
tor is trained to distinguish between real images and 

the reconstructed images produced by the decoder. 
This adversarial training helps to improve the quality 
and realism of the reconstructed images. 

 𝐥𝐥𝐥𝐥𝐥𝐥 𝑫𝑫𝝍𝝍(𝒙𝒙): This term is the log-likelihood of the dis-
criminator's output when given a real image 𝒙𝒙. It en-
courages the discriminator 𝝍𝝍 to output high probabil-
ity for real images, which is a standard component in 
adversarial training. 

 𝑳𝑳𝒓𝒓𝒓𝒓𝒓𝒓(𝒙𝒙;𝓔𝓔,𝓓𝓓): This term is the regularization loss, 
which is used to control the variance of the latent 
space. The regularization can be achieved through 
different methods, such as a small weighted KL diver-
gence from the latent distribution to a standard normal 
distribution (as in a variational autoencoder) or 
through the use of a vector quantization layer. The 
regularization helps to ensure that the latent space is 
meaningful and does not contain excessively high-
variance representations that could lead to overfitting 
or poor image quality. 

The overall objective function is minimized over the en-
coder and decoder parameters, while simultaneously max-
imizing the adversarial loss (hence the min-max formula-
tion). This results in an autoencoder model that can effec-
tively compress and reconstruct images, with the additional 
benefit of being robust to adversarial examples. The auto-
encoder is a key part of the LDM framework, as it provides 
the latent space in which the diffusion process takes place, 
leading to high-resolution and high-fidelity image synthe-
sis. 
In summary, the loss function integrates reconstruction er-
ror terms, adversarial losses, regularization components, 
and tailored sampling methodologies that align with the 
specific characteristics of the latent space, all contributing 
to efficient and effective image synthesis processes. 
 
Table 2. Quantitative comparison of the layout-to-im-

age models on the COCO and OpenImages da-
tasets 

 

Method 

Open-
Images 
𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 

Open-
Images 
𝟓𝟓𝟓𝟓𝟓𝟓𝟐𝟐 

COCO 
𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 

FID FID FID 
LDM-8(100 

steps) - - 42.06 

LDM-4(200 
steps) 32.02 35.80 40.91 

VQGAN+T [17] 45.33 48.11 56.58 
SPADE [18] - - 41.11 

OC-GAN [19] - - 41.65 
LostGAN-V2 

[20] - - 42.55 

Table 2 presents a quantitative comparison of layout-to-im-
age models on the COCO and OpenImages datasets. The 
table provides a detailed analysis of the performance of dif-
ferent models in generating images from layout inputs, 
which typically consist of bounding boxes and categories 
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that describe the content and arrangement of objects within 
an image.  
Method: This column lists the different models that have 
been evaluated for layout-to-image synthesis. The models 
include LostGAN-V2, OC-GAN, SPADE, VQGAN+T, 
and the proposed LDM-8 and LDM-4 from the paper, 
along with their respective configurations (e.g., the number 
of steps for training and whether they were fine-tuned from 
OpenImages or trained from scratch on COCO). 
FID: This column shows the FID (Fréchet Inception Dis-
tance) scores for each model. FID is a metric used to eval-
uate the quality of generated images by comparing them to 
real images using the Inception network. A lower FID 
score indicates better performance, as it suggests the gen-
erated images are more similar to real images. 
IS: This column displays the Inception Score (IS) for each 
model. IS is another metric that measures the quality of 
generative models by assessing the diversity and faithful-
ness of the generated images. A higher IS score indicates 
better performance. 
Precision: This column presents the Precision scores for 
the models. Precision measures the proportion of generated 
images that are relevant to the input layout, out of all the 
images generated by the model. 
Recall: This column shows the Recall scores for the mod-
els. Recall measures the proportion of relevant images that 
were generated, out of all the images that should have been 
generated based on the input layout. 
Nparams: This column indicates the number of trainable 
parameters in millions for each model. 
Table 2 highlights the performance of the proposed LDM 
models (LDM-8 and LDM-4) in comparison to other state-
of-the-art models. It shows that the LDM models are able 
to achieve competitive performance in layout-to-image 
synthesis, with LDM-8 and LDM-4 outperforming or 
matching the results of other models like LostGAN-V2, 
OC-GAN, SPADE, and VQGAN+T. This demonstrates 
the effectiveness of the LDM approach in generating high-
quality and diverse images from layout descriptions. 
 
2.3 Imagen 
 
The Imagen [13] framework introduces an innovative text-
to-image generative model, which harnesses the power of 
expansive transformer-based language models in tandem 
with high-definition diffusion models to attain photorealis-
tic image synthesis deeply rooted in linguistic comprehen-
sion. The pivotal novelty of Imagen is encapsulated by its 
efficient utilization of pre-trained language models for en-
coding textual inputs aimed at image creation, thus demon-
strating superior capabilities in both sample authenticity 
and the alignment between images and their corresponding 
texts. 
By scaling up the dimensions of its language model com-
ponents, Imagen attains unprecedented FID scores on the 
COCO dataset without undergoing direct training on it, 
thereby illustrating its outstanding capacity to generate im-
ages of exceptional quality that are tightly coupled with the 
given text descriptions. In the DrawBench benchmark—a 

holistic assessment tool for evaluating text-to-image gen-
eration models—Imagen surpasses several recent method-
ologies in terms of human-judged sample excellence and 
the congruence between generated images and input text. 
A critical breakthrough in Imagen's design is the strategic 
and effective application of large-scale, pretrained lan-
guage architectures like T5 for text representation during 
image synthesis, which demonstrates superior results with 
respect to sample authenticity and the harmony between 
images and their corresponding textual descriptions. More-
over, the study underscores the importance of adaptive 
thresholding techniques and judicious architectural selec-
tions in the U-Net structure, which are instrumental in fos-
tering the generation of more realistic and intricate images. 
In essence, Imagen's core strengths can be attributed to its 
adept employment of sizeable frozen language models as 
powerful text transformers, the incorporation of dynamic 
threshold controls for elevated image fidelity, and the es-
tablishment of a robust evaluation framework for assessing 
text-to-image generative models, all of which vividly 
demonstrate its innovative strides and advancements 
within the discipline of text-guided image synthesis. 
In summary, Imagen underscores the critical role played by 
large-scale, frozen pre-trained language models as highly 
effective text encoders in the realm of text-to-image syn-
thesis. It emphasizes the significance of scaling such lan-
guage models to enhance overall performance and serves 
as a catalyst for further investigation along this research 
pathway. 
The proposed approach outlines several core components 
and stages in the Imagen text-to-image diffusion frame-
work. To begin with, Imagen employs a sequential process 
that starts with a foundational 64×64 model followed by 
two progressive, text-conditioned super-resolution diffu-
sion models, capable of incrementally upgrading image 
resolution to dimensions such as 256×256 and 1024×1024. 
This is accomplished by leveraging cascaded diffusion ar-
chitectures augmented with noise conditioning to generate 
high-quality images. 
In terms of its neural network design, Imagen adopts an ad-
justed U-Net structure that conditions on text embeddings 
using a pooled embedding vector and cross-attention mech-
anisms applied across multiple scales of text embeddings. 
Layer Normalization is integrated into both the attention 
and pooling layers for processing these text embeddings. 
An innovative feature incorporated within the method is 
dynamic thresholding, which adjusts pixel values during 
sampling to prevent saturation and thereby enhance the 
photorealism and alignment between generated images and 
their corresponding texts, particularly when employing 
large guidance weights. 
Furthermore, Imagen introduces a tailored variant of the U-
Net architecture, branded Efficient U-Net, specifically de-
signed for its super-resolution modules. This variant incor-
porates modifications like relocating model parameters to 
low-resolution blocks, resizing skip connections, and re-
versing the order of downscaling/upscaling operations to 
optimize computational speed and memory efficiency. 
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In summary, the Imagen methodology combines these in-
ventive features to deliver unprecedented levels of high-fi-
delity text-to-image synthesis, characterized by remarkable 
photorealism and tight correspondence with input text. 
The loss function implemented within the Imagen method-
ology revolves around training the diffusion model to 
transform noisy instances into data points by optimizing a 
weighted quadratic error metric. More precisely, this en-
tails teaching the diffusion model to progressively remove 
noise from 𝒛𝒛𝒕𝒕until it approximates x through minimizing 
the squared difference between the forecasted output 
𝐱𝐱�𝜽𝜽(𝒛𝒛𝒕𝒕,𝛌𝛌𝒕𝒕, 𝒄𝒄) and the actual data sample x, where the mag-
nitude of the loss is modulated by a weighting function 
𝐰𝐰(𝛌𝛌𝒕𝒕), which significantly impacts the quality of generated 
samples. This iterative denoising procedure serves as a cor-
nerstone for creating high-fidelity images by meticulously 
refining noisy inputs towards realistic data representations. 

𝔼𝔼𝐱𝐱,𝐜𝐜,𝝐𝝐,𝒕𝒕�𝒘𝒘𝒕𝒕 ∥ 𝐱𝐱�𝜽𝜽(𝜶𝜶𝒕𝒕𝐱𝐱 + 𝝈𝝈𝒕𝒕𝝐𝝐, 𝐜𝐜) − 𝐱𝐱 ∥𝟐𝟐𝟐𝟐� (𝟏𝟏𝟏𝟏) 

Eq. (12) represents the denoising objective of the diffusion 
model. The diffusion model, denoted by 𝐱𝐱�𝜽𝜽, is trained to 
reverse the forward process of adding noise to the data, 
starting from the data 𝐱𝐱 and a conditioning signal 𝐜𝐜. The 
process adds Gaussian noise over time, represented by 𝝐𝝐, 
following a schedule determined by 𝜶𝜶𝒕𝒕 and 𝝈𝝈𝒕𝒕. The term 
𝒘𝒘𝒕𝒕 is a weighting function that emphasizes certain values 
of 𝒕𝒕, which is sampled uniformly from the interval [0, 1]. 
The goal is to minimize the squared error between the mod-
el's prediction 𝐱𝐱�𝜽𝜽 and the original data 𝐱𝐱, at each time step 
𝒕𝒕, to learn how to effectively denoise the noisy inputs back 
to the original data distribution. 

𝝐𝝐�𝜽𝜽(𝐳𝐳𝒕𝒕, 𝐜𝐜) = 𝒘𝒘𝝐𝝐𝜽𝜽(𝐳𝐳𝒕𝒕, 𝐜𝐜) + (𝟏𝟏 −𝒘𝒘)𝝐𝝐𝜽𝜽(𝐳𝐳𝒕𝒕) (𝟏𝟏𝟏𝟏) 

Eq. (13) is part of the classifier-free guidance technique, an 
alternative method to improve sample quality in condi-
tional diffusion models without relying on a pretrained 
classifier. The term 𝝐𝝐𝜽𝜽(𝐳𝐳𝒕𝒕, 𝐜𝐜)  represents the conditional 
prediction (or noise prediction) given the noisy input 𝐳𝐳𝒕𝒕 
and the conditioning signal 𝐜𝐜. The unconditional prediction 
𝝐𝝐𝜽𝜽(𝐳𝐳𝒕𝒕) is used as a baseline when no conditioning signal is 
provided. The parameter 𝒘𝒘 is the guidance weight, which 
controls the influence of the conditioning signal on the 
model's predictions. When 𝒘𝒘 = 𝟏𝟏, the guidance effect is 
disabled, while increasing 𝒘𝒘 strengthens the guidance. The 
model 𝜽𝜽� is then trained to minimize the difference between 
the adjusted prediction and the true data, which helps in 
generating images that align with the conditioning text 
while maintaining high fidelity. 
Both of these formulas are essential components of the 
Imagen model, with the first focusing on the denoising pro-
cess and the second on the conditioning of the model dur-
ing sampling to generate text-conditional images. Together, 
they enable Imagen to synthesize photorealistic images that 
closely align with the input text descriptions. 
The rationale behind reducing the generative process to a 
denoising task is substantiated by its optimization as a 

weighted variational lower bound on the log likelihood of 
the data under the specified diffusion model framework. 
Moreover, the model architecture adopts the ϵ-prediction 
parameterization scheme and computes the squared error 
loss in the ϵ domain, with the time-step variable t sampled 
according to a cosine progression. The sampling com-
mences from pure noise at z1 and systematically produces 
a sequence of points 𝐳𝐳𝒕𝒕𝟏𝟏 , … , 𝐳𝐳𝒕𝒕𝑻𝑻 , each one having a decreas-
ing level of noise content, all guided by the underlying dif-
fusion model during the refinement stages. 
 

Table 3. MS-COCO 256×256 FID-30K. 
 

Model Zero-shot FID-30K FID-30K 
DALL-E [21] 17.89 - 
DALL-E2 [22] 10.39 - 
LAFITE [23] 26.94 - 
GLIDE [24] 12.24 - 

Make-A-Scene [25] - 7.55 
LAFITE - 8.12 

XMC-GAN [26] - 9.33 
DM-GAN+CL [27] - 20.79 

DF-GAN [28] - 21.42 
DM-GAN [29] - 32.64 
AttnGAN [30] - 35.49 

Imagen 7.27 - 

Table 3 presents a comparison of different models on the 
MS-COCO 256 × 256 FID-30K benchmark. The table pro-
vides a quantitative analysis of the performance of various 
text-to-image synthesis models. Table 3 is divided into two 
main sections: Model FID-30K and Zero-shot FID-30K. 
Model FID-30K: This section displays the FID scores for 
each model on the COCO dataset. The FID score is a metric 
used to measure the similarity between generated images 
and real images. A lower FID score indicates that the gen-
erated images are more realistic and closer to the real im-
ages. The table lists several models, including AttnGAN, 
DM-GAN, DF-GAN, and others, along with their corre-
sponding FID-30K scores. The lower the score, the better 
the model performs in terms of image fidelity. 
Zero-shot FID-30K: This section shows the zero-shot 
FID-30K scores for the models. Zero-shot learning refers 
to the ability of a model to generalize its learned knowledge 
to unseen data without any further training. In this context, 
the models are evaluated on the COCO dataset without be-
ing specifically trained on it. The zero-shot FID-30K score 
reflects how well the models can generate images that are 
realistic and aligned with the text descriptions from the 
COCO dataset without any prior exposure to it. Again, a 
lower score is better, indicating that the model can effec-
tively understand and generate images corresponding to 
text descriptions even without direct training on that da-
taset. 
Talbe 3 highlights the performance of Imagen, which 
achieves a state-of-the-art FID score of 7.27, significantly 
outperforming other methods such as DALL-E 2, GLIDE, 
and others. This demonstrates the effectiveness of Imagen's 
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approach to text-to-image synthesis, which leverages large 
transformer language models and diffusion models to gen-
erate photorealistic images with deep language understand-
ing. 

3. Comparative Analysis and Future Re-
search 

3.1 Comparative Analysis 
 
In this article, we will compare and contrast three signifi-
cant research papers in the domain of generative models 
and diffusion models, focusing on their methodologies, ap-
plications, and experimental outcomes. 
 
DDPM 
Method: This paper introduces a class of latent variable 
models known as diffusion probabilistic models, which are 
trained using variational inference to produce high-quality 
image samples. The authors present a connection between 
diffusion probabilistic models and denoising score match-
ing with Langevin dynamics, leading to a progressive lossy 
decompression scheme. 
Application: The primary application is high-quality im-
age synthesis, with a focus on generating samples that 
match or exceed the quality of existing generative models. 
Experiments: The authors demonstrate the effectiveness 
of their models on the CIFAR10 and LSUN datasets, 
achieving state-of-the-art FID scores and Inception scores. 
They also discuss the sample quality in relation to the log 
likelihood of the models. 
 
Imagen 
Method: Imagen combines the power of large transformer 
language models for text understanding with high-fidelity 
diffusion models for image generation. It utilizes a frozen 
T5-XXL encoder to map text into embeddings and cas-
caded diffusion models for image generation. 
Application: The main application is text-to-image syn-
thesis, where the model generates photorealistic images 
based on textual descriptions. 
Experiments: Imagen achieves a new state-of-the-art FID 
score of 7.27 on the COCO dataset without training on it. 
It also performs well in human evaluations, where gener-
ated samples are found to be on par with COCO data in 
image-text alignment. 
 
HighLDM 
Method: This work proposes latent diffusion models that 
apply diffusion models in the latent space of pretrained au-
toencoders. It introduces cross-attention layers into the 
model architecture, making diffusion models flexible for 
various conditioning inputs. 
Application: The paper focuses on high-resolution image 
synthesis, including tasks like inpainting, super-resolution, 
and text-to-image synthesis. 

Experiments: LDMs achieve state-of-the-art scores for 
image inpainting and class-conditional image synthesis. 
They also show competitive performance on unconditional 
image generation and super-resolution, significantly reduc-
ing computational requirements compared to pixel-based 
diffusion models. 
 
Comparison 
Model Methods: DDPM focuses on the connection be-
tween diffusion models and score matching, Imagen em-
phasizes the use of large language models for text under-
standing, and LDM explores the application of diffusion 
models in a compressed latent space. Each paper presents 
a unique approach to improving the quality and efficiency 
of generative models. 
Application Domains: While DDPM and LDM cover a 
broad range of image synthesis tasks, Imagen specifically 
targets text-to-image synthesis, showcasing the versatility 
of diffusion models in various domains. 
Experimental Effectiveness: All three papers demon-
strate state-of-the-art results in their respective tasks, with 
Imagen and LDM particularly highlighting the computa-
tional efficiency gains over previous methods. Imagen's 
human evaluation results are particularly noteworthy, indi-
cating a close alignment with human perception of image 
quality and relevance to text prompts. 
In summary, these papers collectively advance the field of 
generative modeling by introducing novel methods and 
demonstrating their effectiveness across diverse applica-
tions. Each paper contributes to the understanding of how 
to generate high-quality images, either by improving the 
generative process itself, integrating language understand-
ing, or reducing computational overheads. 
 
3.2 Future Research 
 
The future research directions in the field of generative 
models, particularly focusing on diffusion models and their 
applications, can be expanded along several dimensions: 
Improving Sample Quality and Diversity: Future re-
search could focus on enhancing the quality and diversity 
of samples generated by diffusion models. This may in-
volve developing new training techniques, exploring dif-
ferent model architectures, or incorporating additional mo-
dalities such as audio and video to create multimodal gen-
erative models. 
Reducing Computational Costs: Given the computation-
ally intensive nature of diffusion models, there is a need for 
more efficient training and inference methods. This could 
include the development of algorithms that reduce the 
number of required neural network evaluations, methods 
for distributed training, and approaches that leverage hard-
ware accelerators more effectively. 
Enhancing Text-to-Image Synthesis: The integration of 
large language models with diffusion models for text-to-
image synthesis presents opportunities for research. This 
includes improving the understanding of textual prompts, 
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generating more contextually relevant images, and explor-
ing cross-modal interactions to refine the alignment be-
tween text and images. 
Addressing Societal and Ethical Concerns: As genera-
tive models become more powerful, it is crucial to address 
their potential misuse. Research could focus on developing 
frameworks for responsible AI, including methods for de-
tecting and mitigating deepfakes, ensuring data privacy, 
and promoting fairness and inclusivity in model training. 
Interdisciplinary Applications: The application of diffu-
sion models beyond image synthesis could be explored. 
This includes fields such as medical imaging, where mod-
els could assist in generating patient-specific organ models, 
or in the creative arts, where they can aid in the design pro-
cess. 
Theoretical Understanding: There is a need for a deeper 
theoretical understanding of diffusion models. This in-
cludes research on the convergence properties of these 
models, the exploration of different noise schedules and 
their impact on sample quality, and the development of 
new theoretical frameworks to explain the inductive biases 
of diffusion models. 
Combining with Other Generative Approaches: Hybrid 
models that combine the strengths of diffusion models with 
other generative approaches, such as GANs or autoregres-
sive models, could be an area of future research. Such com-
binations might lead to models that are more robust and 
versatile. 
Data Efficiency and Transfer Learning: Research could 
explore how diffusion models can be made more data-effi-
cient, potentially through transfer learning or by leveraging 
pre-trained models on large datasets. This would allow for 
the application of these models in scenarios where data is 
scarce or expensive to obtain. 
By pursuing these research directions, the field can con-
tinue to push the boundaries of what is possible with gen-
erative models, while also addressing the challenges and 
ethical considerations that come with these powerful tools. 

4. Conclusion

DDPM, HighLDM, and Imagen are cutting-edge gen-
erative models. DDPM revolutionizes diffusion mod-
eling with novel parametrization for continuous data 
and discrete likelihoods. HighLDM excels in high-res-
olution synthesis using latent diffusion and autoencod-
ers, minimizing compute while maintaining detail. 
Imagen combines transformer-based language under-
standing with diffusion models to create photorealistic 
images from text, achieving state-of-the-art semantic 
alignment and visual fidelity. Each model uniquely ad-
vances its domain, showcasing versatility, efficiency, 
or linguistic grounding. 
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