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Abstract 

Gimbal or other stable platforms have structures that move according to its functions. This is for the purpose of keeping 

track of the goals to the fullest. Tracking targets can become difficult as the subject moves further and further away and 

they are out of the gimbal’s allowable viewing range. Besides, under the influence of noise signals form outside space, it 

becomes even more difficult to observe the gimbal’s targets. To overcome above disadvantages, this paper is presented an 

adjustment method to limit above risks. Adjusting Linear Quadratic Gaussian (LQG) for expensive gimbal systems, noise 

signals are processed purely by Kalman filters to improve the function of observing targets. In addition, proportional- 

integral-derivative (PID) controller, artificial neural network in this case is also considered to verify the effectiveness of 

control methods listed below. In particular, ANN is the most effective control method today to deal with unwanted signals. 

These unwanted signals can cause worsening conditions during the operation of systems.Therefore, artificial network 

(ANN) is a solution to information and communication security problems. Simulation is done by Matlab. Novelty of the 

work: no previous research has been published for this  genre. The study of this genre with the use of artificial intelligence 

is suggestive of the study of artificial intellligence technologies at a higher level. This category is also a suggestion for 

studying a smoother control method based on existing data. 
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1. Introduction

The gimbal is a device that serves many sciences. The target 

of the objects in sight is the gimbal's operational criteria. 

The gimbal's payload is usually the equipment that carries a 

great deal of influence and they are capable of observing the 

target from a great distance like a radar system, a system of 

observatories. A gimbal can be installed for all devices in 

the same system to have a comprehensive view of the 

objects. A gimbal consists of rings pivoted 

at right angles to each other. They form a chain of loops 

connected to each other. This gives flexibility in adjusting a 

gimbal. A gimbal can stabilize multiple subjects with a 

single axis of rotation or multiple axes of rotation. In this 

case, setting up gimbals at each station is not possible in an 

environment with limited contact area. The uniqueness of 

this device: it is widely used in scientific fields such as 

astrology, space science, national defense, security, 

etc.These fields all need a modern tool so that humans or 

sensors can observe objects from a distance. Because of the 

importance of this device in the above areas, research into 

this category is necessary to have a more in-depth look at 

this system. In addition, the study of this genre is a 

suggestion for further research in the future with the great 

support of increasingly modern automated systems. 

Modeling control and simulation of two axes gimbal seeker 

[1] using state-of-the-art controllers is a great idea for the

security sector. Modeling control and simulation of two axes

gimbal seeker [2] using LQG regulator as presented in this

paper is a new research work. Using  cascade control
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approach [3] for improving three axes gimbal seeker 

performance is an innovation. Hardware implementation of 

an ADRC controller [4] on multi-axis gimbal mechanism is 

promising work.Fractional order [5] of a gimbal platform 

that PID controller can be applied. Spacecraft angular rates 

and angular acceleration estimation [6] using a 2 axis gimbal 

is a pleasant experience. The techniques [7] can be applied 

to planetary gimbals. Adjusting LQG for internally 

stabilized platform with actuator saturation [8] is a possible 

topic in the future. High-precision control [9] for ac-robots 

is a great research idea. Robust control of magnetically 

suspended [10] ac-robots is worthy of the author's attention. 

High-precision anti-disturbance gimbal servo control [11] 

for ac-robots help readers better understand the functions of 

the robotic arms. System performance of an internally 

stabilized [12] ac-robots are a refreshing idea. A two-axis 

gimbaled sensor system [13] with adjusting LQG is very 

powerful. Using loop shaping design procedure [14] for a 

two-axis gimbaled sensor system can be executed. Adjusting 

the LQG for the gimbal servo system [15] is a fascinating 

work for the author. Precise control [16] for a two-axis 

gimbaled sensor system is a new research work that the 

author looks forward to doing it in the future. Speed tracking 

control [17] for ac-robots with harmonic drive is an endless 

source of inspiration. The techniques in [18, 19, 20, 21] can 

be applied for ac-robots. There are many models applied by 

modern control algorithms [22, 23, 24]. However, they have 

not been used artificial intelligence algorithms and the 

comparison of the superiority of algorithms has not been 

implemented on previous publications. Generalizing the 

problems of modern control programs [25] is necessary so 

that the author can derive the most effective solutions for 

each specific case. A program that has masterfully guided 

the operations [26] of a particular object is very interesting 

and practical. The main contributions of this paper: (i) the 

author updated the latest controller (PID controller, ANN) at 

the present time to evaluate the quality of the system under 

current conditions. (ii) the author used LQG regulator with 

Kalman filter to handle unwanted noise signals to ensure 

that the system's orthodox signals have better quality. ANN 

in this case can replace functions of any part or transfer 

function in a system if it has been trained before. This is 

useful in solving security incidents, redundancy works. Core 

methods are clear in sections 3-5. There are 3 control 

methods simulated in this paper: LQG, PID controller, 

ANN. The simulation part is described in detail in Section 6. 

The theoretical part of LQG regulator is described in detail 

in Section 4. The theoretical part of ANN is described in 

detail in Section 5. 

2. Modelling of gimbal actuator

The gimbal actuation is generally achieved by using a direct 

current (DC) motor or brush-less direct current (BLDC) 

motor of the system. The output angular velocity is 

measured by using a gyroscope sensor. The stabilization 

loop of a single axis gimbal actuation system is shown in 

Fig. 1. 

2.1. DC motor model 

The DC motor transfer function of the system is given by: 

( )
( ) RLs

K

sU

sT t

a

m

+
=       (1) 

where Tm(s) and Ua(s) are the torque produced by the DC 

motor and actuation input respectively of the system. L, R, 

Kt are defined as inductance, resistance, DC motor torque 

constant of armature winding of DC motor of the system 

respectively. The load and motor inertia transfer function is 

represented by  

( )
( ) JssT
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=


     (2) 

where, (s) and T(s) = Tm(s)+Td(s) are the output angular 

velocity or output angular rate and total torque of load and 

motor respectively. Td (s) is defined as the load torque 

disturbance of the system. J is the total inertia of the gimbal 

of the system. The DC motor transfer function with back 

electromotive force (EMF) effect of the motor is given by  

( )
( )

et

t

m
KKJRsJLs

K

sU

s
sG

++
==

2)(


  (3) 

where, Ke and U(s)=Ua(s)+ Ke(s) are the back EMF 

constant of DC motor and control input provided by the 

controller respectively. 

2.2. Gryscope model 

The gyroscope sensor is used to measure the output angular 

rate of the gimbal. Typically, a gyroscope model is 

represented as a second order transfer function given as 

( )
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where, m(s), n, and  are the measured angular rate, 

natural frequency, and damping ratio of the gyroscope 

respectively. 
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3. Model design

Figure 1. Stabilization loop of a single axis gimbal 
system. 

This system includes the core savings within it: 

Box A: 1/ L*s+R 

Box B: Kt 

Box C: 1/ J*s 

Box D: Ke 

Box F: Gg(s) 

Box A is connected in series with Box B. They form Box 

J. Box J is also connected in series with Box C. They also

form Box K. Box K is connected in parallel with Box D so

that they form a first sub-closed loop. This sub-closed loop

is named Gm(s). Gm(s) is paralleled with Gg(s) and they form

a large closed loop. This is the model of the system. The

closed loop characteristic equation of gimbal system is

writen as: 1+ Gm(s)*Gg(s)=0

The DC motor transfer function Gm(s) and gyroscope 

transfer function Gg(s) can again be written as 

( )
7225.005175.0000000345.0

85.0
2 ++

=
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where, by comparing (5) and (6) with (3) and (4) 
2

1 nK =  , b1 = 2n , and b2 = 
2

n are obtained. G(s) is 

the transfer function of the system. G(̣s) is given 
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=
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Table 1. DC motor and Gyroscope specifications 

Parameter Value 

Armature resistance (R) 4.5 
Armature inductance (L) 0.003H 

Torque constant (Kt) 0.85Nm/A 

Back EMF constant(Ke) 0.85V/rad/s 

Total inertia (J) 0.0115 kg. m2 

Natural frequency ( )n 50 Hz 

Damping ratio ( ) 0.7 

4. LQG regulator

LQG is used as one of methods to deal with noise signals. 

The system must be linear in this case. If the system is not 

linear, it is necessary to convert the problem to linear form 

before LQG can be used. Because the result is not as 

expected when the model is not linear. Therefore, in recent 

surveys, the author always oriented them to linear to achieve 

the expected steady state. The author has conducted a review 

of models with using LQG (Fig 2): 

t

z

i

Figure 2. The regulator for the object with noise 
signals 

In figure 2, the subject has noise signals that have 

affected the input (z) of the object and noise signals (t) have 

appeared while the author is measuring to collect the data of 

the system. The goal of this control work is also applied 

based on the model of Figure 2. The setting of LQG 

regulator is similar to that of other controllers, that is, it is 

formed from the construction of control algorithms. The 

objective of this method is to stabilize the output signals so 

that they reach a threshold of zero or close to zero. In this 

model, the input signals are composed of white noise signals  

(z) and other noise signals (t), the control signal is ‘i’. A

system of state equations is represented as:





+++=

++=

tRzOiFxy

NzMiLxx
(8) 

LQG contains of a state feedback unit (it's colored in 

pink) and a Kalman filter (it is colored in green) (Fig. 3). 
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Figure 3. LQG regulator with noise signals (‘z’: the 
white noise and ‘t’: the color noise signal) 

The quality indicator, symbol is (J), (J) is used to find the 

state feedback matrix ( )FXGHSlqrK ,,,,=
 

( )  dtXiiFixGxxiJ TTT




++=
0

2

  (9) 

This quality criterion is also used to evaluate under 

optimal assumptions in a few other cases. It is also used in 

other controllers subject to accompanying conditions. The 

composition of these criteria can also be predefined 

according to the requirements. K is also widely used in 

optimization controllers. K is commonly known as an 

integral value in modern controllers and it is often installed 

at the output of a main controller in  models. 

The control signal is xxKi ˆ,ˆ−=
 

is inferred for 

Kalman filter, x̂  is output signal of Kalman filter: 

 

( )OuxFyVHuxSx −−++= ˆˆ̂
                (10) 

 

The value of ‘V’ is the Kalman gain and the value of ‘V ’ 

is calculated by commands: 

 

[kest, V, P]=kalman (sys, Gn, Xn, Fn)                (11) 

 

[kest, V, P, M, Z]=kalmd (sys, Gn, Xn, Ts)        (12) 

 

[kest, V, P]=kalman (sys, Gn, Xn, Fn, sensors, known)                                                            

   (13) 

 

[kest, V, P, M, Z]=kalman (sys, Gn, Xn, Fn)       (14) 

 

where Gn, Xn, Ts is the variance of the noise 

signal. ( ) ( ) ( ) n

T

n

T

n

T FztAXttAGztA === ,,
 

kest is the model of Kalman filter. 

These commands depend on previously provided data so 

that the author can execute one of them. Simulation results 

are the component values of  LQG regulator after it has 

‘processed’ the model. 

Kalman filter calculates x̂  to minimize the variance 

  ( )T

t
xxxxAP ˆˆlim −−=

→    (15) 

The equation of state for a regulator (LQG) 

( )  yVxVOHVFSx
dt

d
+−−−= ˆˆ

          (16)

 

xKi ˆ−=  is established  by commands 

 

A=lqgreg (kest, k)                                            (17) 

 

A=lqgreg (kest, k, ‘current’)     (18) 

 

A=lqgreg (kest, k, controls)      (19) 

 

To find the value of control signal 'i', the author can 

execute one of the above commands according to the given 

data. Simulation results are  component values of  LQG 

regulator, specifically here a value of a control signal 'i'. 

A is the state-space model of a set of LQG, the value of the 

ouput is ‘i’, the value of the input is y , the value of the 

state is x̂  
A=lqgreg (kest, k, controls) is used for the following 

model (Fig 4): 

 

Kalman 

estimator -K

ud

u

u

LQG regulator
 

Figure 4.  LQG regulator 

Finally, the command is requested: 

 

B= reg (sys, T, U)                                 (20) 

 

B= reg (sys, T, U, sensors, known, controls)                   (21) 

 

The author established a closed loop with the value of 

‘sys’ as the object, the value of ‘T’ is the state feedback 

matrix, ‘U’ is the state estimation matrix, ‘sensors’ is a 

subset of outputs, the value of ‘y’ returns to the estimator, 

‘known’ are the inputs, ‘id’ affects the estimator, ‘controls’ 

are inputs of ‘sys’ that is used for control. To design LQG 

regulator in this case, the author can execute one of  above 

commands according to the given data.  Simulation results 

are values of  LQG regulator. 
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5. Model with using artificial neural 
network (ANN) 

5.1. An artificial neural network   

An artificial neural network (or neural network for short) 

can be seen as a simple mathematical model of the human 

brain. Neural networks consist of neurons (processing units) 

connected to each other by links. Each link is associated 

with a weight, which characterizes the excitatory or 

inhibitory properties between neurons. 

 

Xm=+1

x1

w1

w2

xm-1

Wm-1

Wm=b

f y
a(.).

.

.

 

Figure 5.  Artificial neurons 

Figure 5 has been depicted with a block diagram: there 

are m-1 inputs, b is the bias level, a(.) is the transfer function 

from input (f) to output (y). 

5.1.1. Input signal   
There are (m) input signals, where (m-1) the excitation 

signal at the input is (x1, x2, …, xm-1), they are taken from 

the output of  neurons placed before this neuron or they are 

taken from other input signal sources. These input excitation 

signals is passed through a set of weights (w) that 

characterizes the degree of association between the front 

neuron is associated with it. A positive association weight 

corresponds to a restrained synapse. Particularly, the (mth) 

input signal component (xm) is called threshold with the 

value: xm = +1. The (xm) signal is passed through the 

displacement component (bias) bi : wm = b. The input 

processing function is a sum function of the following form: 

 
5.1.1.1. Linear function: 
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 (22) 

5.1.1. 2. Quadratic function: 
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5.1.1.3. Spherical function  
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The most commonly used input sum function is the linear 

function 

5.1.2. Output of neuron 
The output of the neuron is given by the expression: y=a 

(net)= a (f), where a (.) is the symbol of the conversion 

function. The conversion function, there is a document also 

called an activation function or a transfer function, which is 

responsible for converting the total weight (f) (or net) into 

an output signal (y). The most commonly used types of 

conversion functions: 

5.1.2.1. Hard limit transfer function:  
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fif
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5.1.2.2. Symmetric hard limit transfer function: 
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5.1.2.3.  Linear transfer function 

( ) ( )ffa =      (27)   

 

5.1.2.4. Saturation slope function 
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5.1.2.5. Saturation linear function 
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5.1.2.6. Unipolar sigmoid function 
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5.1.2.7. Dipole sigmoid function  
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Neurons with a transformation function a(.) in the form of 

unipolar sigmoid or bipolar sigmoid are called Linear 

Graded Unit (LGU). 

5.2. Multilayer feedforward neural network  

5.2.1. Multilayer feedforward neural network 
architecture 
Multilayer feedforward network is a feedforward network 

with two or more layers of processing  of neurons.  The 

layer of neurons connected to the input is called the input 

layer (usually the input layer does not perform processing 

operations), the layer of neurons connected to the output is 

called the output layer, the layer of neurons that is not 

directly connected to the input and the output is called the 

hidden layer. Connections between of neurons in layers can 

be complete or incomplete. The algorithm for training the 

multilayer feedforward network is a backpropagation 

algorithm. The back-propagation algorithm is implemented 

in two steps of information transmission. First, the input 

sample (x(k)) is transmitted from input to output, the result 

of forward data transmission is to produce the signal (y(k)) 

at the output of the network. Then, the error as the 

difference between d(k) and y(k) is propagated back from 

the output layer back to the previous layer to update the 

weights of the network. Since the algorithm for training the 

forward-propagation network is a back-propagation 

algorithm, this network is also called a back-propagation 

network. 
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Figure 6. Multilayer feedforward neural network 

5.2.2. Back propagation juris-rudence 
The author considered a three-layer feedforward neural 

network with ‘m’ neurons in the input layer, ‘l’ neurons in 

the hidden layer and ‘n’ neurons in the output layer (Fig. 7). 

The weight symbol of the qth neuron of the hidden layer is 

‘vq’. The weight of the ith neuron in the output layer is ‘wi’ . 

The author has assigned the action function of the cells in 

the hidden layer. It is denoted by 'ah(.)'. This function of the 

output layer and it is denoted by ‘a0(.)’. The relationship 

between the transmitted signals in the network as follows: 
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Figure 7. Three-layer feedforward neural network 

The sum of the weights of the signals that enter the qth 

neuron in the hidden layer: 
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Output signal of the qth neuron in the hidden layer 
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The sum of the weights of the signals that enter the ith 

neuron in the output layer 
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Output signal of the ith neuron in the output layer 
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EAI Endorsed Transactions 
on AI and Robotics



 LQG, PID controller, ANN for single axis gimbal actuator 

 

7 

The author has a network training dataset including K 

samples x(k), d(k), k=1...K. The criterion for training the 

network is to minimize the error: 
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Applying the gradient descent algorithm, the weights of 

the output layer are updated: 
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The author has set 
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The author has replaced (39) and (38) in (37) 

 

( ) ( ) ( ) )(1 * kzkkwkw qoiiqiq −=+           (40) 

 

Similarly, the weight of the hidden layer is updated by the 

formula: 
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The author has set 
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The author has replaced (39) in (43) 

( ) ( ) ( ) ( )( ) knetakwkk qh

n

i

iqoihq









= 

=1

    (44) 

 

The author has combined (41), (42) and (44)  

( ) ( ) ( ) ( )kxkkvkv jhqqjqj −=+1            (45) 

 

Since the weights of the network are updated based on 

the error signals ( ) ( )( )kk hqoi  , and they can be extended 

to networks with more layers of computational neurons, the 

back- propagation algorithm also known as the generalized 

Delta learning algorithm. 

5.2.3. Multilayer feedforward neural network on 
Matlab 

IW1,1

b1  b2

Input Hidden 

Layer
Output 

Layer

4x2

1

2

2x1

4x1 4

4x1

4x1

1

3x4

3x1 3

3x1

3x1

p1

n1  

LW2,1

n2  

a2a1

a1=tansig(IW1,1 p1+ b1) a2=purelin(LW2,1 a1+ b2)

 

Figure 8. Model of Multilayer feedforward neural 
network on Simulink 

To set up multilayer feedforward neural network below 

on Matlab, the author used the command 'newff', which 

takes four input arguments, the first is the value 'input' taken 
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from the variable name 'in' of 'To workspace' in Simulink. 

This value indicates the range of the input variable, followed 

by arrays showing the number of neurons per layer: the first 

layer has fifty neurons, the output layer has one neuron, then 

the array showing the name of conversion functions used in 

each layer: the input layer conversion function is ‘tan-

sigmoid’, the output layer is layer linearity, and finally the 

name of the function used to train the network: the training 

function is ‘trainrp’, parameters of the network are 

initialized according to preset algorithm. The command is 

described as follows: net= newff ([minmax (input)], [50 1], 

{'tansig' 'purelin'}, 'trainrp'). 

6. Simulation results and discussions 

Simulation results are shown Figures 9, 10, 11, 12, 13, 14, 

15, 16, 17, 18, 19, 20, 21. 

Part 1: Model with using LQG regulator 

 

G(s)

F(s)

w d

u

d+u y

n+
+

+

+

LQG 

regulator

 

Figure 9. LQG regulator G(s) 

Fig 9: the value of ‘d’ is a color noise signal with a 

spectral density of less than 10 rad/s, the value of ‘n’ is a 

white noise signal ( ) 01.02 =nE .The value of quality 

indicator ‘J’: ( ) ( ) .10
0

22 dtuyuJ 


+=   

The model of the object: 

nCxyBdBuAxx +=++= ,  

 

Figure 10. step response of the open loop ‘G(s) 

 

Figure 11. step response of the closed loop ‘G(s)’ 

 

Figure 12. impulse response of the open loop ‘G(s)’ 

 

 

Figure 13. impulse response of the closed loop ‘G(s)’ 
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Figure 13: impulse response for the closed loop (the 

signal is highlighted in green) is worse than the open loop 

(the signal is highlighted in blue in Fig 12). The amplitude 

of the oscillation of the closed loop in this case is zero and 

the closed loop reaches a steady state. For LQG regulator, 

the closed loop responds well. The amplitude of the 

oscillation of the open loop in this case is large and the open 

system can reach a steady state. Figure 11: step response for 

the closed loop (the signal is highlighted in red) is better 

than the open loop (the signal is highlighted in green in Fig 

10). The amplitude of the oscillation of the closed loop in 

this case is 0.35 and the closed loop reaches a steady state. 

For LQG regulator, the closed loop responds well.  

Meanwhile, the open loop can  respond well.  

Part 2: Model with using PID controller 

 

 

Figure 14. Simulink model of PID controller (Kp=56.71; 
Ki=46.1; Kd=562.44) 

 

Figure 15. step response of the open loop ‘G(s)’ 

 

Figure 16. step response of the closed loop ‘G(s)’ 

 

Figure 17. impulse response of the open loop ‘G(s)’ 

 

Figure 18. impulse response of the closed loop ‘G(s)’ 
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Figure 18: impulse response for the closed loop (the 

signal is highlighted in green) is better than the open loop 

(the signal is highlighted in blue in Fig 17). The amplitude 

of the oscillation of the closed loop in this case is zero and 

the closed loop reaches a steady state. For PID controller, 

the closed loop responds well. The amplitude of the 

oscillation of the open loop in this case is large and the open 

loop can reach a steady state. Figure 16: step response for 

the closed loop (the signal is highlighted in blue) is better 

than the open loop (the signal is highlighted in red in Fig 

15). The amplitude of the oscillation of the closed loop in 

this case is 1.0 and the closed loop reaches a steady state. 

For PID controller, the closed loop responds well.  

Meanwhile, the open loop can not respond well. The closed 

loop responds better than the open loop because the closed 

loop has been standardized by designed diagrams of PID 

controller. 

Part 3: Model with using ANN 

 

 

Figure 19. Simulink of model with using ANN 

Step 1: The author has done a search for components on 

Simulink. 

Step 2: The author has connected the components 

together as shown in the diagram. 

Step 3: The author has programmed with the necessary 

commands to form the Neural Network (Blue box). 

Step 4: The author has "played" the above diagram to get 

the results as shown in Figures 20, 21. 

 

 

Figure 20. model with using ANN of Scope 2 ‘G(u)’ 

 

Figure 21. model with using ANN of Scope 3 ‘G(u)’ 

Figures 20, 21 are results of  output values of the system. 

Figure 20 are the result of the value of the output without 

using ANN (above image) and Figure 20 also are the result 

of the output with using ANN (bottom image). Figure 21 are 

a composite image of the value of the output without using 

ANN and the value of the output with using ANN. This 

result has an almost absolute match between  two values 

above. Therefore, this is considered a successful survey in 

training the network to achieve desired results. Efficiency 

levels are listed in descending order below with using above 

control methods.  This is based on states that are determined 

to be stable through simulation results. The number of 

simulation results reaching steady state is the criterion to 

evaluate the effectiveness of PID controller, LQG regulator, 

ANN applied to the above model: 

 

A. ANN (Figures 20, 21) 

B. LQG regulator (Figures 10, 11, 12, 13)   

C. PID controller (Figures 16, 17, 18)  

 

Limitations of the proposed method: this proposal has not 

been widely recognized because topics of this type have 

never been published to readers. The attractiveness of the 

article is limited because the author is not fully equipped 

with comprehensive knowledge. In the future, themes of this 

genre need to be taken for other models with more and more 

sophisticated precision. 

7. Conclusions 

LQG regulator in case of noise signals affecting this system 

has been proposed by the author. Simulation results have 

been accepted for positive results. This allows the closed 

system to reach steady state in a long time. In fact, there are 

many noise signals affecting the system due to the working 

environment of the system. This can affect the output 

quality of a plan. PID controller in this case is considered to 

be more efficient than LQG regulator because the time to 

stabilize the system has been shortened. However, these two 

methods can not completely solve the instability of the open 

system. ANN in the case has achieved the expected positive 

result: the security of the system has been installed. Only 

users can perform operations on the system through 

applications of artificial intelligence. In the future, LQG 

regulator can be implemented on systems to address 
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disadvantages and advantages as the author described above. 

Other interesting results can be noted by the author in other 

models that the author can investigate them. 
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