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Abstract 

The growth of renewable energy on a global scale is making significant strides in power plants. This is due to the increasing 
concern about climate change, the rising demand for electricity, and the necessity to reduce reliance on fossil fuels. Ensuring 
the successful integration of new energy resources into the existing network is just as crucial as it requires the system to be 
reliable and adaptable. For instance, wind energy, which is one of the renewable sources, has an intermittent nature that 
necessitates the ability to synchronize its actions to achieve the desired system performance. The objective of this study is 
to utilize a new neural network system to calculate the short circuit current of power plants. Specifically, the focus is on 
identifying and categorizing the short circuit faults that occur between the stator coils of the squirrel cage induction generator 
used in wind power generation. To achieve this, a system was developed to simulate turbine data. Subsequently, four feature 
extraction techniques and machine learning algorithms were employed to enable early detection of short circuit faults. The 
numerical results obtained from the simulation demonstrated the high efficiency and accuracy of the proposed model. This 
research is based on a valid approach for early detection of short circuit in the stator winding in induction generators used in 
wind turbines. Using a wind turbine test location, we introduced different types of short circuit in the generator. We proposed 
to use four feature extraction technical along with three categories. 
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1. Introduction

Advances in technology for the optimal extraction of 
energy from renewable sources, along with cost reductions 
and government policies with financial incentives that 
support the growth of renewable energy, have led to a 
significant integration of renewable energy sources. For 
example, a new energy agreement was reached in Denmark 
in March 2012 which includes initiatives to bring Denmark 
closer to the goal of 100% renewable energy in the energy 
and transport sectors by 2050. Ontario's Green Energy and 
Green Economy Act of 2009 created a feed-in program that 
provides payment for renewable energy production above 
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the market price. As the installed capacity of wind 
generation continues to grow, it is necessary for facility 
engineers to be aware of the behavioural characteristics of 
wind farms and the effects they have on the power grid, and 
this growth presents unique challenges for the proper 
integration of wind energy into the power grid [1]. 

A unique aspect of wind generation that separates it 
from conventional generation is its short circuit behaviour. 
Wind turbines typically use an induction generator that is 
either directly connected to the grid or decoupled from the 
grid via power electronics. These topologies have different 
short-circuit characteristics compared to concurrently 
connected machines. Appropriate short-circuit studies are 
necessary to determine that the maximum short-circuit 
contribution of a given machine is within the range of the 
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circuit breakers and that the protective devices are properly 
matched. It is very important to study the impact of systems 
before integrating any new generation into the existing 
power grid, and studies of short-circuit participation are a 
critical task. Short-circuit levels must be evaluated for 
accurate design of protective relay settings, equipment 
ratings, and protection coordination. Since the accuracy of 
relay settings is very important to prevent relays from 
malfunctioning, accuracy in short-circuit levels and thus 
short-circuit models is very important [2]. 

In order to evaluate the behaviour of wind generators 
and their response to system faults, appropriate wind 
generator models must be created. Short circuit faults can 
occur in the power system for various reasons, of which 
line-to-ground fault is the most common. The short-circuit 
characteristics of synchronous machines are well defined 
because the technology has existed for several years and 
accurate models are available to predict their short-circuit 
contribution. However, this is not the case with wind 
turbine technology, which is relatively new and constantly 
evolving. [3]. 

Several techniques have been proposed in the literature 
to model the short circuit behaviour of wind turbine 
generators. The first generation of utility-sized wind 
turbine generators were Type I wind generators based on a 
squirrel cage induction generator with blade pitch angle 
control as the only wind power control mechanism [4]. 
This design has the advantages of mechanical simplicity, 
high efficiency and low maintenance requirements [5]. 
Jiménez-Buendía, Francisco et al. [6] further show that 
Type 4 wind generators can be represented by a current 
source with upper and lower limits based on the power 
converter rating for short-circuit analysis. 

VDNE, a nonwrite equivalent, augments the classical 
voltage source with an additional flow component to the 
voltage. To address the nonlinear relationship between the 
VDNE's output and the terminal voltage, repeated 
recalculations of the short-circuit connection within the 
network are necessary. 

The results of entire network’s EMT analysis, after 
reaching a steady state, are used as a reference solution. 
These results are compared with the approximations used 
by VDNE in the frequency domain. Preliminary findings 
indicate that the combined VDNE and network solutions 
align well with the actual network behavior. 

In this study, the external network is modeled using a 
Thévenin equivalent. While a detailed model could be 
created, it is important to identify the nonlinear current 
source component of the VDNE, considering the wide 
range of impedance characteristics observed in the Point of 
Entry (POE) [7]. 

The method involves an initial step where an EMT 
model is validated using a zero percent three-phase voltage 
gradient field experiment. The EMT model then represents 
the worst-case scenario for short-circuit current. The 
resulting time series fits an equation representing the short-
circuit current contribution as AC and DC decay 
components. This confirms the primary symmetrical short-
circuit current. However, it was found that both the peak 

short-circuit current and the thermal equivalent are not 
accurately calculated. To address this, F. Jimenez-Buendía 
et al. [8] proposed an alternative calculation method, 
yielding relatively accurate results. 

Kumar et al. [9] reviewed various analytical methods 
designed to solve the problem of locating and sizing 
distributed generation sources to avoid voltage deviations. 
Niaki et al. [10] emphasized that studying AC load 
distribution is essential for solving the placement problem. 
They noted that the optimal load distribution method 
makes the problem nonlinear, complicating the 
determination of the unit's output power and leading to 
multiple local optimal solutions. Consequently, finding the 
most optimal solution with this method presents 
challenges, suggesting that random exploratory methods 
could be beneficial for future research. Shuaibu et al. [11] 

Methods such as the Particle Swarm Optimization 
(PSO) algorithm, bee colony optimization, neural network 
algorithms, and genetic algorithms have been applied to 
solve the problem of determining the optimal location and 
size of distributed generation sources. These methods focus 
on the dual objectives of minimizing losses and production 
costs for two types of distributed production. Dehghani et 
al. [12] presented a hybrid method combining the colonial 
competition algorithm with a genetic algorithm to address 
the optimal placement and sizing of both parallel capacitor 
banks and distributed generation sources simultaneously. 

Karunarathne et al. [13] discussed the optimization and 
related issues of having multiple distributed production 
sources operating in various modes [14,15]. They 
concluded that the availability and connection point of a 
distributed generation source could significantly impact the 
output of other resources in the network. The proposed 
method aims to maximize the output capacity of scattered 
production resources under these conditions. 

Ghotbi et al. [16] highlighted that the ideal tripping 
characteristic of distance relays is influenced by the mutual 
effect of parallel transmission lines. They considered the 
relay performance threshold settings for lines connected to 
wind farms to be affected by continuous voltage 
fluctuations in parallel transmission lines. They proposed a 
solution for setting the distance relay in parallel lines 
within a network connected to a wind farm. 

Therefore, in accordance with the common issues 
discussed in recent research, it can be seen that when the 
distributed generation is connected, the short circuit level 
of the network changes and the settings of the protection 
system equipment must be altered; if the distributed 
generation is disconnected from the network, the settings 
must return to the initial state. To achieve this goal, many 
connections are needed, which are usually not available in 
distribution networks. To solve this problem, a coherent 
plan is required to protect distribution networks via 
scattered generation sources. The lack of proper placement 
of scattered generation power plants in such a network 
causes an increase in power loss and increases the costs of 
energy production and transmission whilst disrupting 
protection systems, so it is necessary to use optimization 
methods to determine the optimal placement of these 
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power plants within the network. This approach will 
determine the number, installation locations, and capacities 
of distributed generation power plants to achieve the 
maximum reduction of disturbances in the existing grid 
protection systems, while considering the problem's 
constraints. 

The purpose of this research is to calculate short circuit 
current in wind turbines using an artificial intelligence 
method. The structure and performance of the artificial 
intelligence network will be explored in its solving of non-
linear mathematical problems. The problem will be coded 
using an artificial neural network during the training and 
testing phases, employing four different distribution 
networks with varying connection flows as input. During 
the test phase, the trained artificial neural network correctly 
determines the minimum short-circuit current error through 
multiple iterations for the test network. It then determines 
the value of the short-circuit current using an optimally 
weighted neural network. The numerical results obtained 
from the simulation will demonstrate the efficiency and 
accuracy of the proposed model.  

2. Materials and Methods
2.1. Equations governing the circuit of
wind power plant

A detailed description of the equalization method of a wind 
power plant for load flow studies is provided in the WECC 
wind power flow modeling guide reference [3]. Figure 1 
shows a sample design of 18 wind turbine power plants. 
Determining the error contribution of a wind power plant 
in the transmission network can be done by reducing the 
power plant to the following circuit: 

Figure 1. Wind power plant equivalent to a machine 

The challenge is in calculating the equivalent impedance 
based on the components of the wind farm. Before 
calculating the equivalent impedance, a preliminary 
conversion of all impedances to a volt-ampere base 
(SBASE) must be done. The equation for converting 
impedance in units (pu) to a new base power (SBASE) is 
provided by the following equation: 

𝑍𝑍𝑝𝑝𝑝𝑝_𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑍𝑍𝑝𝑝𝑝𝑝_𝑜𝑜𝑜𝑜𝑜𝑜 ∗ (
𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑛𝑛𝑛𝑛𝑛𝑛

𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑜𝑜𝑜𝑜𝑜𝑜
) (1) 

One of the most challenging aspects of extracting the 
impedance of a wind power plant is reducing the collector 

system to an equivalent impedance. The method of 
equating the collector system of a wind power plant is 
documented in [4] and is calculated with the following 
equations: 

𝑍𝑍𝑛𝑛𝑒𝑒 =
∑ 𝑍𝑍𝑖𝑖𝑛𝑛𝑖𝑖2𝐼𝐼
𝑖𝑖=1
𝑁𝑁2  𝑎𝑎𝑛𝑛𝑎𝑎      𝐵𝐵𝑛𝑛𝑒𝑒 = �𝐵𝐵𝑖𝑖

𝐼𝐼

𝑖𝑖=1

 (2) 

Where I is the number of branches in the collector system, 
Zi and ni are the impedance of the i-th branch, and N is the 
total number of wind turbines in the power plant. 

Once the equivalent impedances of the components of a 
wind power plant are extracted, we can reduce the diagram 
of Figure 1 to an equivalent impedance value. For the entire 
wind power plant, the equivalent values of R and X can be 
found by summing the impedances of the individual 
components. Below is the equivalent impedance 
calculation for our example: 

𝑅𝑅𝑛𝑛𝑒𝑒 = 𝑅𝑅𝑜𝑜𝑖𝑖𝑛𝑛𝑛𝑛 + 𝑅𝑅𝐵𝐵𝑆𝑆𝐵𝐵_𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 + 𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐵𝐵𝐶𝐶𝐶𝐶
+ 𝑅𝑅𝐵𝐵𝑆𝑆_𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋

(3) 

𝑋𝑋𝑛𝑛𝑒𝑒 = 𝑋𝑋𝑜𝑜𝑖𝑖𝑛𝑛𝑛𝑛 + 𝑋𝑋𝐵𝐵𝑆𝑆𝐵𝐵_𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 + 𝑋𝑋𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐵𝐵𝐶𝐶𝐶𝐶
+ 𝑋𝑋𝐵𝐵𝑆𝑆𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 + 𝑋𝑋𝑊𝑊𝐶𝐶𝑊𝑊

(4) 

Obtaining the equivalent short circuit diagram for the entire 
wind farm involves aggregating the current contributions 
of each wind turbine generator (WTG) and adjusting for 
the change in base. The equivalent short circuit conditions 
of a wind farm equipped with current limiting power 
converters along with corresponding current contribution 
from 18 type IV WTGs are obtained using the following 
relationships. 

𝐼𝐼𝐵𝐵𝐶𝐶_𝑝𝑝𝑜𝑜𝑝𝑝𝑛𝑛𝑝𝑝 = �𝐼𝐼𝐵𝐵𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 .𝑁𝑁� . (
𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑛𝑛𝑛𝑛𝑛𝑛

𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑜𝑜𝑜𝑜𝑜𝑜
) (5) 

𝐼𝐼𝐵𝐵𝐶𝐶_𝑝𝑝𝑜𝑜𝑝𝑝𝑛𝑛𝑝𝑝 = (. 1 ∗ 18) ∗ (
2𝑀𝑀𝑀𝑀𝑀𝑀

100𝑀𝑀𝑀𝑀𝑀𝑀
)

= 0.39𝑝𝑝𝑝𝑝 
(6) 

Positive sequence impedances provide the worst case fault 
current for a balanced three-phase fault. Wind turbine 
generators are typically ungrounded, rendering them open 
circuits for zero-sequence current. In this research, the 
focus is on transmission-level errors within wind power 
plants. For this purpose, the zero-sequence equivalent at 
the connection point can be simplified to an open circuit, 
modeled as an infinite impedance. As a result, the WTGs 
do not introduce any zero-sequence fault current into the 
network. 

The development of the equivalent machine for the 
entire wind power plant is done using ASPEN One-Liner 
short circuit software. ASPEN One-Liner is capable of 
demonstrating power electronics effects in Type III 
(w/chopper), and Type IV WTGs with a current-limiting 
generator model. Once the flow limits are defined for each 
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wind turbine and the appropriate adjustments are made on 
site, simulating a fault in the POI will produce the required 
values for an equivalent device. Table 1 shows the 
comparison of results in ASPEN with relations (5), (6). 

Table 1. Comparison of methods for single machine 
equivalents (current limiting WTG) 

A single machine equivalent can now be modeled by 
limiting the power plant to an output current of 0.397 pu. It 
is equivalent to A166 at 100 KV - 138 MVA base. 

2.2. Experiments and data collection 

The wind turbine simulated in this work is based on the 
configuration described by Catalán et al. [17], which 
consists of a squirrel cage induction generator (SCIG), full-
speed and full-variable-speed, i.e. electric. Figure 2 shows 
the facility where the experiments were conducted. 
National Instruments NI-USB-6009 data acquisition 
modules and a microcomputer are also on-site, where the 
LabVIEW interface runs for data acquisition. 

Figure 2. Installing the wind turbine system 
simulation bench: QTCM device and wind turbine 

simulation setup 

The data collected with the proposed system contains 
information from the SCIG operating in different 
production regimes, subject to failure or non-operation. 
This enables the creation of a database where machine 
learning techniques are later applied for early detection of 
failures. The steps of conducting experiments in the 
simulation wind turbine system are shown in Figure 3. It 
should be remembered that fb is the frequency value 
commanded by MP converter and FG by SCIG . 

2.3. Description of simulation process 
for wind turbine/induction generator 

In this section, the steps of conducting tests in the simulated 
wind turbine system are described. It is necessary to 
remember that fb is the frequency value commanded by the 
MP and FG converter by the SCIG [18]. 

1. The acceleration and deceleration ramps of both drives
are set to the same value. This prevents excess current in
some electric machines during start-up.

2. Fb = FG is set to ensure that both cars are at the same
speed after the start of the ramp.

3. Simultaneously, the start command is given to both
frequency converters.

4. When the system is in constant operation, FG is
gradually reduced to reach the first generation point.

5. Power supply to the SCIG converter is turned off.

6. Following the power cutout, the DC bus voltage of the
generator frequency converter should be reduced,
adjusting FG to reach 210V.

7. Data collection is done through the LabVIEW
interface.

8. FG is incrementally reduced to fmax, until one of the
following occurs:

 The generator reaches the rated current.

 The DC bus voltage of the converter, Vcc, reaches
the maximum value allowed by the equipment,
380 volts.

 The primary machine Imp reaches its rated
current.

9. Step 7 is repeated as necessary.

10. Simultaneously, shutdown commands are issued to
both frequency converters and operations are halted until
the mechanical assembly comes to a stop.

11. New values are defined for fb and FG.

12. Repeat step 1 as part of the Materials and Methods.

2.4. Prototype Generator 

The preparation of the machine was done in such a way that 
the development of the short circuit could be simulated, 
from the initial occurrence, almost imperceptible, to the 
extreme situations before the destruction of the stator 
winding. 

Section 4.7 
Method ASPEN One-Liner 

3-Phase
Fault Current 0.396pu 0.397pu 
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Table 2. Summary of machine states considering 
high impedance (AI), low impedance (BI), with 

intensity levels equivalent to the percentage of short 
circuit cycles of 1.41%, 4.81% and 9.26%, for a total 

of 6 failure levels 

Degrees of 
force Rounds % Types of short 

circuit 
1 1.41 

AI 2 4.81 
3 9.26 
4 1.41 

BI 5 4.81 
6 9.26 

For data collection, a graphical interface was used in 
LabVIEW software from National Instruments, which was 
developed specifically for this program. The two data 
acquisition modules used were NI-USB-6009, of the same 
brand. This module has 14-bit resolution, 8 analog inputs, 
4 of which are differential. For monitoring, 3 electric 
current sensors (current transformer (CT) type), a vibration 
sensor and an axial magnetic flux sensor were installed in 
the induction generator. 

2.5. Experimental description of the 
generator 

In order to determine to what degree the generator 
preparation process has changed the characteristics of the 
device, tests were performed on this generator and the data 
were compared with the samples obtained from the 
standard generator. Figure 4 shows the behaviour of the 
electric current, the voltage in the DC Bus of the converter 
and the power with the change in the frequency of the main 
device and the generator. The blue curves are the 
measurements taken on the standard generator, while the 
green curves are the modified generator curves. The 
frequency difference between GP and GM with the same 
output point is 0.5 Hz. 

Figure 3. The behaviour of GP in blue and GM in 
green. In (a, electric current behaviour; b, DC Bus 

voltage and c, three-phase power is produced 

This evidence has helped guide experiments to collect 
generator data. For fb between 45 and 60 Hz, the interval 
is 2.5 Hz and for FG steps it is defined as 0.02 Hz. The 
experiments were divided into 7 groups. A total of 1356 
data acquisitions have been made, of which 248 are normal 
generator conditions and 1108 are failure conditions. Table 
3 summarizes the experiments. 

Table 3. The steps of conducting experiments in the 
induction generator 

Step fb fg 
Normal 

45 to 
60Hz 

Steps of 
2.5Hz 

f1 = (Vcc = 210V) until 
fmax = (Vcc = 380V or Ig = 3A or 

Imp=3A), with steps 0.02Hz 

Failure 
AI-1 

Failure 
AI-2 

Failure 
AI-3 

Failure 
BI-1 

Failure 
BI-2 

Failure 
BI-3 
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3. Evaluation and validation of results

According to the scientific literature search, the MCSA 
technique was used to use generator electric current signals 
to form a database to detect short circuit faults between 
induction machines. Figure 5 shows a comparison between 
the SCIG signal collection operating near the nominal 
current also under normal and Bi-3 conditions. The base 
frequency is 60 Hz, the generator frequency is 58.87 Hz 
with respect to no failure and 58.84 Hz for the generator 
with failure. After placing the short circuit between the R 
and T phases, we found that there is an imbalance between 
the electric currents of the three phases of the generator, as 
seen in Figures 5a and 5b. In Table 4, this comparison 
between the measured electric current values in the 
converter line generator is shown, and it is found that the 
occurrence of short impedance, both high and low, 
unbalances the system, and this in the sub-regulator and 
current overflow in other phases are inevitable. Also, both 
the DC Bus power and voltage have decreased in their 
nominal values, also indicating the occurrence of 
abnormality. 

Figure 4. Natural generator with failure BI-3, with Hz 
= 60 fb 

Table 4. Numerical comparison between electric line 
current values, DC Bus voltage and power for 

normal condition 

With error BI-3 Normal Measured values 

2.9376 3.1383 ( )RI A

2.2624 3.1153 ( )SI A

2.1119 3.2292 ( )TI A

327 380 ( )CCV V
0.42 0.54 ( )P KW

The same phenomenon is repeated at the base frequencies 
of 45, 47.5, 50, 52.5, 55 and 57.5 Hz when placing the short 
circuit in the R phase. And in fact, the short presence in the 
R phase affected the S and T phases. Through the analysis 
in Table 5, it is obvious that the extreme conditions of the 
test, the normal operation and the short circuit of BI-3, can 
easily be described in the time domain as seen at the 
beginning, as a low impedance short circuit of 9.26% round 
and this is remarkable. Even if its occurrence is controlled 
during tests, the potential of its intensity to destroy the 
device is revealed by the operation of the generator 
electrical system. However, in short impedance events, the 
unbalance of the generator is hidden and it is difficult to 
detect it in time domain analysis. These conditions are 
shown in figures 6a to p. 
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Figure 5. Comparison of the electric current of three 
lines, with performance close to the nominal current, 
in different failure conditions. Caption (1) generator 
in normal state, (2) failure AI-1, (3) BI-1, (4) AI-2, (5) 

BI-2, (6) AI-3, (7) BI-3 

Evidence of a short circuit during critical failure is 
noticeable in the generator curves presented in Figure 7. 
Bus DC voltage curves and powers are far from nominal 
values compared to normal conditions. However, in the 
event of an initial breakdown (i.e. AI-1), there is almost no 
difference in voltage and power, as shown in Figure 7. The 
power and voltage information in the DC Bus indicates the 
occurrence of problems in the generator, so using this 
information in relation to other techniques can help in 
identifying the failures of the induction generator. 

Figure 6. Corrected SCIG curves under normal 
conditions, in blue, and error1 CC AI-, in yellow. In 4-

16A the behaviour of electric current, in 4-16B the 
voltage in DC Bus and in 4-16C the three-phase 

power is produced 

The short circuit simulation is entered in the branch 
between the R and S phases and although the T phase is not 
short-circuited on the branch, it is believed that the 
appearance of a fault is perceived in all three generator 
currents. Feature extraction was done in phase A. Database 
formation is explained in the next section. 

3.1. Results of applications of extractor 
versus classifier 

Table 5 shows the general results after 50 exercises of all 
the extractor-classifier combinations, in the training and 
testing bases. Using Fourier as the feature extractor, MLP 
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achieved an average success rate among all classes of 
84.48% and 76.53% in the training and test bases, 
respectively. As expected, it was better than linear 
classifications. Adding new features to the database 
provided improvements in all extractor-classifier 
combinations, however, it did not make the problem 
linearly separable, which justified the results of the OLS 
and Simple Perceptron classifiers reaching results below 
the MLP and Gaussian classifier. The sensitivity shows that 
MLP is better than other methods for identifying the 
normal operating conditions of the generator. 

The feature also shows that MLP is better than other 
classifiers in predicting faulty conditions. Goertzel's 
algorithm, despite implementing Fourier transform, 
provided results below classical Fourier transform for MLP 
classifier. This is especially seen in the test base, where the 
difference between the results in the training and test bases 
is greater than that of the Fourier extractor. Obviously, with 
this extractor, the simple perceptron and OLS classifiers 
obtained much worse results than the Fourier extractor, 
indicating that the use of this extractor worsens the 
separability of the database. 

Also, in Table 5, the combination of HOS-MLP ranks 
second in overall accuracy. There is a highlight for 
combining this extractor with a Gaussian classifier. This 
occurs because both the HOS extractor and the Gaussian 
classifier base their theories on Gaussian processes. The 
results of this extractor in linear classifiers were better than 
Goertzel's extractor, which indicates better resolution. 
SCM extractor was not effective for induction generator 
failure classification. Through these analyses, it was found 
that Fourier extractor is more effective for detecting short 
circuit in induction generator. 

Table 5. The overall results of the extractor-classifier 
for the following criteria: 

Accuracy (Acc), sensitivity (Sen), specificity (ESP), F 
score (Fsc) in training and test databases 

Fsc 
% 

ESP 
% 

Sen 
% 

Acc 
% classifier 

Training 
Fourier 

84.48
±2.65 

97.01
±0.59 

84.48
±2.65 

84.48
±2.65 MLP 

77.39
±0.81 

95.33
±0.16 

77.47
±1.13 

77.30
±0.63 quadratic Gaussian 

67.13
±1.37 

92.43
±0.43 

67.19
±1.71 

66.56
±1.17 simple perceptron 

65.00
±0.87 

91.73
±0.29 

65.10
±1.03 

64.91
±0.88 OLS 

Goertzel 
81.42
±1.46 

96.33
±0.34 

81.42
±1.46 

81.42
±1.46 MLP 

75.54
±0.87 

91.26
±0.98 

73.59
±1.56 

75.40
±0.58quadratic Gaussian 

33.04
±2.73 

74.66
±2.40 

33.01
±2.71 

32.80
±2.53 simple perceptron 

42.72
±1.03 

81.64
±0.60 

42.86
±1.19 

42.48
±0.99 OLS 

HOS 
93.31
±2.03 

98.82
±0.74 

85.31
±3.57 

83.31
±1.69 MLP 

78.96
±0.64 

95.75
±0.16 

78.96
±0.64 

78.96
±0.64 quadratic Gaussian 

49.91
±2.80 

85.69
±1.54 

49.75
±2.59 

49.73
±2.61 simple perceptron 

59.58
±1.40 

89.80
±0.51 

59.67
±1.72 

59.31
±1.26 OLS 

SCM 
40.93
±4.75 

80.61
±3.56 

40.93
±7.97 

40.93
±5.58 MLP 

55.03
±1.00 

88.00
±0.41 

55.03
±1.05 

54.97
±1.00 quadratic Gaussian 

31.18
±1.64 

73.21
±1.71 

31.03
±1.71 

30.75
±1.72 simple perceptron 

43.83
±1.08 

82.34
±0.54 

43.93
±1.36 

43.62
±0.97 OLS 

Test 
Fourier 

76.79
±3.40 

95.13
±0.87 

76.98
±3.59 

76.53
±3.45 MLP 

72.65
±2.36 

94.09
±0.68 

72.61
±2.42 

72.32
±2.29 quadratic Gaussian 

67.13
±1.37 

92.43
±0.43 

67.19
±1.71 

66.56
±1.17 simple perceptron 

65.00
±0.87 

91.73
±0.29 

65.10
±1.03 

64.91
±0.88 OLS 

Goertzel 
65.92
±2.99 

92.16
±0.94 

65.59
±3.16 

65.59
±3.16 MLP 

71.53
±0.54 

88.57
±0.78 

70.32
±1.21 

71.30
±0.78 quadratic Gaussian 

33.04
±2.73 

74.66
±2.40 

33.01
±2.71 

32.80
±2.53 simple perceptron 

42.72
±1.03 

81.64
±0.60 

42.86
±1.19 

42.48
±0.99 OLS 

HOS 
73.54
±1.57 

86.82
±0.34 

73.54
±2.31 

73.54
±1.42 MLP 

76.97
±2.10 

95.25
±0.59 

76.94
±2.25 

76.72
±2.13 quadratic Gaussian 

49.91
±2.80 

85.69
±1.54 

49.75
±2.59 

49.73
±2.61 simple perceptron 

59.58
±1.40 

89.80
±0.51 

59.67
±1.72 

59.31
±1.26 OLS 

SCM 
57.20
±1.51 

88.88
±0.62 

57.24
±1.52 

57.15
±1.52 MLP 

52.21
±2.42 

86.73
±1.09 

52.25
±2.87 

51.49
±2.37 quadratic Gaussian 

31.18
±1.64 

73.21
±1.71 

31.03
±1.71 

30.75
±1.72 simple perceptron 

43.83
±1.08 

82.34
±0.54 

43.93
±1.36 

43.62
±0.97 OLS 
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Table 6. The amount of hit according to the class of 
all classifiers using the Fourier extractor 

Training 
Class OLS simple 

perceptron 
quadratic 
Gaussian MLP 

99.81
±0.34 100.00±0.00 99.14±0.33 99.98±

0.11 Normal 
58.51
±4.10 54.05±5.85 62.94±3.27 73.51±

12.26 AI-1 

27.86
±5.60 24.68±13.85 54.11±3.28 66.00±

8.74 AI-2 

89.68
±1.76 61.57±11.78 86.71±1.31 94.05±

3.82 AI-3 

26.30
±0.68 9.51±9.82 39.49±5.91 58.94±

12.36 BI-1 

54.08
±3.61 33.29±17.12 92.10±1.21 98.89±

1.12 BI-2 

98.13
±0.5777.06±18.53 100.0±0.00 100.00

±0.00 BI-3 

Test 
Class OLS simple 

perceptron 
quadratic 
Gaussian MLP 

99.70
±0.46 99.98±0.12 98.76±1.61 99.25±

1.18 Normal 
55.53
±5.09 53.32±7.67 53.80±7.01 52.16±

14.23 AI-1 

26.15
±6.92 22.00±13.46 47.78±8.02 49.96±

11.07 AI-2 

89.16
±3.70 61.30±13.17 82.70±6.80 85.58±

6.92 AI-3 

23.73
±4.18 7.88±9.18 25.03±9.91 36.94±

14.46 BI-1 

52.71
±4.38 32.93±18.76 89.10±4.46 92.44±

4.09 BI-2 

97.69
±2.35 78.31±18.07 100.00±0.0

0 
98.81±

1.99 BI-3 

Table 6 shows the rate of hit based on the class of the 
proposed classifiers. It can be seen that in all the classifiers, 
the Normal class was obtained more than 98%. Class BI-3 
was classified by MLP with 100% and 99.81% accuracy in 
training and test bases. And this was expected because this 
is the most critical database failure condition. Linear 
classifiers achieved lower success rates than MLP for other 
classes. 

4. Conclusions

The current work deals with the prediction of wind turbine 
short circuit condition on the basis of neural network 
techniques. In fact, in all solved cases, normal conditions 
were classified with an accuracy above 99%, and by 
grouping all errors together, 100% was obtained in a dual 
classification. Rejection thresholds are implemented to 
reduce false positive and negative rates despite none of the 
samples being rejected. By analysing the outputs of dual 
neural networks, it is possible to detect when the dc bus is 
far from its nominal value (311 V), normal samples are 

usually misclassified as faulty, but the reliability of the 
classifier by band rejection due to classification the false 
positive error is maintained to avoid it. The analysis 
performed on the four feature extractors showed that in all 
the classifiers, the results of using Fourier to combine the 
databases are more effective, therefore, this information is 
relevant to perform short circuit detection in SCIG. The 
method used in this work proved to be efficient and can be 
replicated in systems already installed in wind farms as 
well as in a newer wind turbine. Since the frequency 
converters feed the new generators, this solution can also 
be embedded in it, creating an integrated product that is 
responsible for feeding, controlling and monitoring. This 
will certainly increase the reliability and availability of the 
wind farm. 
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