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Abstract

This paper presents a model-free real-time kinematic tracking controller for a redundant manipulator.
Redundant manipulators are common in industrial applications because of the flexibility and dexterity
they get from redundant joints. However, at the same time, the modeling of these systems becomes quite
challenging, even for simple tasks like trajectory tracking. Some classical approaches are being used to
tackle the issue, including a numerical approximation of the Jacobian and pseudo-inverse of the Jacobian
matrix. These approaches have their limitations as they require exact parameters for the modeling of the
manipulator; they are not immune to position error accumulation with time and put the manipulator way off
the target position. Swarm-based meta-heuristic algorithms have given a new direction to the solution of the
redundancy resolution problem. However, they are computationally intensive, formulated in discrete-time,
and better suited for offline computation rather than real-time. We proposed a novel continuous-time Zeroing
Neural Network with Beetle Antennae Search (ZNNBAS). The ZNNBAS algorithm can solve the quadratic
optimization problem for redundancy resolution in real-time. To test its performance, we applied it on 7-DOF
redundant manipulator with two trajectories to follow: character “M" and hypotrochoid. The manipulator was
able to trace the reference trajectories with minimal tracking errors.
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1. Introduction

The path planning of the robotics systems has
always been an immense challenge for the researchers,
especially when it involves multi-Degree Of Freedom
(DOF) robots to perform daily chores like; picking,
dropping, assembling, carrying, and placing objects [1–
3]. Most of them are redundant manipulators as they
possess more DOF than required for specific tasks. For
example, it is widely recognized that six degrees of
freedom are needed for end-effector motion trajectory.
A robot with seven or more joints is known as a
redundant manipulator for this task [4–7]. This so-
called redundancy gives manipulator dexterity and
flexibility in performing tasks [8–10]. The three major
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problems that redundant manipulators inherit are as
follows:

• Kinematic model of these manipulators is a
challenging task as they can have different
configurations where each leads to a new
kinematic model.

• No closed-form solution exists to the problem,
which involves manipulators with more than six-
joints [11, 12].

• These manipulators can have multiple config-
uration space states that results in the same
workspace state.

The redundancy of these manipulators can be exploited
to optimize the energy consumption and obstacle
avoidance in the workspace state [13–16].
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In kinematic control, researchers have investi-
gated different methods to come around the prob-
lem of redundancy resolution for the manipulators
with known kinematic model [17–20]. The classical
approach is the use of Jacobian matrix pseudo-inverse
(JMPI) for the solution of redundancy resolution prob-
lem [21, 22]. JMPI has its limitation as it is shown in [23]
that it does not have the potential to produce repeatable
results and is not immune to generating undesirable
configurations. A later technique to solve the redun-
dancy resolution problem of a robotic manipulator is to
approach them as a constrained optimization problem
[24–26]. These methods involve a function known as
a fitness or objective function. Its purpose is to refine
the angles of joints continuously; the solution to redun-
dancy resolution is to maximize the objective value [27].
In this case, the objective function is not limited to kine-
matic control and can generate different random config-
urations within and outside the kinematic model; this
optimization-driven approach changes the paradigm to
solve the redundancy resolution of robotic manipula-
tors. Inspired by this approach, [28] improved opti-
mization technique and, instead of relying alone upon
fitness function, introduced another penalty function
to constrain the angles of joints within a specific range
based on their mechanics. Similarly, another approach
inspired by the neural network is introduced in [29, 30]
to solve the redundancy resolution problem where the
dual neural network is used to solve the optimization
problem in real-time. To be noted, all these methods
require prior knowledge of the kinematic model of the
robotic manipulator, and as they operate in an open-
loop, so they are not immune to Position error Accumu-
lation (PEA). Uncertainties in manipulators like; length
of the robotic arms, angles of the joints, human error,
and Denavit–Hartenberg (DH) parameters can affect
the performance of open-loop control of the redundant
manipulator. If not, the manipulator’s long-term use
makes it vulnerable to several uncertainties because of
friction and wearing away, which can change the initial
parameters of the system.

In this paper, we have introduced a kinematic-
model-free method to solve the redundancy resolution
problem of the manipulator. The classical approach
is a numerical approximation to compute the inverse
kinematic model of the robots [31–33], but they can
fail to converge to a correct solution, and sometimes
out of infinite many feasible solutions, they are limited
to compute one [34]. This can be disadvantageous
for the manipulators in trajectory planning as a
single configuration may not be feasible given the
limitations of manipulator mechanics [35]. Advanced
techniques include training and data-driven approach,
which uses a neural network to estimate the kinematic
model of redundant manipulator [36]. Based on the
estimated model, the robot is being controlled, but

these techniques are computationally intensive and can
not work in real-time as they require an extensive
data set for estimation. Some approaches focus on the
approximation of the Jacobian of a manipulator and
design the kinematic controller of the velocity space.
This technique requires the computation of Jacobian
and its pseudo-inverse along the path in real-time,
which is computationally expensive.

In this paper, we introduced time-invariant Zeroing
Neural Network (ZNN) [37] with Beetle Antennae
Search(BAS) [38] in continuous time (ZNNBAS) to
design a model-free control for a redundant robotic
manipulator. ZNN has different variants, but in the case
of non-linear problems, they are designed to search
for optimum solutions or zeros of the problem using
a gradient in a closed-loop. However, meta-heuristic
algorithms such as BAS do the random search in the
search space to find the optimum solution to the
problem. They are known to solve the non-convex
problems, which include several local-minima along
with global-minima [39]. Most of the meta-heuristic
algorithms work in swarm-based approach where the
group of searching particles, [40, 41] they used discrete
Particle Swarm Optimization (PSO) to model the
kinematic control of 7-DOF robotic manipulator by
employing several particles in space to search for the
best joint configuration possible to move the end-
effector in Cartesian space. There are mainly two
problems with these systems.

• As the number of particles increases, the algo-
rithm becomes computationally expensive.

• In discrete domain, particles jump from point to
point, but they have continuous motion in reality.

Here we employed an algorithm in continuous time
that mimics the beetle’s nature. It is known as
Beetle Antennae Search (BAS). It is widely used in
several real-world applications [42–51]. This algorithm
involves a single particle and overcomes the problems
that discrete swarm particle optimization faces. We
implemented time-invariant ZNN where instead of the
gradient, we used a meta-heuristic BAS algorithm for a
random search of an optimum solution in a closed loop
to achieve the model-free design of redundant robotic
manipulator.

It is worth mentioning here that this method neither
requires the kinematic model nor needs to compute
Jacobian or inverse Jacobian on every iteration. It
feedbacks the fitness value of the end-effector in
Cartesian space to the joints in joint space to minimize
their angle error. The objective of this paper is:

• Proposed a model-free kinematic controller for
redundant robotic manipulator using Zeroing
neural network with meta-heuristic algorithm
inspired from beetles in continuous time
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(ZNNBAS) which does not require the calculation
of a jacobian or inverse jacobian matrix of
manipulator making them computationally
intensive.

• The proposed algorithm is immune to the
limitations of discrete-time swarm-based meta-
heuristic algorithms.

• Theoretical analysis was done to prove the
stability and convergence of the algorithm.

• Simulation results were achieved on KUKA LBR
IIWA-14, a 7-DOF robotic manipulator. Two
path tracking scenarios were tested to prove the
efficiency of the algorithm.

The remainder of the paper is as follows: Section
II discusses the problem formulation of a redundant
robotic manipulator. Section III gives a detailed
overview of ZNBAS in continuous time and its
mathematical insight. In Section IV, we discuss the
simulation scenarios, results, and discussion. In section
V, we concluded aper with final remarks.

2. Problem Formulation
In this section, we will discuss in detail the kinematics
of redundant manipulators and the kinematic control
and trajectory tracking.

2.1. Kinematics of Redundant Manipulator
Consider a robotic manipulator; the position and ori-
entation of its end-effector depend on the configura-
tion of its joints. To demonstrate it consider m-DOF
robotic manipulator i.e., m numbers of joints, and has
an n-dimensional workspace or Cartesian space. The
position of the end-effector in space corresponds to the
unique configuration of the joint-space. The mapping
from joint-space to Cartesian space is given as

x(t) = f (θ(t)) (1)

where x(t) corresponds to the position of end-effector
in Cartesian space and x(t) ϵ ℜn, similarly, θ(t)
corresponds to the configuration of arms in joint-space
and θ(t) ϵ ℜm, in case of redundant manipulator
m > n. Here, f (.) is a non-linear function, which
is a non-linear transformation between joint and
Cartesian space. In robotics, this is known as forward
kinematics, where given the configuration of joints,
one can evaluate the position of the end-effector in
a workspace. However, in most of the real-world
applications, forward kinematics is scarcely used as
tasks are carried out in Cartesian space instead of joint-
space, which is known as inverse kinematics and is
given as

θ(t) = f −1(x(t)) (2)

where f −1(.) Shows the transformation from Cartesian
space to the joint-space. The above equation is the
inverse of (1), for a known trajectory in Cartesian
space, we can compute the trajectory for the arms
in joint-space. This is possible only if we know the
exact kinematics of the system, so the accuracy of any
trajectory followed depends on the perfection of the
model. In the case of redundant manipulators, there
is no unique solution in the joint-space for a given
configuration in a workspace, which means that for any
configuration of end-effector in Cartesian space, there
can exist an infinite number of configurations in the
joint space. Thus, f −1(.) is not uniquely invertible, and
as f (.) is non-linear, so most of the time, the solution to
its inverse is not possible.
An approach to compute the kinematic model of a
redundant manipulator is to use the Jacobian matrix.
Take the time derivative of (1)

ẋ(t) = J(θ(t))θ̇(t) (3)

where ẋ(t) corresponds to the velocity of end-effector
in Cartesian space and ẋ(t) ϵ ℜn, similarly, θ̇(t)
corresponds to the velocity of arms in joint-space
and θ(t) ϵ ℜm. J(θ(t)) ϵ ℜnxm is a Jacobian matrix
and is calculated as J(θ(t)) = ∂f (θ(t))/∂θ(t). The (3) is
again a mapping from joint-space to Cartesian space
in velocity domain. As mentioned earlier in real-world
tasks include mapping from workspace to joint-space so
take the inverse of the above equation

θ̇(t) = J−1(θ(t))ẋ(t) (4)

In the case of a redundant manipulator, it would be a
rectangular matrix, and there is no easy way to compute
the inverse of a rectangular matrix. Researchers have
come around this problem by computing the pseudo-
inverse of the Jacobian matrix, but it is computationally
intensive. In addition, the Jacobian is valid only in the
vicinity of θ(t) e.g., J(θo) is valid in a given range let
us say ϵ from the past configuration i.e., |θ − θo | < ϵ,
where ϵ is very small. For the whole trajectory, the
algorithm needs to compute it repeatedly, which makes
it computationally very expensive.

Here we assumed that the correct kinematic mapping
of the redundant manipulator is known and the cal-
culated Jacobian generates a non-singular solution, so
the pseudo inverse is computable. All these strict hard-
core assumptions, which involve complex computation,
make the system vulnerable to the uncertainties of
the environment and system itself, calculation error,
and it requires much off-line modeling of the system
throughout the trajectory being followed. However, our
algorithm is model-free; it does not need to know
whether the manipulator is redundant for a particular
task or not. It does not involve computationally expen-
sive calculations like Jacobian and inverse Jacobian of
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the system. Our algorithm computes the objective func-
tion value based on the difference between end-effector
coordinates in Cartesian space and the goal position and
feeds it back to joints of the manipulator to tune their
angles such that they follow the trajectory.

2.2. Kinematic control and trajectory Following
Consider a robotic arm manipulator, and its task is
to grab a payload with the end-effector from a given
location in Cartesian space, move it through the same
space, and drop it to a goal position by following a
given trajectory. The kinematic control in the task is as
mentioned in an (1) to evaluate the states of links in
joint-space and map it in the Cartesian space such that
it follows the trajectory to the end-goal. To understand
this, consider a reference trajectory i.e., xr (t), objective
is given the states of links in joint-space i.e., θr (t), the
kinematic controller should generate the position and
orientation of end-effector in Cartesian space such that
it should generate a reference trajectory which is given
as

xr (t) = f (θr (t)) (5)

where θr (t) is an angle of the links in joint-space which
corresponds to the position of end-effector in Cartesian
space i.e., xr (t). As mentioned earlier, in the case of
the redundant manipulator, the controller can generate
many infinite solutions in joint-space for the same
position and orientation of the end-effector in Cartesian
space, and it is possible that many of those solutions
are not feasible with the mechanical constraints of the
system, for example, angle of the joint going beyond
its mechanical limit or prismatic joint extended out of
its limit. Our objective is to follow the goal trajectory
(5) such that the generated solutions lie within the
mechanical constraints of the redundant manipulator.
As we are proposing an optimization technique to solve
the redundancy resolution problem so we will make an
optimization problem out of this, which is

min
θ

h(xr (t), θ(t)) = ||xr (t) − f (θ(t))||22 (6)

subject to:

θ−1 < θ1 < θ+
1 , θ−2 < θ2 < θ+

2 , ...θ−m < θm < θ+
m

where h(xr (t), θ(t)) is an optimization function that is
to minimize or zero finding, and m in θm represents
the number of joints along with the angle constraints
where θ+ and θ− shows the maximum and minimum
limits of the joint. The problem states that the
controller needs to minimize the difference between
the reference trajectory xr (t) and the runtime evaluated
orientation and position of the end-effector f (θ(t)), all
in Cartesian space. Optimization problem also includes
the mechanical constraints of the joints, as in our case,

we only have angular joints, so we included angle
constraints only. The tuning parameter in this problem
is the angles of the links in the joint space θ(t). The
optimization problem is nothing more than an error
function which in simple form is given as

e = xr (t) − f (θ(t))

after this the optimization problem becomes

min
θ

h(xr (t), θ(t)) = (e)t(e) (7)

subject to:
θ− < θ < θ+

where θ− = [θ−1 , θ
−
2 , ...θ

−
m]t and θ+ = [θ+

1 , θ
+
2 , ...θ

+
m]t . The

solution to this optimization problem will generate
a trajectory in joint-space θ∗(t) that will follow the
reference trajectory in the same space θr (t) which is
given as.

θr (t) = θ∗(t) (8)

As we mentioned earlier, our algorithm does not rely
on the kinematic model of the manipulator. Instead,
it is a model-free approach to solve the redundancy
resolution problem of a redundant robotic manipulator.
Instead of kinematic control f (.), the algorithm will
only rely on the state of orientation and position of end-
effector coming from sensors x̂(.), so now the error (7)
becomes

e = xr (t) − x̂(θ(t))

It is worth mentioning here that mostly the algorithms
depends on the kinematic model to compute the
coordinates of the end-effector. However, our algorithm
does not rely on that and directly takes the coordinates
x̂(θ(t)) from the manipulator based on the fed angles
θ(t). Now our optimization problem becomes

min
θ

h(xr (t), θ(t)) = ||xr (t) − x̂(θ(t))||22 (9)

Our algorithm ZNNBAS, with its zero-finding ability
(ZNN) of non-linear function through random search
(BAS), can solve the optimization problem in (7) with
the objective function (9).

3. Control and Algorithm Design
In this session, we will discuss the algorithm formula-
tion of ZNNBAS and then detail theoretical analysis on
the stability and convergence of ZNNBAS.

3.1. Algorithm Formulation
Consider a 7-DOF redundant manipulator required to
track a given trajectory, which means that it should
minimize the objective value function given in (9), in
such a way that all the constraints of the redundant
manipulator angles meet as shown in (7). Our proposed
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algorithm involves a meta-heuristic algorithm which
mimics the searching nature of Beetle insect (BAS) [38],
as it senses the presence of food through its antennae.
The closed-loop zero-finding nature of ZNN along with
the random search of a single beetle in continuous time
makes it a perfect combination to optimize the 7-DOF
redundant robotic manipulator such that it follows the
given reference trajectory. Consider the manipulator
at time t is θ(t), ZNNBAS will start with a random
direction based on its antennae sensation towards the
optimum solution. The randomly generated direction
vector by ZNNBAS is b⃗, so now the joint configuration
of the 7-DOF redundant manipulator becomes

θ
′
(t) = β(θ(t) + λb⃗) (10)

where β(.) is a projection of joint-angles within the
constraint space of joint-angles, as we mentioned earlier
that we have to respect the angle limitations the
manipulator as well (7). Any angle which transgress this
constraint will be brought within its limit, the limiting
mechanism or the formulation of β(.) projection is given
as

β(θi) =


θ−i θi < θ−i
θi θ−i < θi < θ+

i

θ+
i θi > θ+

i

(11)

This projection function limits the joint-angles with the
mechanical constraints of the manipulator. The λ in
euq.10 is a scaling factor of the direction vector, it could
be a scalar number λconst or a vector λ = [λ1, λ2, ...λm]t

depends on application of how a particular joint should
proceeds in joint-space.
The robotic manipulator will move the seven joints
based on their respective angles and eventually the
end-effector will move to its new position x̂(t). Here
ZNNBAS algorithm will compute the error of reference
trajectory with the newly computed coordinates of the
end-effector as shown below

h(θ
′
(t)) = h(xr (t), θ

′
(t)) = ||xr (t) − x̂(θ

′
(t))||22 (12)

This is the objective function value we mentioned in
detail in (9). As the algorithm started from a random
point in search space, the value of the objective function
(12) will be high, which ZNNBAS will minimize with a
shorter period and will bring close to zero.

ZNNBAS not only minimizes the objective function
but its difference with previous values as well. ZNNBAS
stores a few previous states of the objective function and
then later t check the difference of the current objective
function value with the α old value of the objective
function as it is shown below

∆h = h(θ
′
(t)) − h(θ

′
(t) − α) (13)

To limit the difference of objective function ∆h,
ZNNBAS used sign(h(θ

′
(t)) − h(θ

′
(t) − α)), it will limit

the difference between two limits, in our case, we keep
it signmin = −1 and signmax = 1. The (13) is a scalar
value, but to update the angles of the joints we need
m x 1 vector, equivalent to the number of joints of the
manipulator. For that we will multiple it with input
angles and the new updated angles for all the joints will
become

θ̇new(t) = −k(θ
′
(t) − θ

′
(t − α)) (14)

sign(h(θ
′
(t)) − h(θ

′
(t) − α))

The bit of mathematical manipulation ended-up as
a differential equation, which means that we will
integrate all the previous values of the closed-loop
system and the resultant will give us the new-updated
angles for all the joints

θnew(t) =
∫ t

0
−k(θ

′
(τ) − θ

′
(τ − α)) (15)

sign(h(θ
′
(τ)) − h(θ

′
(τ) − α))dτ

To further understand its working let’s see the
schematic of ZNNBAS to implement the control of
redundant manipulator is shown in Fig.1. It can

∫

h(.) ∑

∑

Random Generator

-K

∑

τ

θ
new

Z

X Y

Figure 1. The schematics of the ZNNBAS to solve the
redundancy resolution problem of redundant manipulator
explained in Section.3.1.

be seen that Random_Generator generates m random
signals based on the number of links of the redundant
manipulator. Those generated angles are then added to
all the integrated states of the closed-loop system. The
resultant is then split into two, one for the input delay
box and the other for the manipulator. In the case of
a manipulator, the joints of the robotic system rotate
as per those input angles. As a result, the end-effector
moves in the workspace. The manipulator output the
xyz coordinates of the robotic manipulator to the object
function h(.), which computes the error between input
coordinates and the reference trajectory. The output is
then added to delayed signals of h(.). The resultant is
then limited using sign function and then multiplied
with an input signal to generate m x 1 vector. The
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product is then integrated back with the previous
state, and this closed-loop system keeps running, and
eventually, the objective function error narrows down
to zero (almost), and a redundant manipulator starts
chasing the reference trajectory. We implemented it in
MATLAB-SIMULINK.
Remark 1: In the implementation of ZNNBAS, although
we kept the λ given in (10) constant, but a modification
could be introduced by scaling its value as per the
amount of error generated by the objective function
value. As in the initial stages, the manipulator is far
from the reference trajectory, producing a larger error,
so the manipulator should take big steps, and when it
gets closer to trajectory and start chasing it, it should
take smaller steps, which is given as

λ = c1

√
h(xr (t), θ(t)) (16)

where c1 is a constant and h(xr (t)) is an optimization
function in (9).

3.2. Theoretical Analysis
Here we will do the theoretical analysis of the ZNNBAS
to prove that it is stable and converges to the optimal
solution. For that, there are mainly two theorems to
analyze one is related to the convergence of the joint
angles, and the second is related to the convergence of
the coordinates of the end-effector.

Definition 1: For the chasing of the reference trajec-
tory, the controller of the manipulator should show the
convergence in the join-space of the manipulator. The
objective function h(.) should decrease monotonically in
time t. The ZNNBAS is said to be stable if

h(xr (t2), θ(t2)) < h(xr (t1), θ(t1)) t1 < t2 (17)

where xr (t) is a reference trajectory, the above equation
means that objective function is a monotonically
decreasing function of time.
Theorem 1: For tracking controller of the redundant
manipulator, where robotic manipulator is in joint-state of
θ(t) with the end-effector coordinates x̂(t). The trajectory
generated by ZNNBAS in continuous time to track xr (t) is
stable.
proof: The controller for redundant manipulator
ZNNBAS is not stable if the object function h(.) does
not converge if it does not follow (17). Consider the
redundant manipulator at time t1 has a joint-state
θ(t1) with the objective function h(xr (t1), θ(t1)), and
later in time instance t2 the objective function becomes
h(xr (t2), θ(t2)) where t1 < t2. The ZNNBAS will only
update the joint-state of redundant manipulator if the
objective function value h(.) decreases monotonically
which is given as

h(xr (t2), θ(t2)) < h(xr (t1), θ(t1)) t1 < t2

otherwise, it will bring the manipulator back to its
previous joint-state, and will wait until the objective
function value further converge.
Definition 2: For the chasing of the reference trajectory,
the controller of the manipulator should converge
in the Cartesian space as well. It means that as
time approaches to infinity t →∞, the end-effector
trajectory must trace the reference trajectory.

x̂(t)→ xr (t) t →∞ (18)

where x̂(t) is the trajectory generated by the manipula-
tor and xr (t) is a reference trajectory.

Algorithm 1 Zeroing Neural Network with Beetle
Antennae Search (ZNNBAS)

1: Input: Write and objective function f (y(t)) where
2: y(t) = [y1(t), y2(t), y3(t), ....yn(t)]
3: Initialize:
4: λ← 0.1 %Scaling factor
5: k← −10 %Gain
6: sign← [−1, 1] %Activation
7: α ← 10 %Delay
8: t ← 0 %Initial time
9: tend ← T %Final time

10: Output:
11: θ(t)best = 0
12: h(.)best = h(θ(t)best)
13: while {t < tend}
14: Generate random direction vector b ∈ [−1, 1],
15: and calculate θ(t) using (10).
16: Compute objective function value h(θ(t)).
17: if (mod(t, (t − tend)) == α)
18: h(θ(t − β)) = h(θ(t))
19: θ(t − β) = θ(t)
20: end if
21: if (h(θ(t)) < h(.)best)
22: h(.)best = h(θ(t))
23: θ(t)best = θ(t)
24: end if
25: Update θ(t) using (15).
26: end while

4. Simulation Methodology, Result, and Discussion
In this section, we presented a simulation methodology,
which includes IIWA-14 redundant robotic manipula-
tor tracking the character “M" and hypotrochoid (star)
using ZNNBAS.

4.1. Simulation Methodology
In order to test the performance of our proposed
ZNNBAS algorithm, we used a redundant manipulator
IIWA-14 provided by the MATLAB Robotics Toolbox.
The robotic model is very close to the real-world
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Figure 2. Simulation results for 7-DOF IIWA-4 tracking using
ZNNBAS. (a) shows a robotic system tracking the character “M"
trajectory, starting from the home configuration. (b) shows the XYZ
coordinates of end-effector, (c) shows the angles of all seven-joints
in joint-space, (d) shows the objective function value how fast it
converges to zero, (e) shows the error between XYZ coordinates
of end-effector and reference trajectory, and (f ) shows the robot
following character “M" trajectory.

IIWA-14 manipulator and includes 7-DOF; we used
it as a testbed to measure the efficiency of our
algorithm. We used two-tracking paths as a benchmark
to prove the validity of ZNNBAS. In our simulation
we tested the algorithm by tracking two paths using
7-DOF redundant robotic manipulator; the first one is
Character “M" and the second one is Hypotrochoid or
star. For the character “M" trajectory the equation is
given below

x(t) =


c⃗0 + t−t0

t1−t0 (c⃗1 − c⃗0) t0 < t < t1
c⃗1 + t−t1

t2−t1 (c⃗2 − c⃗1) t1 < t < t2
c⃗2 + t−t2

t3−t2 (c⃗3 − c⃗2) t2 < t < t3
c⃗3 + t−t3

t4−t3 (c⃗4 − c⃗2) t3 < t < t4

(19)

where x(t) ϵ ℜ3, and c⃗ = [c⃗0, c⃗1, c⃗2, c⃗3, c⃗4] represents
the vertices of the character “M" such that x(t0) =
c⃗0, x(t1) = c⃗1, x(t2) = c⃗2, x(t3) = c⃗3, and x(t4) = c⃗4. As
the “M" trajectory has five vertices so the trajectory
we used has following vertices: c⃗0 = [0.1, 0.2, 0.1],
c⃗1 = [0.1, 0.2, 0.5], c⃗2 = [0.1, 0.4, 0.3], c⃗3 = [0.1, 0.6, 0.5],
and c⃗4 = [0.1, 0.6, 0.1]. Our character “M" trajectory is
defined in y − z plane at x = 0.1.

Similarly, the other tracking trajectory is hypotro-
choid (star) which is a roulette, made of two circles. It
is trace by a single point joined with a smaller circle
of radius r, which circle around inside the larger circle
of radius R. The distance from the point to the center
of the smaller circle is denoted as d. The parametric
equations for hypotrochoid (star) are as follows

x(t) =


cx

cy + (R − r) cos(t)ay + d cos(R−rr t)by
cz + (R − r) sin(t)az − d sin(R−rr t)bz

 (20)

where c⃗ = [c⃗x, c⃗y, c⃗z]t is the center of the hypotrochoid

(star), a⃗ = [a⃗x, a⃗y, a⃗z]t , and b⃗ = [b⃗x, b⃗y, b⃗z]t are two
perpendicular vector which defines the plane for
3D hypotrochoid (star). The t is an angle between
the range of 0 < t < 2πLCM(r, R)/R. In our case,
c⃗ = [0.1, 0.3, 0.2]t , a⃗ = [0, 1, 0]t , and b⃗ = [0, 0, 1]t . Our
hypotrochoid (star) trajectory is defined in y − z plane
at x = 0.1.

Although we have tried two trajectories to validate
the performance of our proposed Continuous Time
Beetle Antennae Search algorithm (ZNNBAS), it will
work for any other tracking path as well.

The tracking of the Character “M" trajectory is shown
in Fig.2. Fig.2a shows the 3D tracking of IIWA-14
redundant manipulator by our proposed algorithm
ZNNBAS. In the beginning, it shows the base or
home position of the manipulator; then, by randomly
searching in the workspace, it finally reaches the tracing
point of the character “M" and starts following it. At
first, the error between the reference trajectory and the
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Figure 3. Simulation results for 7-DOF IIWA-4 tracking a
hypotrochoi (star) trajectory using ZNNBAS. (a) shows robotic
system tracking the hypotrochoid (star) trajectory, starting from
home configuration. (b) shows the XYZ coordinates of end-effector,
(c) shows the angles of all seven-joints in joint-space, (d) shows
the objective function value how fast it converges to zero, (e) shows
the error between XYZ coordinates of end-effector and reference
trajectory, and (f ) shows the robot following hypotrochoi (star)
trajectory.

manipulator’s trajectory is large, which narrows down
as the manipulator starts chasing it, and this is all done
by a single beetle particle working in continuous time.
The Fig.2b shows the XYZ coordinates of the end-
effector. It can be seen that character “M" is in y − z
axes as the y and z coordinates of the end-effector move
in the plane, and the x-coordinate remains constant.
Similarly, Fig.2c shows the angles of the redundant
manipulator throughout the tracking. The Fig.2d shows
the objective function value, and as it is seen that
simulation lasts for 50sec, but even less than 10sec
the error approaches zero, and during the time from
40sec to 50sec the error went down to 10−5, which
shows how efficiently and precisely ZNNBAS optimizes
the problem without showing any spikes of noise or
undesirable behavior of manipulator. Fig.2e shows the
error in each coordinate, and as it can be seen, that error
approached zero in no time.

For the hypotrochoid (star) trajectory, the results
are shown in Fig.3. The Fig.3a shows the 3D tracking
of the redundant manipulator, which starts from the
base or home position, which is erect and then moves
through space randomly to trace the reference track,
and eventually, it did track the hypotrochoid (star).
This shows the power of a single beetle in continuous
time and how efficiently and accurately it tracks down
complex trajectories like a star. Fig.3b and Fig.3c show
the coordinates of the end-effector and the angles of all
the seven links of the IIWA-14 redundant manipulator.
Similarly, Fig.3d shows the objective function value,
and in a simulation of 50sec, it approaches 0 in less
than 3sec. Likewise, Fig.3e shows the error in xyz
coordinates of the end-effector, and it can be seen that
they approach zero in no time.

The major drawback or limitation of ZNNBAS is
the correct determination of α, which is the core
hyper-parameter to determine the performance of the
algorithm. Likewise, the other hyper-parameters are
manually set. In future, we plan to work on these
limitations to make ZNNBAS more robust and efficient.

5. Conclusion
The objective of this paper was to address the
redundancy resolution problem of the redundant
manipulator used in numerous industrial applications
and their kinematic control design. We proposed
a model-free control for redundant manipulators
using Zeroing Neural Network with Beetle Antennae
Search (ZNN) in continuous time. ZNN alone used
a gradient-based method to search for an optimal
solution that may limit it to local-minima, but
with the random search of BAS, it can avoid local-
minima and converge to a global solution. The
redundancy resolution problem is tackled through
Particle Swarm Optimization (PSO) algorithm, but they
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are computationally intensive and do not mimic the
nature of the insect army in general as they are
discrete. ZNNBAS has overcome these challenges as
it involves a single particle to solve the redundancy
resolution problem of a redundant robotic manipulator
in continuous time. We theoretically prove the stability
and convergence of ZNNBAS, and a test case, we used
7-DOF IIWA-4 redundant manipulator provided by
MATLAB and successfully tracked two trajectories i.e.,
character “M", and Hypothyroid (star).
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