EAl Endorsed Transactions

on Al and Robotics

Research Article EALLEU

Bio-inspired BAS: Run-time Path-planning And The
Control of Differential Mobile Robot

Mubashir Usman Ijazl, Ameer Tamoor Khan?, Shuai Li3 *

'Department of Mechanical Engineering, Pakistan Institute of Engineering and Applied Sciences, Pakistan
’Department of Computing, The Hong Kong Polytechnic University, Hong Kong
3Department of Electronic and Electrical Engineering, Swansea University, UK

Abstract

Trajectory tracking and obstacle avoidance lies at the heart of autonomous navigation for mobile robots. In
this paper, a control architecture for trajectory tracking while avoiding obstacles and controller tuning is
proposed for a differential drive mobile robot (DMR). The framework of optimization algorithm is inspired
by the food search behavior of beetles using their antennae. Path planning and controller tuning still remain
computationally demanding tasks despite of the proposed algorithms existing today. Here, we propose a meta-
heuristic optimization algorithm to solve these two problems by choosing appropriate objective functions. Our

bio inspired approach unifies path planning and controller tuning problems by minimizing the respective
cost functions and solving the optimization problem efficiently. Trajectory tracking problem is based on the
difference of the current and next pose of the robot while obstacle avoidance is achieved on the principle of
maximizing the minimum distance between the robot and obstacle in the path of the robot. The proposed
architecture is simulated in V-REP environment using MATLAB. Simulation results have verified that beetle
antennae search can successfully plan and track the reference path by tuning the PID controller efficiently.

Received on 26 April 2022; accepted on 02 June 2022; published on 10 June 2022
Keywords: Meta-heuristic optimization, Trajectory Tracking, Path planning, Obstacle avoidance, Bio-inspired algorithm

Copyright © 2022 Mubashir Usman Ijaz et al., licensed to EAI This is an open access article distributed under the terms of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited

use, distribution and reproduction in any medium so long as the original work is properly cited.

do0i:10.4108/airo.v1i.656

1. Introduction

While performing navigation in previously unseen
environments, robotic agents must localize themselves
by perceiving their surroundings, plan a safe trajectory
to reach the desired goal and control their motion
along the way[1]. Path planning includes finding a
shortest and an obstacle free path while motion con-
trol involves setting the joint target velocities so that
the robot follows the desired path. Path planning is
an intricate task for autonomous navigation of mobile
robots[2] and becomes more challenging in unstruc-
tured environments with no prior knowledge. There-
fore, path planning has been a hot spot in many fields
including intelligent robotics research and a consid-
erable number of research issues have been studied

*Corresponding author. Email: shuaili@ieee.org

2 EAI

in this area[3-6]. In recent times various path plan-
ning algorithms have been proposed such as dijk-
stra, probabilistic road maps, A*, rapidly exploring
random trees (RRT), genetic algorithms, and particle
swarm optimization to name a few[7-10]. Despite of
many proposed solutions and their eminent advan-
tages, advanced discoveries reveal that these methods
have several inherent weaknesses[11][12]. Main hurdles
remain computational complexity, adaptability, time
constraint, and convergence on local optima[13]. Since
obstacle avoidance is quite challenging task, many
approaches are proposed by different researchers to
solve this problem[14]. For example, although Bugl
algorithm[15] is simplest and easy to implement how-
ever it spends excessive amount of time around the
obstacle. Another approach developed by Mr. Khatib
called Artificial Potential field in which robot is consid-
ered as a point and it gets repelled from obstacles[16].
The main problem with this method is that the robot
can get trapped in local optima. In addition to these

1 EAI Endorsed Transactions on

Al and Robotics

http://creativecommons.org/licenses/by/3.0/
mailto:<shuaili@ieee.org>

Mubashir Usman ljaz et al.

obstacle avoidance algorithms some other algorithms
can be found in[17-21]. Mobile robot path planning
approaches can be classified in two broad categories
based on the availability of prior information. These
include global planning and local planning[22, 23].
Global path planning works by planning a trajectory in
an environment where position and the vertices of the
obstacles are known. In contrast, local path planning is
based on the current information of the robot and priori
information of the obstacles is not available. A recent
study undertaken by Nitin and Chinmay discusses var-
ious classes of path planning algorithms along with
their variants[24]. In addition to trajectory planning,
motion of the robot is required to be controlled to
ensure it follows the desired path[25-27]. Various con-
trol techniques have been proposed by the scientists
over the years, such as PID, optimal and model pre-
dictive control. In this paper, PID controller is adopted
which is a widely used across many other industrial
applications[28-30]. For proper functioning optimal
parameters of the controller are needed and thus it must
be tuned[31-33]. Conventionally, Zeigler and Nichols
method [34] works well for wide range of applications
however, it’s prone to overshoot and changes in system
or environment dynamics and therefore needs to be re-
tuned. With advanced computational techniques, new
methods for parameter tuning have been proposed for
optimal performance[35-37]. Some of them include
Genetic Algorithms (GA)[38], fuzzy systems[39], Eagle
Perching Optimizer[40], Ant Colony Optimization
(ACO)[41], artificial neural networks (ANN)[42], Parti-
cle Swarm Optimization (PSO)[43], bio-inspired neural
networks[44] and artificial immune systems. Some of
these algorithms such as PSO and ACO are nature
inspired evolutionary algorithms which are based on
the principle of survival of the best solutions found
by communicating personal best with global best
positions[45, 46]. Russel and Kennedy, in 1995, devel-
oped particle swarm optimization algorithm which
mimicked the behavior of swarm populations[47].
Another such algorithm inspired by egg laying behavior
of cuckoo called Cuckoo Search (CS) was developed
by Yang in 2009[48]. Not all algorithms perform well
with all classes of optimization problems. BAS has
successfully been tested for fraud detection in trade,
control of surgical robots, distributed control of robots
and redundant manipulators[49-52]. In this paper we
attempt to address two different constraint optimiza-
tion problems[53].

* Planning an obstacle free shortest path for a
differential robot to reach the goal.

* The robot should track the time varying reference
trajectory based on kinematic model by tuning a
PID controller.

O EA

* Non-Holonomic constraints and rotational speed
limit of mechanical joints are observed.

To solve these problems, we have proposed a nature
inspired beetle antennae search (BAS) algorithm. BAS
is a metaheuristic optimization algorithm inspired by
the food search behavior of beetles[54]. There are
several advantages of using BAS over other previously
mentioned algorithms such as Ant Colony Optimization
(ACO) and Particle Swarm Optimization (PSO)[13].

* Algorithms such as PSO, GA, and ACO use swarm
of particles. These swarms explores the search
space and either one of the particle, as in PSO,
or all of them, as in GA, move toward the
global minimum by communicating. Whereas, in
contrast, BAS is a single particle algorithm.

* As BAS is a single particle algorithm and requires
less parameters to be adjusted, therefore it is
computationally efficient, robust, immune to local
minima and easy to implement.

* Time and space complexity of swarm algorithms
is dependent on the population size and problem
dimension whereas the complexity of BAS is
polynomial in time [55].

* Comparison with other algorithms such as PSO,
and its real-world applications such as portfolio
optimization[56-58] and control of UAV for
obstacle avoidance [59] shows that BAS is the
state-of-the-art bio-inspired algorithm.

Our algorithm solves the two different optimization
problems simultaneously which corroborates the adapt-
ability and robustness of our algorithm for different
optimization problems. Our main contributions in this
paper are as follows.

* Our proposed algorithm successfully plans a
smooth, obstacle free trajectory to reach the
goal and controls the robot motion to track the
reference trajectory.

* Objective function we used minimizes the track-
ing error while the penalty function used in our
algorithm rewards the optimizer, rather than act-
ing passively, for avoiding obstacle by maximizing
the minimum distance between the robot and the
obstacle.

* We tested our algorithm on Pioneer-P3Dx plat-
form provided in the V-rep environment and sim-
ulation shows the successful implementation as
the robot is able to reach the goal while tracking
the reference trajectory.

The following table gives the abbreviations and
nomenclature adopted throughout the paper:

2 EAI Endorsed Transactions on

Al and Robotics

Bio-inspired BAS: Run-time Path-planning And The Control of Differential Mobile Robot

DMR Differential Mobile robot

BAS Beetle Antennae Search

PSO Particle Swarm Optimization
NP | Non-deterministic polynomial time

1.1. Kinematics and unicycle model of the DMR

A differential drive mobile robot consists of two wheels
which are independently driven of each other and are
mounted on the common axis which is perpendicular
to the orientation of the robot. It is worth mentioning
that here we have considered only kinematic model and
actual inputs, i.e force and torque, to the wheels are
ignored to avoid dynamics of the system [60]. For this, it
is assumed that motors are powerful enough to realize
V and w instantaneously. The position of robot can be
controlled by changing the velocities of the two wheels.
When one of the wheels turns slower than the other,
DMR turns in that direction. The robot model which
treats the robot as rigid body and relates left and right
wheel velocities to the position and orientation is given
by the following equations.

x/:g(v,+vl)cos(9) (1)
Y = 2 (v, + v)sin (6) 2)
0="(v,~u) 3)

The figure 1 shows the kinematic model of differential
drive mobile robot.

4

Y

Figure 1. Kinematic model of the DMR

Odometry is used to determine the robot’s state in the
environment i.e pose of the robot[61]. Wheel encoders
keep track of the revolutions and give the information

O EA

of how far each wheel has travelled for a short time
scale. When a robot changes its pose, its new position
and orientation (x’,y’,) are needed to be determined
from its previous pose as measured from the center of
the robot. Let’s consider the left and right wheels of the
robot have moved a distance of d; and d, from its initial
pose, then the distance moved by the center d. of robot
can be computed as:

dy+d
de=——~" (4)
_ dr - dl
A0 = o= (5)
AO =0 - AO (6)
X =x+ d. cos(0) (7)
v =y +dsin(0) (8)

Here we have adopted unicycle model of the robot for
simplicity which is based on the particle motion and
takes into account only forward velocity and direction
of motion of our robot. Here velocity and orientation
are related to the position of the robot in world frame as:

x cos(B(t)) O
yW:mem>o[gg] (9)
0 0

1
Jacobian matrix defines the relation between forward
and rotational velocities of the unicycle model to the
left and right wheel velocities of the actual robot. If p
is the pose of the robot and q vector contains the wheel
velocities than unicycle velocity vector is given by:

_dpdq _ _dq
”_8_q§_ ot (10)

In the above equation] represents the Jacobian
matrix and V,, contains forward, lateral, and rotational
velocities of the unicycle model. This equation describes
the relationship between forward velocity V and
rotational velocities. From this equation it is evident
that the robot’s forward velocity V and rotational
velocity w are equal to the product of Jacobian matrix
with left and right wheel’s velocities. To meet the
non-holonomic constraint of the robot, there is no
motion in lateral direction of the wheels. Thus, forward
and rotational velocities are given as:

V==(v+v,) (11)

(v, =) (12)

w =

=l

Two components of the robot velocity given by the
above equations in body attached frame are related to

3 EAI Endorsed Transactions on

Al and Robotics

Mubashir Usman ljaz et al.

left and right wheel velocities by | matrix as:

V E E —vr
MR 1
Hence
R R
1=[§ % (14)
L L]

Also, we have a maximum rotational speed v,,ax that
can be achieved from mechanical actuators of the DMR.
The speed commands to left and right motor should be
less than this value to avoid any mechanical failure. This
can be written as:

Vr <Vmaxr VI < Vpax (15)

Wheel radius and distance between the wheels of the
DMR is given as:

Parameters | Value
R 2cm
L 33cm

The remainder of the paper is structured as follows.
Section-2 explains the kinematics of the robotic
platform and goes on to formulate the objective
functions for the optimization problems. In section-
3 we discuss our proposed nature inspired algorithm
along with its implementation to solve the problem. In
section 4, we employed our algorithm to simulate it on
the test platform and discussed the results. Finally in
section-5 we conclude our article with final remarks.

2. Problem formulation

Next, we will discuss the trajectory tracking, obstacle
avoidance and controller tuning problem with their
objective functions.

2.1. Trajectory Tracking

To reach the desired goal, DMR must follow a reference
trajectory as calculated by beetle antennae search
algorithm. For the robot to follow a desired path in
its environment, its cartesian space coordinates should
change as per the reference trajectory. If the pose of
the robot in global co-ordinates is given by the vector
p(t) =[x,,0]T and reference trajectory is given by
Pref(t) = [x, 9, 0]T, than the error between the actual and
reference pose is calculated as h;(t) = pret(t) — p(t). As
the states of the robot evolves with time, the trajectory
tracking problem is formulated as an optimization
problem with the goal to minimize the error distance
between the actual pose and reference trajectory. Thus,
the optimization problem is formulated as:

min he(p(t), pres(t)) (16)

O EA

While tracking the reference trajectory, objective
function hy(.) minimizes the error, which is given as:

ht(P(t)’ Pref(t)) = “Pref(t) - P(t)“z (17)

2.2. Obstacle avoidance

Often robots have to perform in an unseen environment
which contain static and moving objects. Avoiding these
obstacles while maintaining an optimal path is a crucial
task for safe operation of the robot in its environment.
The trajectory tracking problem does not incorporate
obstacle avoidance and thus it needs to be addressed
separately. Obstacle avoidance problem is based on
the principle of maximizing the minimum distance
between the robot and the obstacle[51]. This leaves us
with another optimization problem which is modelled
by the following equation:

min hy(Obs, p(t)) (18)

In the above equation Obs is the obstacle defined by
Obs € R'? and robot position is given by p. Here we
have adopted an efficient approach of Gilbert-Johnson-
Keerthi (GJK) algorithm which calculates the minimum
distance between the obstacle and robot and is given as:

dis(Obs, p(t)) = GJK(Obs, p(t)) (19)

GJK algorithm works by computing the minimum
distance between the closest vertices of the arbitrary
shaped convex objects. It can be easily extended to
handle concave shapes formed by combining different
convex polygons. Now we are able to formulate our
optimization problem which is based on maximizing
the minimum distance between the DMR and the
obstacle, concretely:

1
min dis(Obs, p(t))

h, (Obs, p(t)) = (20)
The denominator of the above equation calculates
the minimum distance, and its reciprocal gives the
maximum value. Here DMR is considered as a point
object, and this assumption leads to an additional
constraint which requires us to incorporate a distance
greater than the base radius b of the robot.

GJK(Obs, p(t)) > b (21)

Thus, the final optimization problem for the obstacle
avoidance is a combination of maximizing of the
minimum distance and base radius of the robot and is
now defined as:

1
ho = min dis(Obs,p(t))S't GJK(Obs,p(t) > b (22)

Now we are in a position to concretely formulate our
optimization problem.

4 EAI Endorsed Transactions on

Al and Robotics

Bio-inspired BAS: Run-time Path-planning And The Control of Differential Mobile Robot

2.3. Overall objective function

In the previous sections, we have separately defined our
objective functions for tracking a reference trajectory
and avoiding obstacles. Now before we move on to our
overall objective function we have joint angle limits
constraint associated with the mechanical actuators
of the robot. Motor joints are only capable to work
between upper and lower limits of certain joint angles.
These limits are dependent on the design of actuators
and motor joints must operate between these limits.
This leaves us with joint angles limits constraint and it
can be stated as:

0~ <0(t)<0* (23)

Now we are in a position to combine these objective
functions to formulate our overall optimization prob-
lem with objective function h(.) which is given as:

min h (he(t), ho(t)) (24)

Essentially, our goal is to minimize the following
objective function while constraints GJK(Obs, p(t)) > b
and 6~ < O(t) < 6% are satisfied:

P2
dis(Obs, p(t))
(25)

min h (h(t), ho(t)) = B1llpref(t) — p(t)ll; +

In the above objective function ; and p, are the
respective weights that influence the impact for
trajectory tracking and obstacle avoidance outputs.
Values of the f; and B, constants are paramount to
the proper functioning of the algorithm. With that, we
have now our fully developed optimization problem.
The optimization algorithm presented next will be able
to generate an optimal obstacle free path by minimizing
this objective function.

2.4. Controller loss function

Manual tuning of the PID controller is painstak-
ing and a time-consuming task. A widely used
Ziegler-Nichols’s method can sometimes result in
larger overshoots and is not an optimal approach. With
accelerating computational power in recent times, sev-
eral evolutionary algorithms such as particle swarm
optimization and genetic algorithms have been used
to achieve optimal controller performance. Here we
will use Beetle Antennae Search, an intelligent meta-
heuristic optimization algorithm to find the controller
gains. Controller loss function, also referred as perfor-
mance index, determines how far the error is from the
set point and thus gives a quantitative measure of how
well the controller is tuned. Here are four commonly

O EA

used performance indices [43].

IAE :ro le(t)| dt (26)
0

ITAE =ro tle(t)| dt (27)
0

ISE :ro (e(t))* dt (28)
0

ITSE :foot(e(t))z dt (29)
0

Integral absolute error simply sums up the areas which
are above and below the set point. In case of penalizing
the errors at later stage IAE is multiplied with time so
that its integral becomes larger with time. In this paper
square of the error is integrated over time to punish
the larger errors. Integral time squared error (ITSE)
function is used to penalize both larger errors and
errors at the later stage. With ISE performance index,
BAS tries to seek gains for proportional, integral, and
derivative terms so that the loss function is minimized.
Thus, using this performance index, PID gains are
adjusted to reach the desired velocity.

3. Proposed Algorithm

In this section, we will formulate the framework
of BAS and then we use it for solving the path
planning problem for DMR. Finally, we use BAS
to tune PID controller automatically. Traditional
optimization algorithms such as gradient descent work
well for continuous functions only and are also
computationally expensive. Also, these algorithms can
converge on a local minimum and therefore can’t
be used for non-convex problems. Here we will use
Beetle Antennae Search algorithm (BAS) to solve
our optimization problem. BAS is a nature inspired
metaheuristic optimization algorithm based on the food
search behavior of the beetles. Unlike particle swarm
optimization that uses swarms of particles to converge
to the global optimum BAS stems from the foraging
behavior of the beetles. By using its two antennae
beetles sense the smell intensity and move in the
direction of higher intensity which helps them locate
their food. Inspired by this incredible sense of smell of
beetles, BAS works by randomly initializing a search
direction and calculating the difference of objective
function value. At this stage, it’s decided in which
direction value of the objective function improves and
a new direction vector is estimated. This process is
repeated until the goal is reached. The main loop of
the algorithm terminates if the goal is reached, or the
maximum allowed number of iterations are reached.
Next we present a step by step procedure of solving an
optimization problem using BAS.

5 EAI Endorsed Transactions on

Al and Robotics

Mubashir Usman ljaz et al.

Algorithm 1 Beetle Antennae Search

1: Input: Given an Objective function min f(x)
2: Initialize:

3: T« 100; % Number of iterations
4: 1« 0.3; % Step-size

5: 6« 0.99; % Step controlling factor
6: d, < 0.9; %Antennae length

7: Initial random vector b

8: Output: xb:st' fbest

9: For t=1«T R

10: Generate random vector b = [0, 1]
11: Compute the objective function f(x).
12: iff(x) < fbest

13: Joest = f(x)

14: Xpest = X

15: end if

16: Move in the est_imated direction

17: Return X5, fpest

18: end For

3.1. Path Planning

Other than perception and motion control problems,
path planning is of paramount importance, and it
has been a point of discussion for quite a while
in academia particularly in the field of autonomous
navigation of mobile robots. Since path planning is a
non-deterministic polynomial time (NP) hard problem
and its complexity depends on the degrees of freedom
of the system. A good path planning algorithm must
ensure the following four conditions. If exists, it should
always be able to find an optimal path in static
environment. The algorithm should be expandable to
find path in dynamic environments. Additionally, it
should minimize storage requirements and thus be
computationally inexpensive. In this section, we will
use Beetle Antennae Search algorithm to make the
robot reach its goal without colliding into obstacles and
reduce computational burden on CPU.

A path generated must meet the conditions of
completeness and optimality to successfully solve the
path planning problem. By completeness it's meant
that if there exists a path between two points than
the algorithm must be able to generate a solution.
Optimality constraint ensures that the path generated
should have minimum distance while avoiding any
obstacles. Obviously, path doesn’t need to be optimal if
any one of the objective constraints are compromised.

As with any optimization algorithm, hyper-parameter
tuning remains imperative for successful implementa-
tion of BAS. Here we tried several values for step size I,
step controlling factor 9, antenae length d, and number
of iterations T before using them. The optimization
of these hyper-parameters is a separate optimization
problem which is not the main focus here. Initial values

O EA

for the robot’s X and Y co-ordinates are randomly
initialized inside the 2D space S(S = R?) and obstacles
lie within this space S such that Obs e S. It is also
assumed that the obstacle and goal position remain
fixed during the search. The goal position is provided
to the algorithm as X, € R!*2 and BAS starts to explore
the space. We have modelled the DMR and obstacles
as a point objects with a safety radius which is an
added constraint to our overall objective function as
shown in the previous section. With the current and
goal positions known, BAS samples through the work-
space S and generates shortest trajectory along with
ensuring the obstacle avoidance condition is satisfied.

On each iteration, BAS performs random sampling,
and left and right direction vectors are estimated to
find the objective function value at that point. In each
next step, an if condition is checked to find if the
current estimated vector decreases the value of the
objective function, such that f < f,,;,. Values of xp,g;
vector are only updated when if condition is satisfied.
Finally main loop is terminated either if the goal point
is reached or if the maximum number of iterations are
reached. The vector x;.; represents the set of optimal
or near optimal waypoints and is given as input to the
controller.

3.2. Controller Tuning

PID controllers are extensively employed throughout
various industries and therefore choosing optimal
gains for proportional, integral, and derivative terms
remains a point of interest. Conventional methods of
PID tuning are either iterative or require algorithms
that are computationally expensive and consequently
the significance of controller tuning using simpler
algorithm can’t be condoned. Here, controller receives
the error between the desired and current heading
direction of the robot. This error is transformed to
rotational velocity required to decrease the error as
the output signal of the controller. The error is only
computed if the distance of the robot is greater than the
threshold distance value d,.

t
w:er+KiJ.edt (30)
0

For the robot to follow the desired trajectory, K, and
K; controller gains must be chosen carefully. Here
Beetle Antennae Search algorithm is used to search
for these gains using the ISE performance index as an
objective function. The range of the PID parameters
is set between 0 to 100 and BAS yields the values for
proportional and integral gains that minimize the cost
function. The update rule for x5 variable remains the
same as in case of path planning which ensures the
value of output variable is only updated if the x,,,
is better than the previous value and is kept same if

6 EAI Endorsed Transactions on

Al and Robotics

Bio-inspired BAS: Run-time Path-planning And The Control of Differential Mobile Robot

it increases the value of objective function. Next, we
present the BAS implementation for path planning and
controller tuning for our robotic platform.

Algorithm 2 BAS Path Planning and Controller Tuning

1: Input: Given the Objective functions

2 h (he(t) ho(t), f3” (e(t)® dt

2: Initialize:

3: T « 100; % Number of iterations
4: | < 0.3; % Step-size

5: 6 « 0.99; % Step controlling factor
6: d, < 0.9; %Antennae length

7: Start position p = x

8: Goal position pg

9: Obstacle defined by Obs

8: Output: xb:st' fbest

9: For t=1«<T R

10: Generate random vector b = [0, 1]
11: Direction Vector x”, x! = x F ZXE;
12: Xpew = X + dosign(f (x;) — f(x,))b
13: if f(x) < fhest

13: fpest = f(x)

14: Xpest = X

15: end if

16: Move in the est_imated direction
17: Return xpot, fyest Where Xpegr = prof
18: end For

19: For k =1 « size(Xpest)
200 if d<d,

21: break

22: else

23: Calculate desired direction 6,

24: Heading direction error e

25: Generate random PID gains

26: For j=1«T

27: Generate random vector b = [0,1]
28: Direction Vector x”,x' = x T lxy_)
29: Xpew = X + dosign(f (x;) = f(x,))b
30: if f(X) < fbest

31: fpest = f(x)

32: Xpest = X

33: end if .

34: Return xpo, frest Where xpeqr = K, K;
35: end For

36: Calculate w

37: Calculate [v,, v;]

38: end For

4. Simulation and Results

We used our algorithm, written in MATLAB, on
Pioneer-P3Dx platform provided in the virtual robotic
simulator V-REP environment. V-REP provides the

O EA

virtual environment along with handling forward and
inverse kinematics of the robot using “ODE” physics
engine. These settings offer real world constraints to
test our algorithm. Remote API functions are used
for communication between MATLAB and the V-REP
environment. The hyperparameters, antennae length,
step size, number of iterations and step controlling
factor are defined in the MATLAB. Schematically, figure
2 represents the integration of MATLAB with V-REP
along with different components of the simulation
below.

i 19 ’

4\ | Reference Path 3 | v,V =
5 v-re
Path —)@—} PID L1y ‘ —> ?, P

Planner controller

Figure 2. Schematics of path planning and control framework

The novelty of this work is the adaptability of our
algorithm to solve two different optimization problems
with bare minimum change of objective functions. It
is evident that PID tuning, and path planning are two
separate problems with different constraints and our
proposed algorithm successfully solves these different
optimization problems. In case of path planning,
first we attempted to achieve the go-to-goal objective
without any obstacle along the way and after that
obstacle was introduced in the robot’s path to solve for
the complete path planning problem. Automatic tuning
of PID controller is achieved while simultaneously
solving the path planning problem. Here we will
discuss results for both approaches in which Pioneer-
P3Dx navigates towards the goal. The following figure 3
shows the simulation of Pioneer-P3Dx while navigating
towards the goal in the V-rep environment.

P ——
! I
o— | -
R = ‘
Iy " -
e ——
- ‘— [
, I o'l]
-8
1 ke
Figure 3. Trajectory tracking in VREP environment
7 EAI Endorsed Transactions on

Al and Robotics

Mubashir Usman ljaz et al.

In path planning part, a set of waypoints is generated
corresponding to the optimal path for driving the
Pioneer-P3Dx to its goal position. First go-to-goal
objective is achieved without any obstacles in the way.
Here the start and goal positions are given by p = [0, 0]
and pg = [5,5]. These waypoints for the planned path
are plotted in excel which are depicted by the figure
X. After that, an obstacle is introduced along the way
and then the path planning problem is solved for the
same start and goal positions. The following graphs in
figure 4 shows the way points generated by the BAS
from origin to the goal position in case of when there
is no obstacle along the way and when an obstacle is
introduced respectively.

Figure 4. Solution of Go to Goal optimization in an obstacle free
[Left] and with obstacles along the way [Right]

In case of controller tuning, at each iteration, the
desired and current heading direction is calculated
based on the way points generated and the current
position as retrieved from V-rep. PI controller adjusts
the heading direction by varying the angular velocity
w of the tires. Since the linear velocity is kept constant
therefore the robot keeps moving towards the target
until the distance between the robot and goal is less
than d;. The conventional tuning methods such as
Ziegler-Nichols’s method result in undesirable settling
times along with larger overshoots. The below table
shows the controller gains obtained with manual tuning
along with optimized BAS-PI parameters.

5. Conclusion

This work presents a solution to path planning and con-
troller tuning problems for a differential mobile robot.
Our method formulates two optimization problems by
carefully choosing objective functions for trajectory
tracking, obstacle avoidance and PID controller. A com-
monly used bio-inspired algorithms such as Particle
Swarm Optimization uses a swarm of particles which
are time consuming and computationally expensive. We
used a metaheuristic algorithm called Beetle Antennae
Search based on random search method to solve these
two optimization problems. We tested our approach to
reach a goal by avoiding obstacles and simulated on
Pioneer-P3Dx platform provided in V-rep environment.
Our approach successfully plans a path and optimized
the controller to track the trajectory.

O EA

However, in this paper, it is assumed that the
obstacles and environment are static with respect to the
robot. Thus it can be further extended to solve the path
planning problem in dynamic environments. Another
direction could be to solve multi-robot path planning
problem by minimizing the arrival time of the robots.
To further reduce the computational work, fidelity
of the optimization can be intelligently controlled in
future.

References

[1] Kuan, A.T,, Li, S., Kabry, S. and Nam, Y. (2020) Control
framework for trajectory planning of soft manipulator
using optimized rrt algorithm. IEEE Access 8: 171730-
171743.

[2] Kuan, AT, Ly, S, Cuen, D. and Li, Y. (2020) Open-
source projects for autonomous robotics and systems: A
survey. Filomat 34(15): 4953-4966.

[3] Cuen, Z., WaLtERs, J., X140, G. and Li, S. (2022) An
enhanced gru model with application to manipulator
trajectory tracking. EAI Endorsed Transactions on Al and
Robotics 1: 1-11.

[4] Karur, K., SHArRMA, N., Daarmarri, C. and
Sieger, J.E. (2021) A survey of path planning
algorithms for mobile robots. Vehicles 3(3): 448-
468. doi:10.3390/vehicles3030027, URL https:
[/www.mdpi.com/2624-8921/3/3/27.

[5] Costa, M.M. and SiLva, M.E (2019) A survey on path
planning algorithms for mobile robots. In 2019 IEEE
International Conference on Autonomous Robot Systems
and Competitions (ICARSC) (IEEE): 1-7.

[6] Kuan, A.T., Li, S. and Zuou, X. (2021) Trajectory
optimization of 5-link biped robot using beetle antennae
search. IEEE Transactions on Circuits and Systems II:
Express Briefs 68(10): 3276-3280.

[7] JorpaN, M. and Perez, A. (2013) Optimal bidirectional
rapidly-exploring random trees .

[8] LaVarLe, S.M. et al. (1998) Rapidly-exploring random
trees: A new tool for path planning .

[9] Mosuavepi, A.J., AsBasi, A., Liao, L. and Li, S. (2019)
Path planning and trajectroy tracking of a mobile
robot using bio-inspired optimization algorithms and
pid control. In 2019 IEEE International Conference
on Computational Intelligence and Virtual Environments
for Measurement Systems and Applications (CIVEMSA)
(IEEE): 1-6.

[10] Wong, C.C., Wang, H.Y,, L1, S.A. and Cueng, C.T. (2007)
Fuzzy controller designed by ga for two-wheeled mobile
robots. International Journal of Fuzzy Systems 9(1).

[11] GaspareTTO, A., Boscarior, P., LanzurTi, A. and Viponi,
R. (2015) Path planning and trajectory planning
algorithms: A general overview. Motion and operation
planning of robotic systems : 3-27.

[12] Perarta, E, ArRzaAMENDIA, M., GREGOR, D., REiNa, D.G.
and Torar, S. (2020) A comparison of local path
planning techniques of autonomous surface vehicles for
monitoring applications: The ypacarai lake case-study.
Sensors 20(5). doi:10.3390/s20051488, URL https://
www.mdpi.com/1424-8220/20/5/1488.

8 EAI Endorsed Transactions on

Al and Robotics

https://doi.org/10.3390/vehicles3030027
https://www.mdpi.com/2624-8921/3/3/27
https://www.mdpi.com/2624-8921/3/3/27
https://doi.org/10.3390/s20051488
https://www.mdpi.com/1424-8220/20/5/1488
https://www.mdpi.com/1424-8220/20/5/1488

Bio-inspired BAS: Run-time Path-planning And The Control of Differential Mobile Robot

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

Kuan, A.T, Ly, S. and L1, Z. (2021) Obstacle avoidance
and model-free tracking control for home automation
using bio-inspired approach. Advanced Control for
Applications: Engineering and Industrial Systems : e63.
Kuan, A.T.,, Cao, X. and L1, S. (2022) Dual beetle
antennae search system for optimal planning and robust
control of 5-link biped robots. Journal of Computational
Science : 101556.

Ng, J. and BrAunt, T. (2007) Performance comparison
of bug navigation algorithms. Journal of Intelligent and
Robotic Systems 50(1): 73-84.

Kuarie, O. (1985) Real-time obstacle avoidance for
manipulators and mobile robots. In Proceedings. 1985
IEEE International Conference on Robotics and Automation
(IEEE), 2: 500-505.

KorkMaz, M. and Durpu, A. (2018) Comparison of
optimal path planning algorithms. In 2018 14th Interna-
tional Conference on Advanced Trends in Radioelecrtronics,
Telecommunications and Computer Engineering (TCSET)
(IEEE): 255-258.

Nw, H., Lu, Y., Savvaris, A. and Tsourpos, A.
(2016) Efficient path planning algorithms for unmanned
surface vehicle. IFAC-PapersOnLine 49(23): 121-126.
Sung, I., CHor, B. and NieLseN, P. (2021) On the training
of a neural network for online path planning with
offline path planning algorithms. International Journal of
Information Management 57: 102142.

KHnan, A.T., Cao, X,, L1, Z. and Li, S. (2022) Evolutionary
computation based real-time robot arm path-planning
using beetle antennae search. EAI Endorsed Transactions
on Al and Robotics 1: 1-10.

Geng, N., Gong, D. and Zuang, Y. (2014) Pso-based
robot path planning for multisurvivor rescue in limited
survival time. Mathematical Problems in Engineering
2014.

Bunivamin, N., Ncan, W.W., Sarirr, N., MoHAMAD, Z.
et al. (2011) A simple local path planning algorithm
for autonomous mobile robots. International journal of
systems applications, Engineering & development 5(2):
151-159.

Warren, C.W. (1989) Global path planning using
artificial potential fields. In 1989 IEEE International
Conference on Robotics and Automation (IEEE Computer
Society): 316-317.

Karur, K., SHARMA, N., DuarmarrTi, C. and SieGeL, J.E.
(2021) A survey of path planning algorithms for mobile
robots. Vehicles 3(3): 448—468.

Papny, PK., Sasaki, T., NakamMuRra, S. and Hasaimoro, H.
(2010) Modeling and position control of mobile robot.
In 2010 11th IEEE International Workshop on Advanced
Motion Control (AMC) (IEEE): 100-105.

Liao, B., L1, J, Li, S. and L1, Z. (2022) Briefly
revisit kinematic control of redundant manipulators via
constrained optimization. EAI Endorsed Transactions on
Al and Robotics 1: 1-7.

Kuan, A.R., Kuan, A.T., SaLik, M. and BakssH, S. (2021)
An optimally configured hp-gru model using hyperband
for the control of wall following robot. International
Journal of Robotics and Control Systems 1(1): 66-74.

Yu, W. and Rosen, J. (2013) Neural pid control of
robot manipulators with application to an upper limb

O EA

[29]

(30]

(31]

(32]

(33]

(34]

(35]

[36]

(37]

(38]

(39]

(40]

[41]

[42]

(43]

exoskeleton. IEEE Transactions on cybernetics 43(2): 673—
684.

Xu, Q., Kan, J., CueN, S. and Yan, S. (2014) Fuzzy pid
based trajectory tracking control of mobile robot and its
simulation in simulink. International journal of control
and automation 7(8): 233-244.

Taysom, B.S., Sorensen, C.D. and HepeNGren, J.D.
(2017) A comparison of model predictive control and pid
temperature control in friction stir welding. Journal of
Manufacturing Processes 29: 232-241.

MesHraM, P. and Kanojrva, R.G. (2012) Tuning of pid
controller using ziegler-nichols method for speed control
of dc motor. In IEEE-international conference on advances
in engineering, science and management (ICAESM-2012)
(IEEE): 117-122.

Cuorra, V., Singra, S.K. and Dewan, L. (2014)
Comparative analysis of tuning a pid controller using
intelligent methods. ACTA Polytechnica hungarica 11(8):
235-249.

Akkara, S. and Jarin, T. (2022) Pi controller based
switching reluctance motor drives using smart bacterial
foraging algorithm. EAI Endorsed Transactions on Al and
Robotics 1: 1-8.

Astrom, K.J. and HiceLunp, T. (2004) Revisiting the
ziegler-nichols step response method for pid control.
Journal of process control 14(6): 635-650.

Tan, W., Ly, J., Cuen, T. and Marquez, H.J. (2006)
Comparison of some well-known pid tuning formulas.
Computers & chemical engineering 30(9): 1416-1423.
Borase, R.P., MAGHADE, D., SONDKAR, S. and PAwaAg,
S. (2021) A review of pid control, tuning methods
and applications. International Journal of Dynamics and
Control 9(2): 818-827.

KuyvenHOVEN, N. (2002) Pid tuning methods an
automatic pid tuning study with mathcad. Calvin college
ENGR 315.

JavacHiTRA, A. and ViNnopHA, R. (2014) Genetic algo-
rithm based pid controller tuning approach for continu-
ous stirred tank reactor. Advances in Artificial Intelligence
(16877470) .

Bansar, H.O., SHArRMA, R. and SHrREERAMAN, P. (2012) Pid
controller tuning techniques: a review. Journal of control
engineering and technology 2(4): 168-176.

KuaN, A.T., SENIOR, S.L., StaNmMIROVIC, P.S. and ZHANG,
Y. (2018) Model-free optimization using eagle perching
optimizer. arXiv preprint arXiv:1807.02754 .

ZHANG, S., Pu, J., S, Y. and Sun, L. (2021) Path
planning for mobile robot using an enhanced ant
colony optimization and path geometric optimization.
International Journal of Advanced Robotic Systems 18(3):
17298814211019222.

Kumag, R., Srivastava, S. and Gupra, J. (2016) Artificial
neural network based pid controller for online control
of dynamical systems. In 2016 IEEE 1st International
Conference on Power Electronics, Intelligent Control and
Energy Systems (ICPEICES) (IEEE): 1-6.

SormHIN, M.I, Tack, L.E and Kean, M.L. (2011) Tuning of
pid controller using particle swarm optimization (pso).
In Proceeding of the international conference on advanced
science, engineering and information technology, 1: 458-
461.

EAI Endorsed Transactions on
Al and Robotics

Mubashir Usman ljaz et al.

[44] Mourtas, S., Karsikis, V. and Kasmmis, C. (2022)
Feedback control systems stabilization using a bio-
inspired neural network. EAI Endorsed Transactions on Al
and Robotics 1: 1-13.

[45] Yu, X. and Gen, M. (2010) Introduction to evolutionary
algorithms (Springer Science & Business Media).

[46] Deng, W., Zuao, H., Yang, X., X10NgG, J., SuN, M. and Li,
B. (2017) Study on an improved adaptive pso algorithm
for solving multi-objective gate assignment. Applied Soft
Computing 59: 288-302.

[47] KennNepy, J. and EBeruarT, R. (1995) Particle swarm
optimization. In Proceedings of ICNN’95-international
conference on neural networks (IEEE), 4: 1942-1948.

[48] Yang, X.S. and Dks, S. (2010) Engineering optimisation
by cuckoo search. International Journal of Mathematical
Modelling and Numerical Optimisation 1(4): 330-343.

[49] KHnan, A.T.,, Cao, X., Ly, S., Katsikis, V.N., Brajevic, 1.
and StaNniMIrovIC, P.S. (2022) Fraud detection in publicly
traded us firms using beetle antennae search: A machine
learning approach. Expert Systems with Applications 191:
116148.

[50] Kuan, A.T. and L1, S. (2022) Smart surgical control
under rcm constraint using bio-inspired network.
Neurocomputing 470: 121-129.

[51] Kuan, A.T, L1, S. and Cao, X. (2022) Human guided
cooperative robotic agents in smart home using beetle
antennae search. Science China Information Sciences
65(2): 1-17.

[52] Kuan, A.H., Ly, S. and Luo, X. (2019) Obstacle avoidance
and tracking control of redundant robotic manipulator:
An rnn-based metaheuristic approach. IEEE transactions
on industrial informatics 16(7): 4670-4680.

[53] Kuan, A.T,, Cao, X., L1, Z. and L1, S. (2021) Enhanced
beetle antennae search with zeroing neural network for

O EA

(54]

(55]

[56]

(571

(58]

(59]

[60]

[61]

online solution of constrained optimization. Neurocom-
puting 447: 294-306.

WangG, J. and Cuen, H. (2018) Bsas: Beetle swarm
antennae search algorithm for optimization problems.
arXiv preprint arXiv:1807.10470 .

Kuan, A.T,, Ly, S. and Cao, X. (2021) Control framework
for cooperative robots in smart home using bio-inspired
neural network. Measurement 167: 108253.

Kuan, A.T., Cao, X., Li, S., Hu, B. and Karsikis,
V.N. (2021) Quantum beetle antennae search: a novel
technique for the constrained portfolio optimization
problem. Science China Information Sciences 64(5): 1-14.
Kuan, A.T., Cao, X., Brajevic, 1., Stanmmirovic, P.S.,
Karsikis, V.N. and Li, S. (2022) Non-linear activated
beetle antennae search: A novel technique for non-
convex tax-aware portfolio optimization problem. Expert
Systems with Applications 197: 116631.

Kuan, A.H., Cao, X., Karsikis, V.N., StaNnmmirovIC, P,
Brajevi¢, 1., Li, S., Kabry, S. et al. (2020) Optimal port-
folio management for engineering problems using non-
convex cardinality constraint: A computing perspective.
IEEE Access 8: 57437-57450.

Wu, Q., Suen, X, JiN, Y., Cuen, Z., L1, S., Kuan, A.H.
and CHeN, D. (2019) Intelligent beetle antennae search
for uav sensing and avoidance of obstacles. Sensors 19(8):
1758.

MosHavepr, A.J., Roy, A.S., SamBo, S.K. ZHong, Y.
and Liao, L. (2022) Review on: The service robot
mathematical model. EAI Endorsed Transactions on Al
and Robotics 1: 1-19.

CHong, K.S. and KreemaN, L. (1997) Accurate odometry
and error modelling for a mobile robot. In Proceedings
of International Conference on Robotics and Automation
(IEEE), 4:2783-2788.

EAI Endorsed Transactions on
Al and Robotics

	1 Introduction
	1.1 Kinematics and unicycle model of the DMR

	2 Problem formulation
	2.1 Trajectory Tracking
	2.2 Obstacle avoidance
	2.3 Overall objective function
	2.4 Controller loss function

	3 Proposed Algorithm
	3.1 Path Planning
	3.2 Controller Tuning

	4 Simulation and Results
	5 Conclusion

