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Abstract

Service robots, e.g. massage robots, have attracted more and more attention in recent years and the most
popular study within this field is trajectory tracking. Due to the actual demand for service robots, the solution
of trajectory tracking requires fast convergence and high accuracy. In order to solve the above issues, this
paper proposed an enhanced Gated recurrent unit (GRU) to deal with trajectory tracking tasks of robot
manipulators. The main feature of enhanced GRU is utilizing cell states as well as various gate units to build
a novel neural cell. Besides, the presented enhanced GRU resolves the problem of the general neural network
model and large memory occupancy. Then the derivations about the computational process of cell state and
mixed hidden state of the proposed model have been illustrated. Finally, three trajectory tracking applications,
comparison, and visual simulation have verified feasibility as well as the superiority of the enhanced GRU
model.
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1. Introduction
Robot manipulator motion tracking, a fundamental
subsidiary subject of robot motion planning control,
has always drawn researchers’ wide concern [4, 5]. As
service robots, especially massage robot, attracts more
and more attentions from public in recent years, the
applications of manipulator motion tracking becomes
more extensive [1]. For instance, as it is presented in
Fig. 1, it is the class application of trajectory tracking in
massage robot production [2]. Robot acquires trajectory
information from historical memory, which could be
last masseuse’s technique or customer’s usage trace.
And then self-learning method is utilized to build
motion imitation model. At last, massage robot gives
a scheduled motion massage on costumers via pre-
trained model. However, in order to improve the
costumers’ experience, trajectory tracking in massage
robot requires real-time as well as accuracy more
then other elements [3]. Therefore, a feasible solution
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of manipulator trajectory tracking is urgent to be
proposed.

So far, numerous excellent researchers have
presented various high-performance solutions. For
instances, A. Dumlu et al. [6] presented a fractional-
order PID control to satisfy the high speed, high
acceleration, and high accuracy control action need of
parallel mechanisms. Besides, M. Galicki [7] derived
a class of continuous Jacobian transpose robust
controllers from non-singular terminal sliding vector
variable and the Lyapunov stability theory to address
the problem of finite-time convergence. A. Duka [8]
solved the inverse kinematics by using a feed-forward
neural network to generate desired trajectories in
Cartesian space. In general, it is difficult to develop
an effective and robust regular mathematics method
because of singular point of solution as well as the high
redundancy of cascade robot manipulator [9]. However,
real-time motion tracking is diffusely applied in
robotics field. Hence introducing a high-efficiency and
short latency solution for tracking robot manipulator
motion is the burning issue [10, 14].
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Table 1. Features of Various Trajectory Tracking or Kinematics Solutions Application of Manipulator (KUKA LBR iiwa 7 R800)

Solution Problem Solved Model Size Performance Continuous Prediction Speed
General IK Solution Kinematics Small Good No Ordinary
Location Controller Kinematics Ordinary Good Yes Ordinary

CNN Patten Recognition Small Weak No Ordinary
RNN Trajectory Tracking Large Good Yes Ordinary
LSTM Trajectory Tracking Large Good Yes Ordinary
GRU Trajectory Tracking Small Ordinary Yes Fast

Enhanced GRU Trajectory Tracking Ordinary Good Yes Fast

Figure 1. A classic application of motion tracking in massage
robot production. Robot catches trajectory data from historical
memory, which could be last masseuse’s technique or customer’s
usage data. And then self-learning method is utilized to build
motion imitation model. At last, massage robot gives a scheduled
motion massage on costumers via pre-trained model.

Considerable approaches and technologies for track-
ing robot manipulator’s motion have been compre-
hensively researched and introduced among the algo-
rithms extended from general inverse kinematics [11],
optimization theory [12], machine vision [13] as well
as adaptive-control algorithms [10]. Traditional robot
manipulator inverse kinematics solution has existed for
several decades, but due to the multiple-solution and
singular point, it could not perform well in continuous
work. Over a span of past 10 years, machine learning
has been the topic in focus of practitioners on account
of its favourable performance and the convenient end-
to-end modality. The most famous among these neu-
ral networks is convolutional neural network (CNN),
however, majority of CNN models are applied in image
processing [20]. In order to achieve the application in
sequence processing, M. Wang et al. [15] proposed a
novel CNN model (genCNN) with the ability of predict
the next word with the history of words of variable
length. Recurrent neural network (RNN), which was
introduced in 1990 but attracted less interest from
practitioners, had been refocused when it reached the

unexpected result in natural language processing [21].
Y. Li et al. [21] considered an advanced RNN struc-
ture to improve control precision and enhance adap-
tiveness for robot motion. Comparing with classical
RNN models, long short-term memory (LSTM) could
validly impede gradient explosion or disappearance
and achieve better results by making well use of pre-
vious cell states. In [16], Sepp Hochreiter et al. first
reported LSTM for resolving long time cost by storing
information over extended time. With the introduction
of forgot gate and sigmoid activation function, LSTM
equips the ability to deal with long-term dependence.
As LSTM gradually comes into researchers’ attention,
numerous developments based on LSTM have been
studied. Gated Recurrent Unit (GRU) is one outstand-
ing variation of LSTM, whose performance is similar
to LSTM but with less computation [17] Various novel
works about RNN were published and presented. S. Li
et al. [22], for instance, proposed a new RNN design
to achieve efficient kinematic control of redundancy of
manipulators in the presence of noises. P. Shrey et al.
[18] introduced a robot learning from demonstration
paradigm to imitate therapist’s action based on LSTM.
D. Robert et al. [19] compared four RNN architectures
(simple RNNs, LSTM, GRU and mixed history RNNs)
for recognizing complex action from kinematic of robot
and indicated different performances of these models.

Although advanced techniques have tremendous
achievements, the utilization of RNN in robot manip-
ulator trajectory tracking reaches plateau in terms of
large memory bandwidth, weakness for super long
sequences as well as vast computation cost [23, 25, 34–
36]. In fact, trajectory tracking requires Real-time, con-
tinuous and accuracy [24, 37, 38]. Therefore, this paper
presented a novel enhanced GRU model to achieve the
purpose of lower latency, smaller size, higher precision
and continuous solutions in trajectory tracking tasks.
For better understanding of advantages and disadvan-
tages of various solution for robot manipulator tra-
jectory tracking, comparisons are indicated in Table 1
[27–29]. Moreover, main innovation points as well as
contribution of this paper are summarized as below.
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Figure 2. It is a simple three connected rods architecture and
its D-H parameters are presented, which is applied to explain
how the general IK solutions work. Also, the mirror of the real
pose indicates the disadvantage of general IK solution, termed
Multiple-solution.

• This is an attempt to design robot manipulator
trajectory tracking model by uniting cell state
in GRU. The proposed enhanced GRU model is
capable of less time to convergence as well as
excellent prediction ability and solve the slightly
low performance problem in GRU.

• The research bridge from various gate units
to neural cell state as well as hidden state
is triumphantly built, which provides more
possibilities for researchers to develop more
interesting studies above it.

• Complete formula derivation about enhanced
GRU provides researchers convenience and
clearer mind to improve the performance of
enhanced GRU.

The following paper is arranged as below. Section
2, as research background, explains the principles of
three inverse kinematic solutions. Section 3 details
the training process and performance of enhanced
GRU model. In Section 4, three trajectories-tracking
applications, comparisons and simulations in V-rep are
presented. Section 5 concludes conclusion of this study.

2. Related works
General inverse kinematics of solution processing
with the three connected rods as example is firstly
presented in this section. Afterwards, the principles and
processing of the application of CNN, LSTM as well as
GRU in trajectory tracking are indicated.

2.1. General Inverse Kinematics Solution
A three connected rods structure (D-H parameters are
shown in Fig. 2) is utilized here for explaining how to
resolve each joints’ values from Transpose matrix [27].
Obviously, the kinematics formula of this equipment
can be presented as below,

B
W T = 0

3T =


c1,2,3 −s1,2,3 0 l1c1 + l2c1,2
s1,2,3 c1,2,3 0 l1s1 + l2s1,2

0 0 1 0
0 0 0 1

 (1)

where B
W T is the transpose matrix from rod B to rod

W , c123 means cos(θ1 + θ2 + θ3) and s123 stands for
sin(θ1 + θ2 + θ3).

Then to simplify the operation process, some Algebra
is assumed as below,

cφ = c1,2,3
sφ = s1,2,3
x = l1c1 + l2c1,2
x = l1s1 + l2s1,2

(2)

Now algebraic method is applied to resolve the solution
of (2). According to (2), we can acquire this formula,

x2 + y2 = l1
2 + l2

2 + 2l1l2c2 (3)

from 3,

c2 =
x2 + y2 −l12 − l22

2l1l2
(4)

The condition that the above method has a solution is
the right value of (4) must be −1 to 1. Physically, if (4)
does not satisfy the situation, then the target location
and pose is the destination that manipulator cannot
reach.Supposing the target point is in the reachable
space of robot manipulator, the expression of s2 should
be,

s2 = ±
√

1 − c2
2 (5)

At last, inverse tangent formula is utilized in (5),

θ2 = A tan(s2, c2) (6)

The ± in 5 correspond multiple-solutions, which
presents in this issue that the location of elbow of the
manipulator (up or down). After getting the value of θ2,
the value of θ1 can be resolved connecting with (2). (2)
can be transformed as below,

x = k1c1 − k2s1
y = k1s1 − k2c1
k1 = l1 + l2c2
k2 = l2s2

(7)

If we suppose r as follows,

r = |
√
k1

2 + k2
2| (8)

and,
γ = A tan(k1, k2) (9)

then, {
k1 = r cos(γ)
k2 = r sin(γ) (10)
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so (7) could be changed as below,{
x /r = cos(γ) cos(θ1) − sin(γ) sin(θ1)
y /r = cos(γ) sin(θ1) − sin(γ) cos(θ1) (11)

hence, {
cos(γ + θ1) = x /r
sin(γ + θ1) = y /r

(12)

applying double variables inverse tangent equation in
(12),

γ + θ1 = A tan(y /r, x /r) = A tan(y, x) (13)

at last,
θ1 = A tan(y, x) − A tan(k2, k1) (14)

by combining the values of θ1 and theta2, we can easily
obtain the value of θ3

2.2. Convolutional Neural Network
CNN, which are one of the representative algorithms
of deep learning, are a variety of feed-forward neural
networks which contain convolutional computation
and with depth architecture [30]. The most essential
convolutional computation process can be presented as
below,

xlj = f (
∑
i∈Mj

xl−1
j kli,j + blj ) (15)

where xlj presents feature map j in the l layer, kli,j
indicates the convolutional kernel j in layer l, blj is the
j bias in the l layer and function f stand for activation
function. Tanh function is applied here, whose formula
is shown as below,

f (x) =
sinh(x)
cosh(x)

=
1 − exp(2x)
1 + exp(2x)

(16)

as shown in (15), in order to determine the matrix value
of k as well as b, gradient descent optimize algorithm
is utilized here. Adam [31] is one of the commonly
used adaptive algorithms among various optimization
algorithms. The formula to calculate gradient as below,

gt = ▽θft(θ) (17)

where gt represents the gradient of ft(θ) while ft(θ) is
the gradient of t epoch. The major step to achieve the
goal is to decrease gradient as below,

mt = β1 ∗mt−1 + (1 − β1) ∗ gt
vt = β2 ∗ vt−1 + (1 − β2) ∗ g2

t

αt = α
√

1 − βt2/(1 − β
t
1)

θt ← θi−1 − αtmt/(
√
vt + ϵ̂)

(18)

where β1 and β2 are the number in [0,1) indicated
by ourselves, mt is the exponential mean while the
vt presents square gradient, αt indicates exponential
attenuation controlled by parameters β1 as well as β2.

2.3. Gated Recurrent Unit
As one popular variates of LSTM, GRU is introduced
for using less computation resources to reach the
similar performance of LSTM. Compared with LSTM
containing three gates, GRU has simpler structure with
only two gates, update gate as well as reset gate [33].
The expression of GRU is as below,

rt = σ (Wr ∗ [ht−1, xt])
zt = σ (Wz ∗ [ht−1, xt])
h̃t = tanh(Wh̄ ∗ [rt ∗ ht−1, xt])
ht = (1 − zt) ∗ ht−1 + zt ∗ h̃t
yt = σ (Wo · ht)

(19)

the rt in 19 is belonged to reset gate, which is applied to
control the extent to which the previous cell state affect
current cell state. The function of zt in update gate is to
forget or choose to memorize information from last cell.

2.4. Cell State and Gate Units
Cell state and Gate Units are introduced to solve the
Long-time dependency problem [32]. Cell state could
be deemed to store historical information and record
the last cell’s situation. There is still the issue that
a part of invalid information exists in the cell state
and it is why gated units were presented to alleviate
this problem. The most outstanding gate units are
forgotten gate, input gate as well as output gate. The
first gate named forgotten gate, which is utilized to drop
information in cell state. The formula is presented as
below,

ft = σ (Wf ∗ [ht−1, xt] + bf ) (20)

where the ft shows the percentages of retained
information in previous cell state, the ht−1 presents the
hide state of cell, and the σ in 20 stands for sigmoid
function,

σ (x) =
1

1 + exp(−x)
(21)

then an Input gate, which includes two procedures, is
used to update the information in cell state,{

it = σ (Wi ∗ [ht−1, xt] + bi)
C̃t = tanh(WC ∗ [ht−1, xt] + bC)

(22)

where it indicates the percentage of retained informa-
tion in addable information while C̃t is addable infor-
mation. After obtaining the outputs from forgotten gate
and input gate, a process is applied to combine them
into cell state,

Ct = ft ∗ Ct−1 + it ∗ C̃t (23)

Taking ht−1 as well as xt as input through output gate in
last step when the cell state has been updated,{

ot = σ (Wo ∗ [ht−1, xt] + bo)
ht = ot ∗ tanh(Ct)

(24)
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Table 2. The composition and number of parameters of each
layers in CNN. Reshape layer is utilized to change data format
to desired format while the four following CNN layers are applied
to exact the feature of sequence. At last, a full-connected layer
change the feature map to solution.

Layer Output Shape Parameters
Reshape (None, 1, 12) 0
Conv1D (None, 1, 12) 156
Conv1D (None, 1, 12) 312
Conv1D (None, 1, 12) 600
Dropout (None, 1, 12) 0
Conv1D (None, 1, 12) 900
Dropout (None, 1, 12) 0

Dense (None, 1, 12) 259
Total Parameters: 2227

where ot presents the reserved part of hide cell state
while ht is the hide state of cell.

3. Experimental Method
As research background of this study, the principles
and solving processes of four popular solutions are
introduced in previous part. In this part, two neural
network models would be established for resolving
robot manipulator trajectory tracking. For trajectory
tracking task, we want to obtain the transformation
from transpose matrix T to each joints’ angles θ⃗. The
relation could be as below,

(θ1, θ2...θ7) = θ⃗ ⇐ 0
7T =


a1,1 a1,2 a1,3 x
a2,1 a2,2 a2,3 y
a3,1 a3,2 a3,3 z
0 0 0 1

 (25)

where a⃗ presents the rotation matrix while x, y, z
indicates the location of manipulator end.

3.1. CNN for Trajectory Tracking
A CNN architecture is proposed in this subsection to
predict joint angles according to 0

7T , which contains six
main layers shown in Fig. 2 (one reshape layer, four
convolution layers as well as one dense layer).

As shown in (25), removing the bottom row without
physical meaning of 0

7T , the rest part should be
input data. A reshape layer is utilized to convert that
3x4 matrix to 12-Dimensional vector. After that one
convolution layer with 12 kernels will convolve the
vector while next convolution layer with 24 kernels
would convolve with the output. The convolution
layer as below also has 24 kernels but with the
operation 0.2 dropout. The standard CNN depends
on gradient of each parameters to reduce otherness

Table 3. The architectures and features of enhanced GRU
model. The whole model contain two enhanced GRU layers and
two dropout layers to exact feature of sequence and improve
generalization of model. Finally, a full-connected layer is linked
at the end to transform cell state and hidden state to solution.

Layer Output Shape Parameters
Enhanced GRU (None, 1, 12) 2136

Dropout (None, 1, 12) 0
Enhanced GRU (None, 1, 12) 2136

Dropout (None, 1, 12) 0
Dense (None, 1, 12) 91

Total Parameters: 4363

Figure 3. The detail structure and component inside enhanced
GRU. ht−1 and Ct−1, as the input of enhanced GRU, are hidden
state and cell state of last cell. And these states will be added
or subtracted information via the calculation of gate units, which
takes two steps time t. At last, ht+1 as well as Ct+1 is output
as the result.

between prediction data and real data while it may
cause over-fit due to the complex effect. The detail
operation of dropout is applying p probability to drop
one portion of neural cells and 1 − p probability to
reserve others. The deeper convolution layer with 36
kernels and 0.1 dropout operation. Finally, all the
feature maps should go through the full-connected
layer to extract feature from 1x36 map to 1x7 vector as
the output, which are each joints’ values.

3.2. Enhanced GRU for Trajectory Tracking
The principles of GRU and cell state had been explained
in section 2. It is a valid approach to improve model
performance by appending cell state and gate unit into
GRU[39–41]. Then a novel enhanced GRU is introduced
here to acquire both excellent ability of convergence,
real-time as well as wonderful performance.

5 EAI Endorsed Transactions on 
AI and Robotics



Zuyan Chen et al.

The detail architecture and component of enhanced
GRU is indicated in Fig. 3, including one cell state,
one hidden cell state as well as five gate units. This
architecture integrates reset gate, update gate, forgotten
gate, input gate as well as output gate to assist cell state
and hidden cell state to add or subtract information.
And the unit takes two steps t, whose inputs are last
unit’s hidden state ht−1, rare data xt and xt+1 as well as
last unit’s cell state Ct−1 while outputs are current unit’s
cell state Ct+1 and hidden state ht+1.

The derivation of the unit formula can be indicated
as below. The expression of intermediate quantity ht is
as the same as that in (19). Merging (20) and (19), then,

ft+1 =σ (Wf ∗ [ht , xt+1] + bf )

=σ (Wf ∗ [(1 − zt) ∗ ht−1 + zt ∗ h̃t , xt+1] + bf )

=σ (Wf ∗ [(1 − zt) ∗ ht−1 + zt∗
tanh(Wh̄ ∗ [rt ∗ ht−1, xt]), xt+1] + bf )

(26)

moreover, according to (22) and (19), it+1 and C̃t+1 could
be calculated by the following formula,

it+1 =σ (Wi ∗ [ht , xt+1] + bi)

=σ (Wi ∗ [(1 − zt) ∗ ht−1 + zt ∗ h̃t , xt+1] + bi)

=σ (Wi ∗ [(1 − zt) ∗ ht−1 + zt ∗ tanh(Wh̄∗
[rt ∗ ht−1, xt]), xt+1] + bi)

(27)

C̃t+1 = tanh(WC ∗ [ht , xt+1] + bC)

= tanh(WC ∗ [(1 − zt) ∗ ht−1 + zt ∗ h̃t , xt+1] + bC)

= tanh(WC ∗ [(1 − zt) ∗ ht−1 + zt ∗ tanh(Wh̄∗
[rt ∗ ht−1, xt+1] + bC)

(28)

whereupon Ct+1 can be presented as below,

Ct+1 = ft+1 ∗ Ct−1 + it+1 ∗ C̃t+1 (29)

then with (24) and (19),

ot+1 =σ (Wo ∗ [ht , xt+1] + bo)

=σ (Wo ∗ [(1 − zt) ∗ ht−1 + zt ∗ h̃t , xt+1] + bo)

=σ (Wo ∗ [(1 − zt) ∗ ht−1 + zt ∗ tanh(Wh̄∗
[rt ∗ ht−1, xt]), xt+1] + bo)

(30)

At last,
ht+1 = ot+1 ∗ tanh(Ct+1) (31)

So far, the solution procedure of enhanced GRU
has finished. To meet the enhanced GRU’s solution
modaility, 0

7T is flattened to 12-Dimensional tensor.
And in enhanced GRU model, two cascade enhanced
GRU with dropout layers are utilized to extract
sequence feature from the input tensor as shown in
Fig. 3.At last, 7 full-connected neural cell is applied to
transform the feature state to each joints’ angles θ⃗.

Figure 4. The interaction methodology with Vrep simulation
environment. As a input, transpose matrix could be sent to
several inverse kinematics models. After obtaining each joints
values, controller would transmit these data to vrep simulation
environment via python remote client. Finally, the visual
simulation is presented in Vrep.

4. Applications, Comparisons and Tests
Performance analysis by using KUKA iiwa LBR 7 as
experimental robot manipulator in V-rep simulation
environment via three different trajectory-tracking
tasks to indicate the feasibility of enhanced GRU model.
As the interaction approach with coding environment
and V-rep simulation environment shown in Fig. 4, the
peripheral controller would obtain each joints’ angles
θ⃗ while three varieties of methods are utilized to
resolve the transpose matrix. After that, θ⃗ would be
sent to V-rep simulation environment through python
remote client while the location of manipulator end
would be returned. After the comparisons on accuracy
performance in space distance with other inverse
kinematics solutions in the case are record. Due to the
discontinuity of general inverse kinematics, it did not
complete the test and is not utilized as a comparison
object in section 4.2 while the real performance of it will
be presented at the end of this section.

4.1. Enhanced GRU Training Process
Tensorflow 2.0 is applied in this paper to build
enhanced GRU model as Fig. 3. Before training, the
input data should be standardized to improve the
generalization of deep learning model, and the standard
method is as below,

x̃ =
x − x̄

xmax − xmin
(32)

where x̃ is the standardized data while x presents
original data, x̄ means the average value of x, xmax and
xmin indicates the max and min value of x respectively.

After that, standardized data x̃ is split to training
dataset and validation dataset with the proportion four
to one, which provides the performance on un-trained
dataset and meanwhile enhances the generalization
ability of model. Through the training process, mean
absolute error (mae) is utilized to analyse the quality
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(a) (b) (c)

Figure 5. The loss value (mae) through the whole training process with enhanced GRU model (total 6000 epochs with Adam algorithm).
And due to the higher difficulty of trajectory 2, the loss in trajectory 2 through the whole training process would be larger than others.
(a) training in trajectory 1. (b) training in trajectory 2. (c) training in trajectory 3.

of model and the calculation formula is as below,

loss =
1
nm
∗

m∑
i=0

n∑
j=0

(|θ̃i,j − θi,j |) (33)

the n in (33) is the number of samples in one batch, m
means the number of joints, the θ̃i,j presents the predict
jth joint value in ith sample while θi,j indicates the real
jth joint angle in ith sample[42, 43].

All the three trajectories are made up of 450 points
and presented as sub-picture (a) in Fig. 6, Fig.7 as well
as Fig. 8. Trajectory 1 has the largest spans in Z-axis
and small inflection point while the main trajectory of
trajectory 2 is like s-shape with few span in Z-axis and
contain various of inflection points. From the top view,
trajectory 3 is similar with M-shape and the latter half
of it is straight line motion.

The whole training process contains 6000 epochs
with loss optimized algorithm Adam and 128 batch
size. The change maps of loss value through the whole
training process are illustrated in Fig. 5 and (a),(b) as
well as (c) present the train process from trajectory 1 to
3 respectively. As (a) in Fig. 5 indicated, the loss value
of training dataset reached slightly less than 0.1 on
1000 epochs while it settled the number nearby 0.05 on
about 5000 epochs. The situation is similar in validation
dataset of trajectory 1 but with lower loss value. Due to
the higher trajectory difficulty of trajectory 2, the loss
values of both datasets are slightly over than 0.1 on
1000 epochs while the values decline to approximately
0.07 on 6000 epochs. The loss map is a bit zigzag in last
training of trajectory 2, which attain probably 0.1 on
neighbouring 1000 epochs while it is cut a half on 3000
epochs.

4.2. Comparison with Standard GRU and CNN
Model
In order to investigate the otherness between enhanced
GRU, standard GRU and CNN model, the same trajec-
tory tracking tasks have tested by both of them (the two

Table 4. Space distance via enhanced GRU Model (31), standard
GRU model as well as CNN model between prediction trajectory
and desired trajectory among the three trajectories tracking tasks

Model Trajectory
1

Trajectory
2

Trajectory
3

Enhanced GRU
Model (mm)

26.52 91.07 33.28

Standard GRU
Model (mm)

40.44 116.35 46.20

CNN Model
(mm)

219.97 1130.00 378.80

other neural network models’ training processes copied
from enhanced GRU’s). The theoretical performances of
them are calculated by forward kinematics and indi-
cated in Fig. 6 to Fig. 8. The trajectories generated by
standard GRU model are not indicated in these picture
on account of the visual differences between them with
enhanced GRU’s, but the quantitative analysis (mean
space distance) of the discrepancy between them is
illustrated in Table 4.

In 3D view of the sub-figure (a) in Fig. 6, the real
trajectory and prediction trajectory are almost overlap
while the prediction trajectory is a bit offset at the
corner on the top. The situation becomes clearer in top
view of the sub-figure (b) in Fig. 6 that real trajectory
has a little crooked while the prediction trajectory
slides diagonally down from the top at the corner
on the left. After first corner, the gap between the
two trajectories narrows. The prediction trajectory is
also similar to real trajectory while some points are
out of desired trajectory in 3d view of the sub-figure
(a) in Fig. 7. While the horizon changes to top, the
sawtooth of prediction trajectory becomes more distinct
but the general trajectories are resemblance. It should
be pointed out that prediction trajectory has distinct
radian when it comes to a corner. Some scattered points
of prediction trajectory are particularly evident in 3D
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(a) (b) (c) (d) (e)

Figure 6. Motion results of trajectory 1 via enhanced GRU model (31) and CNN model with a robot manipulator to track trajectory 1
(The trajectories generated by standard GRU model are not indicated in these pictures on account of the visual differences between
them with enhanced GRU’s, but the quantitative analysis (mean space distance) of the discrepancy between them is illustrated in
Table 4). The result created by general IK solution is not presented because the multiple solutions as well as singular of general IK
solution causes the stuck of Vrep. The trajectory generated by enhanced GRU model performs better while at first corner there is still
a slight difference with desired trajectory. In contrast, the prediction trajectory of CNN presents that the CNN model is under-fitting
(a) Motion process in 3D view (enhanced GRU). (b) Motion process in top view (enhanced GRU). (c) The desired trajectory in Vrep.
(d) Motion process in 3D view (CNN). (e) Motion process in top view (CNN).

(a) (b) (c) (d) (e)

Figure 7. Motion results of trajectory 1 via enhanced GRU model (31) and CNN model with a robot manipulator to track trajectory
2 (The trajectories generated by standard GRU model are not indicated in these picture on account of the visual differences between
them with enhanced GRU’s, but the quantitative analysis (mean space distance) of the discrepancy between them is illustrated in
Table 4). The result created by general IK solution is not presented because the multiple solutions as well as singular of general
IK solution causes the stuck of Vrep. The trajectory generated by enhanced GRU model performs better while also at corners there
still be some slight differences with desired trajectory. In contrast, the prediction trajectory of CNN presents that the CNN model is
not convergence. (a) Motion process in 3D view (enhanced GRU). (b) Motion process in top view (enhanced GRU). (c) The desired
trajectory in Vrep. (d) Motion process in 3D view (CNN). (e) Motion process in top view (CNN).

view of the sub-figure (a) in Fig. 8, which drops from
the top. Prediction trajectory goes around in circles at
the lower left corner while it performs well at the rest
part in top view.

The condition is bad in the case of CNN model.
Visible differences can be witnessed in sub-figure (c)
of Fig. 6, by contrast, the prediction trajectory’s shape
is a little similar with desired trajectory although the
gap between them in sub-figure (d) of Fig. 6 is always
large during the tracking task. The same situation
happens in the case of sub-figure (d) of Fig. 8. The
shape of prediction trajectory is a little bit resemble real
trajectory in the top of view while them are strangers in
3D view. Things change in sub-figure (c) and (d) in Fig.
7 that the prediction trajectory and desired trajectory
become two separate curves. The gap between them are
visible huge both in 3D view or from the top of view.

For a better difference analysis between prediction
trajectory and real trajectory, average Cartesian space
distance is calculated and presented in table 4. The
largest space distance of both of the two models is in
trajectory 2 tracking task, which means the difficulty
is the greatest. The average space distances between
prediction trajectory and desired trajectory of enhanced
GRU model as well as CNN model are 181.56mm and
1130.00mm respectively. The smallest space distance is
indicated in trajectory 1 tracking task and the values
of them are 126.85mm and 219.97mm severally. What
should be pointed out is that all the trajectories tracking
tasks via enhanced GRU model are below 200mm, while
presents the feasibility of enhanced GRU model in
trajectory tracking task.

To intuitively investigate the trajectories, this paper
applied these models in the case in trajectory tracking
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(a) (b) (c) (d) (e)

Figure 8. Motion results of trajectory 1 via enhanced GRU model (31) and CNN model with a robot manipulator to track trajectory
3 (The trajectories generated by standard GRU model are not indicated in these picture on account of the visual differences between
them with enhanced GRU’s, but the quantitative analysis (mean space distance) of the discrepancy between them is illustrated in
Table 4). The result created by general IK solution is not presented because the multiple solutions as well as singular of general IK
solution causes the stuck of Vrep. The gap between desired trajectory and prediction trajectory by enhanced GRU is less. Although
the difference is very less, one point should be point out is that enhanced GRU performs better in arc angle. The CNN model requires
more than 6000 epochs to converge on account of the bad performance in trajectory 3 tracking task. (a) Motion process in 3D view
(enhanced GRU). (b) Motion process in top view (enhanced GRU). (c) The desired trajectory in Vrep. (d) Motion process in 3D view
(CNN). (e) Motion process in top view (CNN).

(a) (b) (c) (d) (e)

Figure 9. The performance of each models in Vrep to track trajectory 1. The results are consistent with the previous theoretical
analysis, whatever the trajectory or pose of robot controlled by enhanced GRU is most similar with desired consequence. The pose
and trajectory created by standard GRU is similar with enhanced GRU’s, but it shows less precise in detail pointed in sub-figure (c).
The result generated by CNN model would be better if training CNN model more epochs. Due to the multiple solution and singular
of general IK solution, Vrep cannot react immediately then it causes stuck. (a) Desired Trajectory. (b) Enhanced GRU. (c) Standard
GRU. (d) CNN. (e) General IK Solution.

task to be visualized and simulated in Vrep. As it
is illustrated in Fig. 9, the best tracking performance
among the three solutions belongs to enhanced
GRU while general IK solution reached the worst
consequence. Because the solution generated by general
IK solution is not related to the solution in last time
t − 1, the pose would change a bit, which cause the
stuck of Vrep, although the trajectory was correct.
The manipulator controlled by CNN has the resemble
pose with desired motion but with low accuracy to
real trajectory. There is only one comparison in Vrep
indicated in this section, and you can have a full
observation of performance in the enclosure video.

To be summarize, general IK solution has excellent
ability with solving a single problem but weak to deal

with continuous issue. In addition, due to the multiple-
solutions as well as singular of general IK solution, it
could not be a wonderful choice to resolve a trajectory
tracking. The standard GRU can converges promptly
while lacks less precise in detail, especially at corners.
The potential of CNN was not fully developed in this
section on account of its long convergence time. The
enhanced GRU model indicated the best performance
among the three solutions whatever in training process,
otherness of trajectories and visual simulation.

5. Conclusion
In conclusion, this paper introduces a novel enhanced
GRU to solve the trajectory tracking of robot manip-
ulator. By incorporating GRU model with cell state as
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well as gate units, the enhanced GRU model achieve
the target of low convergence as well as high accuracy
of trajectory tracking and pose imitation. The main
principle of this study is to unite the mixed hidden state
as well as the cell state to build one hybrid unit to solve
the slightly low performance problem in GRU. The
derivations about the calculation of cell state and mixed
hidden state of presented model has been indicated. At
last, three trajectories tracking tasks, comparison and
visual simulation have been testified the feasibility as
well as superiority of enhanced GRU model.
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