
Empirical Analysis of Widely Used Website
Automated Testing Tools
Balqees Sani1,∗, Dr. Sadaqat Jan 1

1Department of computer software engineering, University of Engineering and Technology, Mardan, 23200,
Pakistan

Abstract

In today’s software development, achieving product quality while minimising cost and time is critical.
Automated testing is crucial to attaining these goals by lowering inspection efforts and discovering faults
more effectively. This paper compares widely used automated testing tools, such as Selenium, Appium, JUnit
(Java Unit), Test Next Generation (TestNG), Jenkins, Cucumber, LoadRunner, Katalon Studio, Simple Object
Access Protocol User Interface (SoapUI), and TestComplete, based on functionality, ease of use, platform
compatibility, and integration capabilities. Our findings show that no single tool is inherently superior,
with each excelling in certain areas such as online, mobile, Application Programming Interface (API), or
performance testing. While Selenium and Appium are the dominant online and mobile testing frameworks,
TestComplete and Katalon Studio offer complete, user-friendly cross-platform testing solutions. Despite the
benefits of automation, obstacles such as tool maintenance, scalability, and cost issues remain. The report
finishes with advice for picking the best tool for the project and offers potential approaches for enhancing
testing frameworks, such as AI-driven optimisation, cloud-based testing, and greater Continuous Integration/
Continuous Deployment (CI/CD) integration. This study offers useful information for developers and testers
looking to optimise their testing methods and increase software quality.

Received on 20 April 2024; accepted on 01 September 2024; published on 10 October 2024

Keywords: Automated testing tools, Selenium, performance testing, Cloud-based testing

Copyright © 2024 Sani et al., licensed to EAI. This is an open access article distributed under the terms of the CC BY-NC-
SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium
so long as the original work is properly cited.

doi:10.4108/airo.7285

1. Introduction
Software testing plays a critical role in ensuring
the quality, reliability, and functionality of software
products [1]. It is an essential step in the software
development lifecycle that helps identify errors,
defects, and vulnerabilities before the software is
released. Testing not only verifies that the software
behaves as expected but also reduces risks and improves
user satis-faction. Although it is impossible to achieve
100% testing coverage, it is vital to conduct thorough
testing to ensure that the software can handle real-
world environments, which differ significantly from
development environments [2].

Traditionally, software testing was conducted man-
ually by human testers who would execute test cases,
evaluate performance, and identify defects [[3], [4]].

∗Corresponding author. Email: mrsohail236@gmail.com

While manual testing has its benefits, such as mim-
icking real-world user interactions, it can be time-
consuming and prone to human error, especially for
large or complex projects [5]. In recent years, automated
testing has gained popularity as a more efficient and
scalable alternative. Automated testing tools allow for
faster test execution, increased repeatability, and the
ability to test across multiple quality attributes, such as
performance, security, and reliability [6].

The adoption of automated testing tools has rev-
olutionized the testing process, providing significant
benefits in terms of speed, accuracy, and resource effi-
ciency. Tools like Selenium and TestComplete enable
developers and testers to automate repetitive tasks,
such as regression and unit testing, allowing for more
comprehensive and frequent testing [7]. These tools can
evaluate various quality factors of a website, including
response time, performance, and security, making them
essential for modern software development practices.

1

EAI Endorsed Transactions
on AI and Robotics Review Article

 EAI Endorsed Transactions on
AI and Robotics

| Volume 3 | 2024

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:<mrsohail236@gmail.com>

Balqees Sani and Sadaqat Jan

However, no single tool is capable of testing all quality
attributes, as each has its own strengths and limitations.

In recent years, object detection has gained promi-
nence in fields such as computer vision, artificial intel-
ligence, and automation, making it essential to ensure
the reliability and accuracy of object detection sys-
tems [8]. Although automated testing tools are primar-
ily designed to evaluate software functionality, perfor-
mance, and user interfaces, they can be adapted to test
object detection models. Traditional automated testing
frameworks like Selenium, JUnit, and TestNG may not-
native support visual recognition tasks, but they can
be extended to validate object detection systems when
integrated into custom test suites or machine learning
pipelines [9]. For instance, TensorFlow’s testing frame-
works and PyTest can be utilized to automate the vali-
dation of object detection models, ensuring that these
systems correctly identify and classify objects across
diverse datasets [10]. Moreover, continuous integration
tools such as Jenkins and Circle Continuous Integra-
tion (CircleCI) can be integrated into object detection
workflows, automating the process of testing models
after every iteration or code update [11]. These tools
ensure that changes do not compromise the accuracy
of the model, providing a scalable and efficient method
to maintain high-performance object detection systems
over time. Additionally, image-based automation tools
like SikuliX, which use pattern matching for interface
testing, could be adapted to validate visual components
in applications that rely on object detection [12]. This
approach helps confirm that objects are correctly ren-
dered and identified by the system. However, auto-
mated testing for object detection presents its own
challenges. Unlike traditional testing, which deals with
defined inputs and outputs, object detection involves
a degree of variability in visual data. Testing frame-
works need to account for these complexities, including
dynamic lighting, occlusions, and object distortions.
While automated testing can help ensure consistency
and speed, manual validation may still be required
for edge cases. Overall, combining automated testing
tools with custom scripts for object detection presents a
promising way to streamline the testing of sophisticated
machine learning models, ensuring accurate, reliable,
and scalable performance [13].

The main objectives of these automated testing tools
include improving testing efficiency, reducing manual
effort, and ensuring comprehensive test coverage. The
challenges primarily revolve around tool selection,
cost, adaptability to diverse platforms, and integration
with CI/CD pipelines. Additionally, the complexity
of handling evolving technologies and the limitations
of existing automation frameworks were notable
issues. This comparative analysis underscores the
importance of aligning tool capabilities with project
needs, while addressing the inherent challenges of

scalability, accuracy, and tool compatibility in different
environments. The challenges, main aim and the
objectives of the study are shown in table 1.

Table 1. Aim, objectives and challenges of the study

No Main Aim Objectives Challenges
1 To compare

various
automated
website
testing tools.

Evaluate the
effectiveness
of automated
testing tools

Full coverage
of website
quality with
a single tool
is difficult

2 Identify
the most
effective tool
for assessing
website
quality

Compare
tools based
on their
ability to
provide
comprehen-
sive quality
assessments

Limited time
and budget
make it
challenging
to test
websites
using
multiple
tools.

3 Evaluate
tools
based on
performance,
security, and
reliability

Identify the
most suitable
automated
testing tool
for websites
that can
optimize
testing time,
resource
usage, and
cost.

Require
extensive
testing,
which is
difficult
to manage
within strict
development
cycles

4 Provide
insights
into the
best tool for
optimizing
time,
cost, and
resources in
small-scale
websites

Assess
the tools’
ability to
conduct tests
efficiently

Difficult to
Ensure com-
prehensive
testing

The table 1 summarizes the main aim of comparing
automated website testing tools to identify the most
effective one for quality assessment. It highlights
challenges such as limited tool coverage and constraints
on time and budget. Additionally, it outlines objectives
to evaluate tool performance and compare their
effectiveness in ensuring efficient and comprehensive
testing.

The rest of the paper is organized as follows: Section
2 describes the related work done on automated testing
tools. The 3 section shows the widely used automated
testing tools. The section 4 shows the discussion part
of the paper. Finally, the paper concludes with the

2
 EAI Endorsed Transactions on

AI and Robotics
| Volume 3 | 2024

Empirical Analysis of Widely Used Website Automated Testing Tools

achieved result and future work regarding this project
in 5.

2. Literature Review
Errors ignored in the early stage of software develop-
ment may have a rippling effect, and may lead to time
wasting and expensive to correct once it is deployed.
So manual testing is normally carried in to practice
for testing quality but some measurements shows that
manual testing also requires great effort and time itself
and is not reused for other software. Automation testing
automates the steps of manual testing using automation
tools. To overcome this problem, it is suggested to
use automated testing tools for testing software qual-
ity [14]. The user interface of TestComplete is very
straightforward and has efficient playback for testing
so that to use scripts in future. TestComplete is also
useful where data does need any security during testing
process because it is it does not secure data in testing
[15]. In 2019 authors Karthik & Jananisivapriya stated
that Unified Functional Testing tool is suit-able when
one is interested in data security even in testing too.
The only disadvantage of the Unified Functional Testing
(UFT) is that it is used commercially and one have to
spend a high cost SoapUI is suitable for API testing as
well as for non-functional testing such as performance
and security test. It is free of cost tool. SoapUI Pro
is capable of saving time so that it makes the testing
fast and easy. The advanced version is also available at
lower cost than TestComplete and UFT. Finally when
concluded all results and features, the best tool among
the four is SoapUI [16]. Wu et al., in 2021 focused on
Practical Software Quality Techniques (PSQT) confer-
ence that traditional approaches such as manual testing
may not be used for web testing in future such as for the
WWW and e-commerce applications, besides all these
positive aspects of automated testing tools, there exist
few disadvantages too. When automated testing tools
are not used, some projects suffocate under a stream
of manual test scripts. When implemented on websites,
testing tools management and the creation of auto-
mated testing scripts can consume all available time
and resource [17]. Samli & Orman in 2023 utilizes a
comparative analysis method to evaluate 14 web-based
automated testing tools based on 20 distinct criteria.
This method is chosen because it provides a compre-
hensive review of multiple tools, addressing gaps in
previous studies that have only compared a few tools
and criteria. The study focuses on important aspects
such as cost, license, technical support, language and
browser support, user experience, testing type, and
hardware requirements. No direct experiments were
conducted; instead, a detailed comparison of tool fea-
tures was made using these criteria. The results offer an
in-depth look at the advantages and limitations of each

tool, helping testers and developers to select the most
appropriate tool based on their specific needs. This
study provides a valuable reference for those looking to
optimize their tool selection for web-based automation
testing [18]. Chaves et al., 2024, employs an automated
testing method using the Robert Tool to evaluate mobile
applications developed for Android at the Institute of
Research and Development. This method was chosen
for its ability to reduce manual testing efforts and
increase efficiency. In the study conducted in 2023, the
Robert Tool was used to automate 15 out of 35 test
cases within a specific scope. The results indicated a
33% reduction in manual testing effort and an overall
decrease of 714 hours in testing time. Survey feed-
back from the testing team highlighted the tool’s ease
of use and significant time savings. The accuracy of
these results reflects a successful implementation of
automation in mobile application testing, showcasing
its practical benefits and efficiency improvements [19].
In another paper about automated testing tools authors
Al-Khulaidi et al., 2024 proposes an evaluation frame-
work for comparing and classifying automated testing
tools used in agile software projects. This method was
chosen to address the challenges of selecting appropri-
ate tools amidst the variety of options available, con-
sidering factors such as programming language, system
categorization, and tester expertise. The framework was
developed through a literature review of agile testing
methodologies and automation techniques. It evaluates
tools based on key criteria like test design support,
interfaces, and reporting capabilities. The study ana-
lyzed popular open-source and commercial tools, cate-
gorizing them by interface, code, design, and reporting
features. The results offer guidelines for agile practi-
tioners to select suitable tools, though specific accuracy
metrics are not detailed, the framework aids in in-
formed decision-making for tool adoption [20]. Haas et
al., 2024 investigates the application of test optimiza-
tion techniques from automated testing to manual test-
ing processes. This method was chosen to explore how
optimization strategies like test impact analysis and
Pareto testing can enhance manual testing efficiency.
The study analyzed five industrial cases across various
domains, evaluating the costs and ben-efits of these
techniques using data from 2,622 real-world failures.
Results showed that optimized test suites, compared to
manual ones, detected approximately 80% of failures
while reducing execution time by 66%, versus 81%
detection and 43% time saving for manual tests. The
techniques also sped up time-to-first-failure by about
49 times. These findings indicate that automated test
optimizations can significantly improve manual test-
ing practices, though implementation requires address-
ing process-related limitations [21]. Aburas in 2024
employs a comparative analysis method to evaluate

3
 EAI Endorsed Transactions on

AI and Robotics
| Volume 3 | 2024

16 widely used automated testing tools based on spe-
cific criteria. This method was chosen to simplify the
selection process for software developers and testers by
providing a structured comparison. The study involved
organizing and comparing these tools based on their
platform compatibility and testing functionality. The
results offer a comparative view of the tools’ features
and applicability, aiding in the selection of appropriate
testing tools. The study serves as a valuable reference
for software developers, testers, and researchers, and
supports educational purposes by offering insights into
the effectiveness and suitability of various automated
testing tools [22]. Garousi et al., 2024, employs a
Multivocal Literature Review (MLR) to investigate AI-
based test automation tools, which allows for a broad
exploration of both academic and grey literature to
gain a comprehensive understanding of the industry’s
current landscape. This method is used to analyze
the available features, effectiveness, and efficiency of
AI-powered testing tools. Additionally, an empirical
assessment was conducted to evaluate two selected AI-
based tools on two open-source software projects. By
applying both AI-powered and non-AI approaches to
the same feature, the study compares their performance
and limitations. The results indicate that AI-based tools
enhance testing efficiency and effectiveness, though
some limitations remain. The study highlights the need
for further improvement in AI-based testing tools to
overcome current challenges and limitations [23].

Among the publications evaluated and the compar-
ison shown in table 2, Garousi et al.’s (2024) [23]
research provides the most extensive examination of
AI-powered automated test-ing tools, examining 55 in
total. This study not only evaluates academic literature
but also conducts an empirical assessment of two cho-
sen instruments, making it unique in its approach to
combine theoretical and practical evaluation. Further-
more, the application of AI to improve testing speed
and efficacy distinguishes this article from previous
efforts that rely on traditional tools and approaches.

3. Widely Used Automated Testing Tools
Automated testing tools are software applications
designed to execute pre-scripted tests on software
applications automatically. They simulate user inter-
actions and validate that the software behaves as
expected, which helps in identifying bugs or inconsis-
tencies early in the development process. These tools
can run tests repeatedly and consistently, unlike man-
ual testing, which can be time-consuming and error-
prone. They support various types of testing, including
functional, performance, and regression testing. This
automation enhances test coverage, accelerates release
cycles, and improves the overall quality of the software
by ensuring that changes don’t introduce new issues.

Some of the widely used automated testing tools are
shown in figure 1.

3.1. Selenium:
Selenium is an open-source tool designed for automat-
ing web browsers. It allows developers and testers to
write scripts that simulate user interactions with web
applications in multiple browsers [24]. Some of the
advantages of selenium are, supports multiple pro-
gramming languages (Java, C#, Python, etc.), Cross-
browser testing across major browsers (Chrome, Fire-
fox, Safari, etc.), Highly scalable for testing complex
web applications. Automating a login process on a
website across different browsers is one of the examples
of selenium.

3.2. JUnit:
JUnit is a unit testing framework for Java applications.
It helps developers write and run repeatable test cases
for individual components or methods in Java code
[25]. Junit Simplifies unit testing with annotations and
assertions. Facilitates CI by integrating with CI tools
like Jenkins. Offers fast feedback during development.
Testing a method that calculates discounts in an e-
commerce application is one of the examples of JUnit.

3.3. TestNG:
TestNG is a testing framework inspired by JUnit but
with additional features for more complex testing
needs. It supports different types of testing, such as
unit, functional, end-to-end, and integration testing
[26]. The advantage of TestNG is that it’s Parallel
test execution for faster testing. Built-in support for
data-driven testing. Better configuration for handling
complex test suites. Running parallel tests for a banking
application’s various modules.

3.4. Appium:
Appium is an open-source tool for automating mobile
application testing. It enables automated testing of
native, hybrid, and mobile web applications on iOS
and Android platforms [27]. Appium supports cross-
platform testing (iOS and Android). Supports multiple
programming languages (Java, Ruby, Python, etc.). No
need to modify the app code for testing. Automating
the registration process in an Android shopping app is
the example of Appium.

3.5. Jenkins:
Jenkins is an open-source automation server primarily
used for CI/CD. It automates the process of building,
testing, and deploying software projects [28]. Jenkins
are Extensible with a wide range of plugins for

4
 EAI Endorsed Transactions on

AI and Robotics
| Volume 3 | 2024

Balqees Sani and Sadaqat Jan

Table 2. Comparison of the related work done in field of automated testing tools

Focus Area Tools Compared Evaluation Criteria Methodology Results Reference

Automated
testing tools

Rational
Functional Tester,
QTP, Silk Test,
Loadrunner

Usability, security,
cost

Comparative anal-
ysis

Rational
Functional
Tester performs
better in quality
testing.

[14]

Automated
performance
testing

JMeter,
TestComplete

Performance,
efficiency, security

Performance anal-
ysis

JMeter excels in
data security,
TestComplete
in efficiency.

[15]

Automated
testing tools
(API & non-
functional)

Selenium, UFT API testing,
performance, cost

Comparative anal-
ysis

SoapUI offers
best balance
of cost and
functionality.

[16]

Web testing
using
automated
tools

- Script creation, time,
management

Case study Time-
consuming
manual
testing can be
replaced with
automation.

[17]

Web-based
automated
testing tools

14 web-based tools Cost, license, language
support, hardware
requirements

Multi-criteria com-
parison

Provides
comprehensive
tool comparison
across 20
dimensions.

[18]

Mobile
application
testing with
Robert Tool

Robert Tool Time efficiency, ease of
use

Empirical
evaluation

33% reduction
in manual test-
ing efforts.

[19]

Agile
software
testing tools

- Test design support,
interfaces, reporting

Literature review,
framework

Framework
guides agile
practitioners in
tool selection.

[20]

Optimization
techniques
for testing

- Test execution time,
failure detection

Historical analysis,
survey

66% reduction
in execution
time, 80%
failure
detection rate.

[21]

Platform
compati-
bility and
testing tools

16 automated test-
ing tools

Compatibility,
functionality

Comparative anal-
ysis

Simplified tool
selection based
on platform
compatibility.

[22]

AI-powered
test
automation
tools

55 AI-based tools Features, efficiency,
effectiveness

Multivocal Litera-
ture Review (MLR)

AI tools
enhance
efficiency
but have
limitations.

[23]

integrating with various testing tools. Facilitates
automated testing and reporting after each build.
Highly customizable to fit different CI workflows.

Automating test runs for each code commit in a web
application.

5
 EAI Endorsed Transactions on

AI and Robotics
| Volume 3 | 2024

Empirical Analysis of Widely Used Website Automated Testing Tools

Figure 1. The 10 most widely used automated testing tools

3.6. Cucumber:
Cucumber is a tool that supports behavior-driven
development (BDD). It allows tests to be written
in plain language (like English) that non-technical
stakeholders can understand [29]. The advantage of
cucumber is that it bridges the gap between developers,
testers, and business stakeholders. Supports multiple
programming languages (Java, Ruby, etc.). Promotes
collaboration in teams by using user stories in tests.
Writing user acceptance tests for a feature in an e-
commerce platform using plain language is the example
of cucumber.

3.7. LoadRunner:
LoadRunner is a performance testing tool. It simulates
virtual users to test how an application behaves under
load [30]. LoadRunner Can test web and mobile appli-
cations for performance bottlenecks. Supports a wide

range of protocols (HTTP, SOAP, WebSocket, etc.). Pro-
vides detailed performance metrics for optimization.
One of the example of LoadRunner is the testing the
server load handling capacity of an online banking
application.

3.8. Katalon Studio

Katalon Studio is an all-in-one automated testing
tool. It provides a user-friendly platform for testing
web, mobile, API, and desktop applications [31].
Katalon Studio does not require advanced coding skills.
Supports both record-and-playback and scripting for
tests. Integrates with CI/CD tools like Jenkins and Git.
The example of Katalon Studio is automating login and
transaction validation in a mobile banking app.

6
 EAI Endorsed Transactions on

AI and Robotics
| Volume 3 | 2024

Balqees Sani and Sadaqat Jan

3.9. SoapUI
SoapUI is a tool for testing APIs, particularly SOAP
and REST services. It allows developers to automate
functional, performance, and security tests for APIs
[32]. The advantage of SoapUI is that it supports
complex API testing scenarios. Includes features for
load testing and security testing. User-friendly interface
for creating test cases. Testing the response time and
accuracy of a RESTful API used in an inventory
management system.

3.10. TestComplete:
TestComplete is a commercial automated testing tool. It
enables automated testing for desktop, web, and mobile
applications [33]. TestComplete Supports multiple
scripting languages (JavaScript, Python, VBScript, etc.).
Can automate GUI testing across different platforms.
Integrates well with other CI/CD tools for a seamless
workflow. Example of TestComplete is the automating
the testing of a desktop accounting software’s user
interface.

The comparison of each automated testing tool
method is shown in table 3. From table 3 we can
see for most projects that require a balance between
web, mobile, and functional testing, TestComplete or
Katalon Studio are the most versatile and user-friendly.
However, for teams focused purely on web testing or
with specific needs (e.g., API testing or performance
testing), specialized tools like Selenium, SoapUI, or
LoadRunner may be the better choice.

4. Disscusion
In the pursuit of delivering high-quality software, the
selection of an appropriate testing tool is a critical
decision for both developers and testers. This study
aimed to explore various automated testing tools that
are widely used in the industry and to compare them
based on their functionalities, platform support, ease
of use, and suitability for different types of testing.
The analysis reveals that no single tool is universally
superior, as each tool offers unique strengths depending
on the specific requirements of a project. One of the
key observations from the comparison is that tools
like Selenium and Appium remain the go-to choices
for web and mo-bile testing, respectively [34]. Their
open-source nature, combined with a large community
of users, makes them highly flexible and adaptable to
different project environments. However, while these
tools excel in their respective domains, they require a
certain level of expertise to set up and configure, which
might be a challenge for teams with limited technical
knowledge.
On the other hand, more comprehensive tools such as
TestComplete and Katalon Studio offer a user-friendly

approach to testing across multiple platforms (web,
mobile, and desktop) [35]. These tools simplify the
testing process by providing built-in features that
require minimal coding skills, which is a significant
advantage for teams aiming to streamline their testing
efforts without compromising on quality. In particular,
Katalon Studio stands out as a versatile option for teams
that require a balance between functionality and ease
of use, making it suitable for smaller teams or those less
familiar with scripting. Performance testing remains
an essential component in ensuring that software can
handle expected loads, and LoadRunner continues
to dominate this space. Its ability to simulate high
volumes of users and provide detailed performance
metrics is unmatched, although it requires specialised
knowledge to fully utilise its capabilities.

SoapUI plays a similar role in the API testing
domain, where it simplifies the process of testing
Representational State Transfer (REST) and SOAP
services with minimal configuration required. One
common factor across all these tools is the increasing
integration with CI/CD pipelines, with Jenkins
being the leader in automating testing processes. As
software development shifts toward more frequent
releases, the importance of seamless integration
between testing tools and CI systems cannot be
overstated. Tools like Selenium and Appium are highly
compatible with CI systems like Jenkins, ensuring
that automated tests can be run as part of the build
process, providing faster feedback and reducing
time-to-market. However, the discussion would be
incomplete without acknowledging the limitations that
come with automation tools. While automation reduces
manual effort and accelerates testing cycles, it is not
without its challenges. For example, automating certain
complex scenarios or highly dynamic web elements can
be difficult, requiring continuous maintenance of test
scripts.

The figure 2 shows the automated testing tools ease
of use, the platform that these testing tools support and
their main key strengths.

Moreover, while tools like TestNG and JUnit excel in
unit testing, they are not well-suited for more complex
end-to-end testing scenarios without additional config-
urations or integration’s. In addition, while commercial
tools like TestComplete and LoadRunner offer extensive
features, their cost can be prohibitive for smaller teams
or startups. Open-source alternatives like Selenium and
Appium provide a cost-effective solution, but they often
require more setup and troubleshooting, which can off-
set some of the savings in terms of time and resources.
Finally, there is the issue of scalability. As projects grow
and become more complex, the scalability of the chosen
tool becomes increasingly important [36]. Tools that

7 EAI Endorsed Transactions on
AI and Robotics

| Volume 3 | 2024

Empirical Analysis of Widely Used Website Automated Testing Tools

Table 3. Comparison of the widely used automated testing tools

Tool Purpose Ease of
Use

Language
Support

Platform Sup-
port

Types of
Testing

Key Strengths

Selenium Web
application
testing

Moderate Multiple
(Java, C#,
Python, etc.)

Web (Cross-
browser)

Functional Best for cross-
browser web
automation

JUnit Unit Testing
for Java

Easy Java Java
applications

Unit Simple unit testing
in Java

TestNG Advanced test-
ing for Java

Moderate Java Java
applications

Unit, Func-
tional

Supports parallel
and data-driven
testing

Appium Mobile app
testing

Moderate Multiple
(Java,
Python,
etc.)

iOS, Android Functional,
Mobile

Best for cross-
platform mobile
testing

Jenkins CI/CD
with testing
integration

Easy Multiple
(Via
plugins)

Cross-
platforms

CI/CD,
Functional

Excellent for
automating testing
in CI workflows

Cucumber Behavior-
driven
development
(BDD)

Easy Multiple
(Java, Ruby,
etc.)

Cross-
platform

Functional Best for BDD and
bridging tech/non-
tech collaboration

Load-
Runner

Performance
Testing

Complex Multiple Web, Mobile Performance Industry-leading
for load and
performance testing

Katalon
Studio

All-in-one
testing tool

Easy Groovy,
Java, etc.

Web, Mobile,
API, Desktop

Functional,
API

User-friendly, mini-
mal coding required

SoapUI API testing Easy Groovy, Java Web (API test-
ing)

API, Per-
formance

Best for SOAP/REST
API testing

Test-
Complete

Comprehensive
automation

Moderate Multiple
(JavaScript,
Python, etc.)

Web, Mobile,
Desktop

Functional Broad platform sup-
port for GUI testing

support parallel execution and integration with cloud-
based testing services are better equipped to handle
large-scale testing. In this regard, tools like TestNG and
Katalon Studio, with their support for parallel and data-
driven testing, provide a significant advantage in larger
environments.

5. Conclusion and Future Work
The comparative analysis of automated testing tools
demonstrates that no single tool is universally optimal
for all projects. The decision on which tool to adopt
should be based on the specific requirements of the
software project, such as the platform being tested,
the complexity of the test scenarios, the technical
expertise of the testing team, and the budget available.
Open-source tools like Selenium and Appium offer
flexibility and cost-effectiveness for web and mobile
testing, respectively, while comprehensive solutions
like TestComplete and Katalon Studio provide greater
ease of use and broader platform support, making

them suitable for less technical teams. In specialized
areas like performance and API testing, LoadRunner
and SoapUI remain strong choices, though they may
present challenges in terms of cost and complexity.
Despite the numerous benefits these tools offer, there
are notable limitations to address. Automation,
while reducing manual effort and speeding up
test cycles, still requires significant maintenance
and technical proficiency, particularly for complex
scenarios. Additionally, cost considerations and the
scalability of tools become critical as projects expand
in size and complexity. Therefore, ongoing assessment
and adaptation of testing strategies are essential to
ensure that the chosen tools continue to meet the
evolving demands of software development.
Looking ahead, there are several areas for future
research and development in the realm of automated
testing tools. First, greater focus on artificial
intelligence and machine learning in test automation
could improve the ability to predict and prioritize test
cases, further reducing the manual effort required for

8
 EAI Endorsed Transactions on

AI and Robotics
| Volume 3 | 2024

Balqees Sani and Sadaqat Jan

Figure 2. Automated testing tools ease of use, platform support and key strengths

test suite maintenance. The integration of AI-driven
optimization techniques, such as self-healing tests,
could minimize the impact of frequent code changes on
test stability.
Additionally, cloud-based testing platforms offer
promising solutions for scaling testing processes,
enabling parallel execution across a vast number
of environments. Future work could explore the
development of more robust and cost-effective cloud
integration’s, allowing for better scalability, particularly
for large-scale projects.
Another area for future exploration is the improvement
of collaboration between development and testing
teams, through more advanced behavior-driven
development (BDD) tools like Cucumber. By fostering a
deeper alignment between technical and non-technical
stakeholders, such tools can bridge communication
gaps and ensure that both parties have a clear under-
standing of testing objectives. Finally, as CI/CD

pipelines become the norm in modern software
development, there is a need for testing tools to
enhance their integration capabilities. Future efforts
could focus on automating not just test execution but
also test result analysis and feedback loops, reducing
the time-to-feedback and further streamlining the
software delivery process.

References
[1] Homès, B. (2024). Fundamentals of software testing. John

Wiley & Sons.
[2] Wang, J., Huang, Y., Chen, C., Liu, Z., Wang, S., &

Wang, Q. (2024). Software test-ing with large language
models: Survey, landscape, and vision. IEEE Transactions
on Software Engineering.

[3] Alshazly, A. A., Elfatatry, A. M., & Abougabal, M.
S. (2014). Detecting defects in software requirements
specification. Alexandria Engineering Journal, 53(3), 513-
527.

9
 EAI Endorsed Transactions on

AI and Robotics
| Volume 3 | 2024

Empirical Analysis of Widely Used Website Automated Testing Tools

[4] Xu, G., Khan, A. S., Moshayedi, A. J., Zhang, X., & Shuxin,
Y. (2022). The object detection, perspective and obstacles
in robotic: a review. EAI Endorsed Transactions on AI and
Robotics, 1(1).

[5] Latifi Rostami, S. A., Ghoddosian, A., Kolahdooz,
A., & Zhang, J. (2022). Topology optimization of
continuum structures under geometric uncertainty using
a new extended finite element method. Engineering
Optimization, 54(10), 1692-1708.

[6] Yu, X., Liu, L., Hu, X., Keung, J., Xia, X., & Lo, D. (2024,
September). Practitioners’ Expectations on Automated
Test Generation. In Proceedings of the 33rd ACM SIG-
SOFT International Symposium on Software Testing and
Analysis (pp. 1618-1630).

[7] Kolahdooz, A., Nourouzi, S., Bakhshi Jooybari, M., &
Hosseinipour, S. J. (2014). Experimental investigation of
thixoforging parameters effects on the microstructure and
mechanical properties of the helical gearbox cap. Journal
of Mechanical Science and Technology, 28, 4257-4265.

[8] Moshayedi, A. J., Khan, A. S., Yang, S., & Zanjani, S. M.
(2022, April). Personal image classifier based handy pipe
defect recognizer (hpd): Design and test. In 2022 7th
International Conference on Intelligent Computing and
Signal Processing (ICSP) (pp. 1721-1728). IEEE.

[9] Hanna, M., Aboutabl, A. E., & Mostafa, M. S. M.
(2018). Automated software testing framework for
web applications. International Journal of Applied
Engineering Re-search, 13(11), 9758-9767.

[10] Zarei, M., Moshayedi, A. J., Zhong, Y., Khan, A. S.,
Kolahdooz, A., & Andani, M. E. (2023, January). Indoor
UAV object detection algorithms on three processors:
implementation test and comparison. In 2023 3rd
International Conference on Consumer Electronics and
Computer Engineering (ICCECE) (pp. 812-819). IEEE.

[11] Camacho, N. G. (2024). Unlocking the Potential of
AI/ML in DevSecOps: Effective Strategies and Optimal
Practices. Journal of Artificial Intelligence General science
(JAIGS) ISSN: 3006-4023, 3(1), 106-115.

[12] Moshayedi, A. J., Uddin, N. M. I., Khan, A. S., Zhu, J.,
& Emadi Andani, M. (2023). Designing and Developing a
Vision-Based System to Investigate the Emotional Ef-fects
of News on Short Sleep at Noon: An Experimental Case
Study. Sensors, 23(20), 8422.

[13] Amit, Y., Felzenszwalb, P., & Girshick, R. (2021). Object
detection. In Computer Vi-sion: A Reference Guide (pp.
875-883). Cham: Springer International Publishing.

[14] R. N. Khan and S. Gupta, “Comparative Study of
Automated Testing Tools: Rational Functional Tester,
Quick Test Professional, Silk Test and Loadrunner,” Int. J.
Adv. Technol. Eng. Sci., vol. 3, no. 01, pp. 167–172, 2015

[15] R. K. Lenka, S. Mamgain, S. Kumar, and R. K. Barik,
“Performance analysis of au-tomated testing tools: JMeter
and TestComplete,” in 2018 International Conference on
Advances in Computing, Communication Control and
Networking (ICACCCN), IEEE, 2018, pp. 399–407.

[16] M. Karthik and V. K. Jananisivapriya, “Comparison of
Software Test Automation Tools-Selenium and UFT,” Am.
Int. J. Res. Formal, Appl. Nat. Sci., p. 5, 2019.

[17] H. Wu et al., “Peculiar: Smart contract vulnerability
detection based on crucial data flow graph and pre-
training techniques,” in 2021 IEEE 32nd International

Symposium on Software Reliability Engineering (ISSRE),
IEEE, 2021, pp. 378–389.

[18] 18. Samlı, R., & Orman, Z. (2023). A comprehensive
overview of web-based automated testing tools. İleri
Mühendislik Çalışmaları ve Teknolojileri Dergisi, 4(1),
13-28.

[19] Chaves, L. C., Oliveira, F. C. M., Tiago, L. A., & Castro, R.
G. V. (2024, May). Robert: An Automated Tool to Perform
Mobile Application Test. In Proceedings of the 2024
10th International Conference on Computer Technology
Applications (pp. 33-36).

[20] Moseh, M. A., Al-Khulaidi, N. A., Gumaei, A. H.,
Alsabry, A., & Musleh, A. A. (2024, August). Classification
and Evaluation Framework of Automated testing tools for
agile software: Technical Review. In 2024 4th Interna-
tional Conference on Emerging Smart Technologies and
Applications (eSmarTA) (pp. 1-12). IEEE.

[21] Haas, R., Nömmer, R., Juergens, E., & Apel, S. (2024).
Optimization of Automated and Manual Software Tests
in Industrial Practice: A Survey and Historical Analy-sis.
IEEE Transactions on Software Engineering.

[22] Aburas, A. (2024, May). Choosing the Right Automated
Software Testing Tools. In 2024 IEEE 4th International
Maghreb Meeting of the Conference on Sciences and Tech-
niques of Automatic Control and Computer Engineering
(MI-STA) (pp. 31-35). IEEE.

[23] Garousi, V., Joy, N., & Keleş, A. B. (2024). AI-powered
test automation tools: A sys-tematic review and empirical
evaluation. arXiv preprint arXiv:2409.00411.

[24] Jha, N., Popli, R., Chakraborty, S., & Kumar, P.
(2022). Software Test Automation Using Selenium and
Machine Learning. In Proceedings of First International
Conference on Computational Electronics for Wireless
Communications: ICCWC 2021 (pp. 419-429). Springer
Singapore.

[25] Abdullin, A., & Akhin, M. (2024, April). Kex at the
SBFT 2024 Tool Competition. In Proceedings of the 17th
ACM/IEEE International Workshop on Search-Based and
Fuzz Testing (pp. 65-66).

[26] Prasad, L., Yadav, R., & Vore, N. (2021). A systematic
literature review of automated software testing tool.
In Proceedings of 3rd International Conference on
Computing Informatics and Networks: ICCIN 2020 (pp.
101-123). Springer Singapore.

[27] Moshayedi, A. J., Roy, A. S., Ghorbani, H., Lotfi, H.,
Zhang, X., & Liao, L. (2024, May 9). A novel IoT-enabled
portable, secure automatic self-lecture attendance system:
Design, development and comparison. International
Journal of Electronic Securi-ty and Digital Forensics.

[28] Ma, X. (2024). Development and Automation of a
Web Applications Using FastAPI, Jenkins, and Robot
Framework.

[29] Mughal, A. H. (2024). Advancing BDD Software
Testing: Dynamic Scenario Re-Usability And Step Auto-
Complete For Cucumber Framework. arXiv preprint
arXiv:2402.15928.

[30] Moshayedi, A. J., Roy, A. S., Liao, L., Lan, H., Gheisari,
M., Abbasi, A., & Bamakan, S. M. (2021). Automation
attendance systems approaches: a practical review. BOHR
Int. J. Internet Things Artif. Intell. Mach. Learn, 1, 23-31.

10
 EAI Endorsed Transactions on

AI and Robotics
| Volume 3 | 2024

Balqees Sani and Sadaqat Jan

[31] Safaat, G., & Tjhin, V. U. (2024). Analysis of Quality
Assurance Performance in the Application of Manual
Testing and Automation Testing for Software Product
Test-ing. Indonesian Interdisciplinary Journal of Sharia
Economics (IIJSE), 7(2), 1987-1996.

[32] 32. Raj, V., & Varri, U. S. (2024). 13 An Automated
Approach. Cloud of Things: Foun-dations, Applications,
and Challenges, 223.

[33] Prasad, L., Yadav, R., & Vore, N. (2021). A systematic
literature review of automated software testing tool.
In Proceedings of 3rd International Conference on
Computing Informatics and Networks: ICCIN 2020 (pp.
101-123). Springer Singapore.

[34] Dias, T., Batista, A., Maia, E., & Praça, I. (2023,
July). TestLab: An Intelligent Automated Software Testing

Framework. In International Symposium on Distributed
Computing and Artificial Intelligence (pp. 355-364).
Cham: Springer Nature Switzerland.

[35] Moshayedi, A. J., Soleimani, M., Marani, M., Yang, S.,
Razi, A., & Andani, M. E. (2023, June). Fingerprint
Identification Banking (FIB); Affordable and Secure Bio-
metric IOT Design. In 2023 4th International Seminar
on Artificial Intelligence, Net-working and Information
Technology (AINIT) (pp. 384-390). IEEE.

[36] 36. Melyawati, N. L. P., Asana, I. M. D. P., Putri,
N. W. S., Atmaja, K. J., & Sudipa, I. G. I. (2024).
Comparison of Automation Testing On Card Printer
Project Using Play-wright And Selenium Tools. Journal of
Computer Networks, Architecture and High Performance
Computing, 6(3), 1309-1320.

11
 EAI Endorsed Transactions on

AI and Robotics
| Volume 3 | 2024

Empirical Analysis of Widely Used Website Automated Testing Tools

	1 Introduction
	2 Literature Review
	3 Widely Used Automated Testing Tools
	3.1 Selenium:
	3.2 JUnit:
	3.3 TestNG:
	3.4 Appium:
	3.5 Jenkins:
	3.6 Cucumber:
	3.7 LoadRunner:
	3.8 Katalon Studio
	3.9 SoapUI
	3.10 TestComplete:

	4 Disscusion
	5 Conclusion and Future Work

