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Abstract

Voice-controlled systems are increasingly essential in robotics, enabling intuitive, hands-free interaction.
However, deploying Keyword Spotting (KWS) models on resource-constrained microcontrollers remains
challenging, as existing approaches often sacrifice either efficiency or accuracy. This study proposes a
lightweight KWS model optimized for embedded systems, balancing computational efficiency and recognition
performance. The model leverages inter-domain interaction to extract spectral (MFCC) and temporal features,
with an attention mechanism enhancing keyword detection. It achieves 93.70% accuracy on Google Command
v2-12, with 0.359s inference time, 34.9KB peak RAM, and 98.7KB flash usage, outperforming DS-CNN-S in
speed and memory efficiency. These results demonstrate the feasibility of real-time, voice-controlled robotics
on low-power microcontrollers, paving the way for efficient, embedded speech recognition systems.

Received on 19 November 2024; accepted on 11 March 2025; published on 18 March 2025

Keywords: TinyML, Speech Commands, Channel Attention, Keyword Spotting

Copyright © 2025 Hien Vu Pham et al., licensed to EAI. This is an open access article distributed under the terms of the
CC BY-NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in
any medium so long as the original work is properly cited.

doi:10.4108/airo.7877

1. Introduction
Hands-free control offers significant potential in
robotics, enabling intuitive interaction with robots and
end-effectors through voice commands. By integrating
Keyword Spotting (KWS) technology, robotic systems
can efficiently respond to predefined voice commands,
eliminating the need for physical interfaces or con-
trollers. This approach is particularly advantageous in
scenarios where manual operation is impractical or
hazardous, such as industrial automation, healthcare, or
search and rescue missions.

The deployment of KWS on resource-constrained
microcontrollers is especially promising for lightweight
robotic platforms with limited computational and
power resources. Unlike traditional continuous speech
recognition systems, which are resource-intensive,
KWS provides an efficient solution suitable for real-
time operation on low-power devices. This capability
allows the development of portable, low-cost robotic
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systems equipped with voice command functionality,
enabling seamless operation in diverse environments.
For example, end-effectors can execute tasks like
picking, placing, or assembling components in response
to simple spoken commands.

To showcase its versatility, we apply Keyword Spot-
ting (KWS) within a non-destructive testing (NDT)
system to control sensor movement, thereby demon-
strating its effectiveness in a controlled environment.
The low latency, minimal memory footprint, and high
accuracy of KWS models underscore their suitability
for such applications, laying a strong foundation for
future advancements in voice-activated robotic systems
on resource-limited hardware platforms.

In this study, we present a lightweight deep-learning
framework for KWS that is possible to run in real-
time on a low-resource microcontroller. The proposed
model leverages inter-domain interactions, enabling
it to effectively assimilate information from both the
Mel-frequency cepstral coefficients (MFCCs) domain
[2] and the temporal domain. Moreover, an attention
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mechanism is incorporated to facilitate a comprehen-
sive exploration of the significance associated with
each channel. Additionally, our investigation includes
empirical analyses aimed at assessing the impact of
two distinct pooling methodologies, namely Average
Pooling and Max Pooling, on the weighting of channel
attention. We tested the proposed framework on the
Google Command v2-12 commands dataset [1], which
has ten predefined keywords, as well as categories
for silence and unknown words. The proposed model
achieves 93.70% accuracy, which is 6.1% surpassing the
benchmark’s model (i.e., DS-CNN [3]). Implementing
on microcontrollers (e.g., Arduino Nano 33 BLE Sense),
the model requires only 34.9KB peak RAM and 98.7KB
flash memories and takes 0.359 seconds in the inference
time, which is 3 times faster than the benchmarks’
model.

The structure of this paper is organized as follows:
Section 2 provides a comprehensive review of related
work, offering the necessary context and background to
situate the proposed approach within the existing body
of research. Section 3 presents a detailed explanation
of the features utilized in the system. The proposed
methodology is elaborated upon in Section 4. Section 5
describes the experimental setup and reports the results
obtained from real-world recordings, emphasizing
the performance and effectiveness of the proposed
approach. Finally, Section 6 concludes the paper with
a summary of findings and a discussion on potential
avenues for future research.

2. Related works
Keyword spotting (KWS) has seen significant advance-
ments with deep learning models outperforming tra-
ditional methods in both accuracy and efficiency.
Researchers have explored various architectures, each
with trade-offs between performance and computa-
tional cost. Below, we review the main approaches and
their relevance to real-time, microcontroller-based KWS
systems.

Convolutional neural networks (CNNs) have long
been the backbone of KWS due to their ability to extract
robust features from audio spectrograms. Among
these, DS-CNN [1] introduced depthwise separable
convolutions, significantly reducing parameter count
and computational overhead while maintaining strong
performance on the Google Speech Commands dataset.
Building on this idea, BC-ResNet [2] employed
broadcasted residual connections to further enhance
efficiency. While these models achieve competitive
accuracy, they remain relatively expensive in terms of
inference speed and memory, making them challenging
to deploy on low-power microcontrollers.

Attention mechanisms have gained popularity for
improving feature selection in neural networks. De

Andrade et al. [3] introduced attention-based archi-
tectures to enhance keyword classification. Similarly,
Berg et al. [4] developed Keyword Transformer (KWT),
a model leveraging full self-attention, outperforming
CNN-based architectures on benchmark datasets. Seo
et al. [5] proposed Wav2KWS, which applies transfer
learning from a Wav2Vec 2.0 encoder to enhance speech
command recognition. While these transformer-based
approaches achieve state-of-the-art accuracy, they are
often computationally demanding, making them less
practical for embedded systems.

Beyond CNNs and transformers, researchers have
explored alternative architectures to optimize KWS
models. ConvMixer [6] integrates token mixing to
improve feature interactions while maintaining com-
pact model size. Vygon and Mikhaylovskiy [7] intro-
duced triplet loss-based embeddings, combining metric
learning with kNN classifiers to refine keyword classifi-
cation. These methods offer innovative ways to enhance
recognition accuracy, but their computational overhead
still limits deployment on microcontrollers.

The rise of TinyML has driven efforts to adapt deep
learning models for low-power microcontrollers. Ban-
bury et al. [8] introduced the TinyMLPerf benchmark,
evaluating ultra-low-power machine learning models
on accuracy, latency, and energy consumption. Rusci et
al. [9] demonstrated that a quantized ResNet15 model
could achieve 80% accuracy with minimal training
data, requiring only 25 mW of power. Bushur et al.
[10] explored various neural network architectures for
KWS, optimizing them for FPGA and edge devices.
Jeoung et al. [11] implemented a CNN-based KWS
model on a Raspberry Pi 3, achieving 96.7% accuracy
by incorporating locally recorded utterances. Abbas et
al. [12] designed a TinyML-based KWS system for the
Arduino Nano 33 BLE Sense, achieving 84.5% accu-
racy after quantization. These studies demonstrate the
feasibility of running deep learning models on micro-
controllers, but most still involve trade-offs between
accuracy, memory consumption, and inference speed.

Several studies have benchmarked KWS models
specifically for edge devices. Zhang et al. [1] optimized
CNN architectures for microcontrollers, focusing on
parameter efficiency. Chollet [13] introduced depthwise
separable convolutions, now widely used in lightweight
neural networks, including KWS models. Howard et al.
[14] further refined efficient architectures through the
development of MobileNetV3, emphasizing trade-offs
between accuracy and efficiency. These studies high-
light the ongoing need for compact, high-performance
models tailored to real-time applications.

While previous research has made significant
progress in optimizing KWS models, there remains
a gap in achieving both high accuracy and real-
time performance on embedded systems. Our
work bridges this gap by integrating inter-domain
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interaction and channel attention, allowing the model
to extract key spectral and temporal features without
excessive computational cost. Unlike transformer-based
approaches, which require high memory bandwidth,
our model is optimized for low-latency inference
and efficient memory usage, making it well-suited
for real-world applications such as voice-controlled
robotics.

3. Data Preparation
The data used to train is Google Commands version 2
[15] which is a collection of spoken word recordings
created to aid in the training and assessment of
keyword detection systems. The main aim is to facilitate
the development and evaluation of compact models
capable of accurately identifying specific words from
a predefined set of ten while minimizing erroneous
detection caused by background noise or irrelevant
speech.

The specified target labels include "Yes", "No", "Up",
"Down", "Left", "Right", "On", "Off", "Stop", and "Go" (10
labels). In alignment with the Tensorflow speech com-
mand dataset, two supplementary labels, "Unknown"
and "Silence", are introduced. The "Unknown" category
encompasses words such as "Bed", "Bird", "Cat", "Dog",
"Happy", "House", "Marvin", "Sheila", "Tree", and "Wow",
which exhibit phonetic resemblance to the target words
and serve as stringent tests for the model’s discrimi-
natory capabilities. The "Silence" class also comprises
samples extracted from background noise files, each
comprising 16,000 features. Subsequently, the raw data
transforms into the Mel-frequency cepstral coefficients
(MFCCs) signal as Fig. 2 which are coefficients that
collectively make up an MFC[16].

The time-series audio data undergo preprocessing to
derive Mel-Frequency Cepstral Coefficients (MFCCs),
renowned as pivotal features for subsequent analytical
endeavors such as speech recognition or audio classifi-
cation. The initial phase entails the computation of the
Short Time Fourier Transform (STFT) to effectuate the
conversion of the audio signal into its frequency domain
manifestation as Eq. 1 where x(t) represents the input
time-series audio signal and X(t, f ) represents the Short
Time Fourier Transform at time t and frequency f . It
divides the signal into short frames, applies a window
function (in this case, the Hann window), and then
computes the Fourier transform for each frame.

X(t, f ) = STFT(x(t)) (1)

After this transformation, Mel-scaled spectrograms
are derived by applying a linear-to-Mel frequency
conversion with the Eq. 2 where S(t, f ) denotes the
spectrogram derived from the magnitude of the STFT.
Following this, values are stabilized by applying the
natural logarithm to the Mel-scaled spectrograms

denoted as M(t, m). Here, W (f ,m) represents the linear-
to-Mel weight matrix, thus resulting in log-magnitude
Mel-scale spectrograms L(t, m), where ϵ is a small
constant added to avoid taking the logarithm of zero as
Eq. 4.

S(t, f ) = |X(t, f )| (2)

M(t, m) =
F∑

f =0

S(t, f ) ·W (f ,m) (3)

L(t, m) = log(M(t, m) + ε) (4)

Subsequently, MFCCs are computed through a
succession of mathematical operations utilizing these
spectrograms, thereby encapsulating crucial spectral
attributes of the audio signal. The resultant MFCCs are
then reshaped to adhere to the desired input format for
subsequent analyses. This step is illustrated in Eq. 5,

MFCCs(t, c) = MFCCs(L(t, m))[: C] (5)

where c denotes the index of an individual MFCC
coefficient at time frame t, and C represents the total
number of coefficients retained from the extraction
process.

Adhering to defined parameters for benchmark
results [8], the value of spectrogram length is set as
49, window strides is 20, and the number of DCT
coefficients C with the values of 10. Subsequently, the
dataset is partitioned into training and testing sets
at an 80-20% ratio. Within the training process, 20%
of the training set is allocated for model validation.
It is evident that the number of instances labeled
as "Unknown" significantly surpasses the others. In
contrast, the count of "Silence" files is notably lower
compared to the other categories, displaying an inverse
trend.

4. Proposed methods
4.1. Model Architecture
Drawing inspiration from the ConvMixer block intro-
duced in [6] and the concept of channel attention out-
lined in [14], the procedure is divided into two distinct
sub-modules: one targeting the coefficient domain and
the other focusing on the temporal domain. The coeffi-
cients capture various aspects of the spectral character-
istics of the signal, such as the distribution of energy
across different frequency bands. Typically, the first
coefficient represents the overall signal energy, while
the subsequent coefficients capture more detailed spec-
tral information. The coefficient axis thus represents the
extracted features or spectral attributes of the signal.
Therefore, we apply channel attention to explore its
meaningful feature along the channel axis. The time
axis corresponds to different frames of the audio signal.
These frames are typically overlapping segments of the
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Figure 1. End-to-End Workflow for Keyword Spotting for Robotics Application.

Figure 2. MFCC representations of sample audio inputs for each keyword class in the Google Speech Commands v2-12 dataset.

input signal, each capturing a short-duration snippet
of the audio waveform. The frame axis thus represents
the temporal evolution of the signal, allowing analysis
over time. The skip connections [17] are used along
with inter-domain blocks to address the vanishing gra-
dient problem and facilitate the training of deep archi-
tectures. Additionally, residual connections encourage
feature reuse and enable the network to learn residual
functions, simplifying the learning task and potentially
improving generalization performance. In our block,
there are many sublayers inside, by providing shortcut

paths for gradient flow, they alleviate the issue of gra-
dients becoming too small as they propagate through
numerous layers. This allows for more efficient training
of deep networks by enabling easier optimization and
faster convergence.

Depthwise Separable Convolution. Depthwise separable
convolutions [13] aims at increasing demand for effi-
cient neural network architectures, particularly in
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Figure 3. The proposed KWS model architecture, incorporating three inter-domain interaction layers with skip connections. Each
block integrates spectral and temporal feature extraction through depthwise convolutions and attention mechanisms to enhance keyword
recognition.

mobile and embedded vision applications where com-
putational resources are limited. By decoupling tra-
ditional convolutions’ spatial and channel-wise opera-
tions into separate depthwise and pointwise convolu-
tion layers, depthwise separable convolutions signifi-
cantly reduce the number of parameters and computa-
tional costs while maintaining model performance.

The depthwise convolution applies a single filter per
input channel, performing separate convolutions for
each input channel. This operation reduces the number
of parameters and computations compared to standard
convolutions. For instance, with a normal convolutional
neural network, to get output with shape (H ′ ,W ′ , C)
from input (H,W ,C) (keeping the same dimension
as the input), C kernels of size k × k × C must be
applied on the convolution process including C × k ×
k × C number of parameters. However, the depthwise
convolution only requires k × k × C parameters.

Each input filter is convolved with each kernel of the
depthwise convolution as in Eq. 6.

Outk,l,m =
∑
i,j

Kerneli,k,m · Filterk+i−1,l+j−1,m (6)

where k and l denote the spatial positions of the output
feature map, m represents the channel index, i and j are
indices iterating over the kernel dimensions, Kerneli,k,m
is the weight of the convolution kernel at position
(i, k,m), and Filterk+i−1, l+j−1, m is the corresponding
value from the input feature map.

The output is then linearly combined with a 1 × 1
convolution to adjust the number of output filters.

Figure 4. Visualization of the channel attention mechanism for
extracting meaningful spectral features. (a) Attention weights
based on average feature values. (b) Attention weights using a
combination of average and maximum values for improved feature
selection.

Channel attention. In this study, we employ channel
attention rather than self-attention or full spatial atten-
tion due to its computational efficiency, making it well-
suited for microcontroller deployment. Self-attention
mechanisms, such as those used in Transformer-based
models, require global dependencies and involve signif-
icant matrix multiplications, leading to increased com-
putational cost and memory usage. In contrast, channel
attention focuses on selecting the most informative
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Table 1. Detailed configuration of an inter-domain interact block

Module
name Layers

Input
shape Filters

Kernel
size Strides

Output
shape

Shortcut
Conv2D

BatchNorm
ReLU

w × h × c s 3 × 3 - w′ × h′ × s

Coef
Conv2D

BatchNorm
ReLU

w × h × c c/4 1 × 1 1 w × h × c/4

Depthwise2D
BatchNorm

ReLU
w × h × c/4 - 3 × 3 - w′ × h′ × c/4

Global
AveragePooling w × h × c/4 - - - c/4

Dense
ReLU c/4 - - - c/16

Dense
ReLU c/16 - - - c/4

Multiply
w′ × h′ × c/4
c/4 - - - w′ × h′ × 1

Temp
Depthwise2D
BatchNorm

ReLU
w′ × h′ × 1 - h × 3 1 w′ × h′ × 1

Conv2D
BatchNorm

ReLU
w × h × 1 s 1 × 1 - w′ × h′ × s

Interact
Add

(coef, time)
w′ × h′ × s
w′ × h′ × s - - - w′ × h′ × s

Residual
Add

(interact, shortcut)
w′ × h′ × s
w′ × h′ × s - - - w′ × h′ × s

frequency bands, refining feature maps without intro-
ducing excessive overhead. This makes it particularly
effective for lightweight keyword spotting (KWS) tasks,
where maintaining low latency is critical for real-time
applications.

The input, denoted as X ∈ Rw×h×1, traverses through
the channel attention module aimed at emphasizing
meaningful saliency maps. This process involves
extraction via conventional convolutional layers and
a depthwise convolutional layer in Eq. 7, which
endeavors to strike a delicate balance between accuracy
and parameter count. Each channel’s attention is
guided by assigning corresponding weights, intended
to spotlight important features. Initially, representative
features from each channel are isolated, typically
achieved through computations such as maximum
or average values; in this study, the average value
of each feature map is utilized. These extracted

values subsequently undergo interaction via two fully
connected layers. the quantity of hidden nodes in the
initial dense layer constitutes one-quarter of those
present in the subsequent layer as the proposal of [14].
The resultant output Af ∈ R1×1×f , scaled within the
range of 0 to 1 to represent desired weights as Eq. 8,
is then multiplicatively applied to the respective input
channels as shown in Eq. 9 to get F ∈ Rw′×h′×f where
w′ < w and h′ < h, f is the number of channel in the next
layer, and σ is the Sigmoid activation function. The last
convolutional layer is used to make the output shape fit
with the shape in the next stage.

Ef = ReLU(depthwise(ReLU(conv(X)))) (7)

Af = σ (FC(FC(GAP(E)))) (8)

F = Ef ·Af (9)
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Global Average Pooling (GAP) and Global Max Pooling
(GMP) Nevertheless, in Eq. 8, it is evident that the
weights of the channels are solely determined by the
average value, potentially resulting in an equalized
impact of all discriminative features. Consequently,
rather than solely focusing on the average value, we
advocate for considering the maximum value as well
to survey the impact of both pooling methods, and
the result is given in the Table. 2. In certain scenarios,
the maximum value represents the most discriminative
feature. Both the average and maximum values are
accompanied by corresponding coefficients α and β as
Fig. 4 and Eq. 11.

Af = σ (FC(FC(αGAP(E) + βGMP(E)))) (10)

Inter-domain Interaction. To enhance the quality of the
extracted feature maps, inter-domain interaction is
employed to integrate spectral (MFCC) and temporal
features, yielding a more robust and holistic represen-
tation.

Once spectral feature maps have been refined using
the previously described channel attention mechanism,
they are further processed by two sequential 1D
convolution layers: a conventional convolutional layer
and a depthwise convolutional layer. This step is
designed to capture intricate temporal patterns, as
formulated in Eq. 11.

T = ReLU(conv(ReLU(depthwise(F)))) (11)

Following this, the extracted temporal features from
Eq. 11 are seamlessly fused with the spectral features
from Eq. 9, forming a unified representation, as
demonstrated in Eq. 12.

M = F + T (12)

Additionally, a skip connection consisting solely of
a Conv2D layer is incorporated to mitigate vanishing
gradients and facilitate the efficient learning of intricate
relationships between the two domains.

The integration of complementary features not only
enriches the overall representation of the signal but
also strengthens robustness against environmental
noise and speaker variability, thereby enhancing the
model’s ability to accurately distinguish between
similar sounds.

4.2. Implementation Details
We trained the model shown in Fig. 3 with the
values of s1, s2, and s3 set to 16, 32, and 64 for
each block, respectively, as detailed in Table 1. The
training was conducted for 50 epochs with a batch
size of 128 samples per iteration, using the Adam
optimizer initialized with a learning rate of 0.001,

which was reduced 10 times when validation loss
stopped improving.

Furthermore, in our study, we have also incorporated
several model architectures proposed by [1], which have
been optimized to accommodate the input shape of
40 × 10, as outlined in the benchmark paper by [8]. To
ensure a fair and meaningful comparison, we retrained
these models from scratch on our dataset, rather
than directly using the results reported in previous
studies. This avoids any potential misunderstanding
that the reported results are taken from other
papers. Additionally, we implemented another neural
network to highlight the performance of our proposed
block when compared with other commonly used
architectures.

The DenseNet network comprises three dense
blocks, each consisting of batch normalization, ReLU
activation, and 3 × 3 convolutional layers. Within each
dense block, feature maps from preceding layers
are concatenated with new feature maps generated
by the composite functions, enabling feature reuse
and improved feature propagation. Transition layers
between dense blocks reduce the number of feature
maps and control model complexity. The network
concludes with fully connected layers followed by
a Softmax activation function to generate class
probabilities.

All models were trained on a High-Performance
Computer with 2 × A100 GPU and 128G RAM. For
deployment on the Arduino Nano 33 BLE Sense, we
optimized the model using post-training quantization,
reducing memory consumption while maintaining
accuracy. The microcontroller’s Cortex-M4F processor
operates at 64 MHz, with 256 KB RAM and 1 MB
Flash, limiting model size. To ensure efficient inference,
we incorporated lightweight activation functions,
including ReLU6 and Hard Swish, and minimized
the number of MAC operations per forward pass by
utilizing depthwise convolutions.

In summary, our methodology utlines a comprehen-
sive approach combining inter-domain feature extrac-
tion with efficient attention mechanisms tailored for
resource-constrained environments. With the model
architecture and training protocols rigorously defined,
we now turn to evaluating its performance. The follow-
ing section presents a detailed analysis of experimental
results, including accuracy, inference speed, memory
efficiency on the Google Command v2-12 dataset, and
some ablation studies conducted to observe the perfor-
mance of the model with different types of architec-
tures.

5. Results and Discussion
The performance metrics of the model are illustrated in
Fig. 7 (right). Within the confusion matrix, the accuracy
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of each class is depicted through comparisons of actual
versus predicted labels. Most classes achieve accuracies
exceeding 90%, except for the Left and Stop classes,
which attain accuracies of 87% and 89%, respectively.
Notably, all classes tend to be misclassified as class
Unknown. This outcome is expected, considering the
content discussed in Section 3, where the unknown
class encompasses numerous words that bear close
phonetic resemblance to the target labels.

Figure 5. Learning process of the best model with GAP only
which converges quickly after 10 epochs

Table 2. Comparative analysis of the effects of Global Max
Pooling on model performance where α and β are the coefficients
of GAP and GMP, respectively

α β
Accuracy
(valid)

Accuracy
(test) F1 (%) Recall

(%)
0.5 0.5 92.90 93.61 93.60 93.61
0.8 0.2 91.45 92.06 91.75 92.06
0.2 0.8 93.09 93.70 93.67 93.70
1.0 0.0 93.52 93.68 93.67 93.68
0.0 1.0 90.36 91.07 91.04 91.07

Fig. 5 illustrates the learning process of the trained
model. The model demonstrates proficient learning
with each successive epoch. Notably, both the training

and validation processes exhibit pronounced conver-
gence following ten epochs, subsequently maintaining
stability beyond the twentieth epoch. Despite a decrease
in the learning rate, significant improvement in results
is unattainable. Remarkably, there is an absence of
overfitting throughout the training process.

Table. 2 presents the performance metrics of the
model employing Global Average Pooling (GAP),
Global Max Pooling (GMP), and a combination of
both pooling methods. Either GAP or GMP yields
results that are largely comparable to each other. The
disparities between the two methodologies are not
deemed significant. Table. 3 shows the performance of
the models in [1], which is implemented to make them
fit input shape of 40 × 10 as in benchmark paper.[8].

The discrepancy between the raw data and their
corresponding extracted features at the final layer of
the proposed model, employing Principal Component
Analysis (PCA) to project all data points into a lower-
dimensional space, is depicted in Fig. 6. The data
processed by the model exhibit well-defined clustering
and demonstrate a noticeable trend in classification.

Figure 6. Visualization of raw data samples (left) and feature
embeddings from the final model layer (right) using PCA. The
improved clustering in the right plot demonstrates the model’s
ability to learn discriminative features for keyword classification.

The inclusion of channel attention significantly
enhances keyword detection by selectively amplify-
ing important spectral features. Without attention, the
model treats all frequency components equally, poten-
tially diluting the relevance of critical information.
Our results show that integrating channel attention
leads to a higher classification accuracy (93.70%) while
maintaining a compact model size. This suggests that
attention mechanisms, even in a lightweight form, can
improve feature discrimination and robustness in KWS
tasks. While more complex attention mechanisms, such
as self-attention, could further enhance performance,
they come at the cost of higher computational require-
ments, making them less practical for microcontroller-
based deployments.

The results in Table 4 and Table 5 highlight the effi-
ciency of the proposed model across different microcon-
troller platforms. On the Arduino Nano 33 BLE Sense,
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Table 3. Comparison of our model with others on the dataset

Model Params (K) FLOPS (M) Acc (%) F1 (%) Recall (%)
DS-CNN [8] 38.6 24.9 87.60 86.83 85.92
DenseNet [8] 12.8 0.5 85.1 82.5 82.83
DS-CNN-S[1] 23.6 5.4 87.60 86.83 85.92
DS-CNN-M[1] 137.8 19.8 86.40 86.0 84.5
DS-CNN-L[1] 415.9 56.9 86.70 84.4 84.6

Ours 35.1 5.5 93.70 93.67 93.70

Table 4. Model Performance on Inference on Arduino Nano 33
BLE Sense

Model
Inference
time(s)

Peak
RAM (KB)

Flash
usage(KB)

DS-CNN-S[1] 1.135 65.2 114.0
DS-CNN-M[1] 2.061 81.0 199.2
DS-CNN-L[1] 2.855 137.6 496.4

Ours 0.359 34.9 98.7

Table 5. Model Performance on Inference on STM32 MCUs

Model
Inference
time(ms)

Peak
RAM (KB)

Flash
usage(KB)

DS-CNN-S[1] 13.63 34.34 98.2
DS-CNN-M[1] 23.66 69.15 195.92
DS-CNN-L[1] 59.78 115.05 484.2

Ours 11.37 39.46 120.97

our model achieves an inference time of 0.359 seconds,
which is three times faster than DS-CNN-S (1.135s) and
eight times faster than DS-CNN-L (2.855s), while also
reducing peak RAM usage by 47% and flash memory by
80% compared to DS-CNN-L. Similarly, on the STM32
Nucleo-H743ZI2 (Cortex-M7, 480 MHz), our model
achieves an inference time of 11.37 ms, outperforming
DS-CNN-S (13.63 ms) and DS-CNN-L (59.78 ms) by
16.5% and over five times, respectively. Although our
model requires slightly more RAM (39.46 KB vs. 34.34
KB for DS-CNN-S on STM32), it remains significantly
more efficient in terms of both inference speed and
flash memory usage. These results confirm that our
model is well-suited for real-time, resource-constrained
applications, demonstrating strong adaptability across
different microcontroller architectures while maintain-
ing a balance between speed, memory efficiency, and
computational complexity.

The proposed model in Sec. 4 was tried with some
different architectures with 1, 2, and 3 interact layers,
and the results are shown in Fig. 7 and the detailed
performance in Table. 6.

Furthermore, we conducted experiments to
evaluate the model’s performance under different
configurations, specifically by selectively retaining

Table 6. Comparison of our model performance applied with
different number of interact layers

Model Params (K) Acc (%) F1 (%) Recall (%)
1 5 85.38 85.38 85.03
2 33 92.22 92.22 92.21
3 35 93.68 93.68 93.68

Figure 7. Confusion matrix of the best model without GAP
including 2 (top) and 3 (bottom) inter-domain interaction layers

certain CNN layers while preserving skip connections
and removing inter-domain interaction modules.
This adapted model achieved an accuracy of 88.13%
with a corresponding loss of 0.42. In contrast, our
proposed model achieved a significantly lower loss
of approximately 0.22, nearly half that of the model
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utilizing only CNN layers. Additionally, we explored
alternative configurations in the final layer, replacing
Global Average Pooling with Global Max Pooling and
integrating a Fully Connected Layer. The outcomes of
these variations are detailed in Table. 7.

6. Conclusion
This paper introduced a novel lightweight deep learn-
ing framework for keyword spotting (KWS), combin-
ing input-domain knowledge with attention mecha-
nisms to enhance feature extraction and model focus.
The exploration of distinct pooling methods further
refined channel weighting, bolstering the framework’s
capacity for effective classification. Empirical eval-
uations demonstrated the model’s efficacy, achiev-
ing a classification accuracy of 93.70% on a 12-
label dataset—outperforming the tinyMLPerf bench-
mark model by 6.1% and other models like DS-CNN-
S, M, and L by 6-8%. The proposed framework also
exhibited significant improvements in efficiency, with
an inference time of 0.359 seconds (three times faster
than DS-CNN-S) and peak RAM and flash usage of
34.9KB and 98.7KB, respectively, representing a 50%
reduction compared to the smallest DS-CNN model.
These results highlight the framework’s suitability
for resource-constrained environments, particularly in
robotics, enabling intuitive voice-controlled operations
such as movement and task execution. Future work
will focus on optimizing the model’s efficiency and
performance through techniques like quantization and
pruning. Additionally, we aim to develop an end-to-end
framework that eliminates reliance on preprocessing
or hand-crafted features, broadening its applicability
beyond KWS to other domains while maintaining com-
patibility with resource-limited devices.
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