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Abstract 
Accurate prediction of diabetes onset is essential for effective early diagnosis and clinical intervention. This study presents 
a performance analysis of several machine learning (ML) algorithms applied to the Pima Indians Diabetes Dataset (PIDD), 
with a primary focus on a novel Artificial Neural Network (ANN) architecture, referred to as DeepDiabFusion. The proposed 
model integrates feature-wise normalization, parallel dense sublayers, and an interaction-aware fusion mechanism to capture 
complex feature relationships often overlooked by conventional models. Comparative experiments were conducted against 
seven traditional ML algorithms, including Logistic Regression, Random Forest, and Gradient Boosting, as well as state-of-
the-art ANN-based models from recent literature. Performance was evaluated using accuracy, precision, recall, and area 
under the curve (AUC) metrics. The proposed model achieved an accuracy of 93.04%, precision of 86.21%, recall of 93.10%, 
and AUC of 0.951—outperforming all baseline and previously reported models. These results demonstrate the superior 
classification performance and practical applicability of the proposed ANN framework in clinical decision support systems 
for early diabetes detection and management. 
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1. Introduction

Diabetes is a chronic disease affecting over 422 million 
people globally, as reported by the World Health 
Organization (WHO) [1]. In 2021, Uzbekistan’s diabetes 
prevalence was 6.3%, meaning approximately 1,351,800 
people had diabetes, according to the International Diabetes 
Federation (IDF) [2]. Diabetes is a chronic condition that can 
cause serious damage to the heart [3], kidneys [4], eyes [5], 
blood vessels, and nerves. Early prevention and detection are 
crucial to prevent complications and save lives [6]-[7]. 

*Corresponding author. Email: mukhriddin.9207@gmail.com 

Machine Learning (ML) methods offer powerful tools for 
identifying individuals at risk through data-driven analysis. 
Various ML models such as Decision Trees (DT) [8], 
Random Forest (RF) [9], Support Vector Machines (SVM) 
[10], Logistic Regression (LR) [11], and ensemble learning 
[12] strategies have been successfully employed for diabetes
prediction tasks due to their ability to uncover hidden patterns
in clinical data.

However, despite these advancements, many existing 
approaches fail to address key limitations such as dataset 
imbalance, feature interaction modeling, or the need for 
tailored architectures. Recent research has increasingly 
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focused on improving the performance of classification 
models, particularly for imbalanced medical datasets. For 
example, the authors [13] proposed a dynamic sampling 
strategy for deep learning networks that outperforms 
conventional methods on multiclass imbalanced datasets. 
Another study [14] achieved 99.6% accuracy on hypothyroid 
data by optimizing neural network weights using learning 
automata, underscoring the importance of specialized ANN 
configurations and feature selection strategies for reliable 
medical diagnosis. 

In this context, our paper shifts the focus toward the design 
and evaluation of a novel Artificial Neural Network (ANN) 
architecture specifically tailored to the Pima Indians Diabetes 
Dataset (PIDD). Rather than comparing standard ML models 
in isolation, our primary aim is to introduce a custom ANN 
design capable of enhancing predictive accuracy and 
generalization through structured interaction modeling. The 
contributions of this paper are: 

• Development of a customized ANN architecture: A
novel Artificial Neural Network (ANN) architecture is
introduced, meticulously designed for structured clinical
datasets. The model integrates feature-wise
normalization, parallel dense sublayers, and an
interaction-aware fusion mechanism, collectively
enhancing its capacity to learn complex patterns inherent 
in medical data.

• Incorporation of attention-inspired mechanisms: The
proposed framework embeds an attention-like
component to model inter-feature dependencies
effectively. This mechanism enables the dynamic
weighting of feature interactions, thereby addressing
limitations associated with traditional feedforward ANN
architectures.

• Rigorous comparative evaluation: The proposed ANN
is comprehensively evaluated against seven
conventional machine learning algorithms—namely
Logistic Regression, k-Nearest Neighbors, Random
Forest, Stochastic Gradient Descent, Gradient Boosting,
Decision Tree, and Linear Discriminant Analysis—
using standard performance metrics including accuracy,
precision, recall, and AUC.

• Benchmarking against state-of-the-art models: A
detailed performance comparison is conducted with
existing studies employing both classical and ANN-
based models on the Pima Indians Diabetes Dataset
(PIDD). The results consistently demonstrate the
superiority of the proposed ANN in terms of
classification accuracy and robustness.

• Enhanced interpretability and clinical applicability:
Through its modular design and structured interaction
modeling, the proposed model improves interpretability,
making it a promising candidate for deployment in
clinical decision support systems aimed at early
detection and intervention in diabetes management.

The remainder of this paper is structured as follows: 
Section 2 presents a comprehensive review of existing 
literature on machine learning and artificial neural network 
(ANN) approaches for diabetes prediction, emphasizing their 

methodologies and inherent limitations. Section 3 describes 
the methodological framework employed in this study, 
including data preprocessing steps and the architectural 
design of the proposed ANN model. Section 4 reports the 
experimental results and provides a comparative performance 
analysis between the proposed model, conventional machine 
learning algorithms, and previously published ANN-based 
studies. Finally, Section 5 concludes the paper by 
summarizing the key findings, discussing their practical 
implications, outlining current limitations, and proposing 
directions for future research. 

2. Related Work

In recent years, the application of machine learning (ML) and 
deep learning techniques to medical diagnosis has gained 
substantial attention, particularly for conditions like diabetes 
where early detection is critical. Numerous studies have 
explored both traditional ML algorithms and advanced neural 
network architectures to predict diabetes risk using clinical 
datasets such as the Pima Indians Diabetes Dataset (PIDD).  

This section reviews the state-of-the-art in diabetes 
prediction, categorizing related work into two major streams: 
classical ML-based approaches and ANN-based deep 
learning methods. By analyzing the strengths and limitations 
of these approaches, we highlight the research gaps that 
motivate the development of a novel ANN architecture 
introduced in this study. 

2.1. Machine Learning Approaches for 
Diabetes Prediction 

Traditional ML models such as Logistic Regression, Decision 
Trees, Random Forests, SVM, and Gradient Boosting have 
been widely used for diabetes prediction due to their 
simplicity and effectiveness on structured datasets like PIDD. 
While these models perform well in many cases, they often 
face limitations in handling imbalanced data and capturing 
complex feature interactions. This subsection reviews key 
studies employing ML approaches for diabetes prediction, 
highlighting their strengths and shortcomings. 

In [9], a prognosis model for gestational diabetes mellitus 
(GDM) was proposed using multiple machine learning 
classifiers including logistic regression, support vector 
machines (SVM), k-nearest neighbors (KNN), and random 
forest (RF). The study employed group-based mean (GBM) 
imputation to handle missing values and applied min-max 
normalization to improve data quality. Classification 
performance was evaluated using accuracy, precision, recall, 
F1-score, and ROC curves. Among all models, RF achieved 
the highest accuracy of 92.10% after normalization. While 
this work focused on data preprocessing and classifier 
comparison, it did not introduce novel model architectures or 
advanced interaction modeling. In [10], a predictive 
framework for diabetes detection was developed using 
supervised learning algorithms applied to the Pima Indians 
Diabetes Dataset. The study implemented five models: linear 
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kernel SVM, RBF kernel SVM, k-nearest neighbor (k-NN), 
artificial neural network (ANN), and multifactor 
dimensionality reduction (MDR). Preprocessing steps 
included outlier removal, k-NN imputation, and feature 
selection using the Boruta algorithm. Performance evaluation 
based on accuracy, recall, precision, F1-score, and AUC 
showed that SVM-linear and k-NN achieved the highest AUC 
values of 0.90 and 0.92, respectively. While ANN was used, 
it followed a standard architecture with no structural 
enhancements. In [11], a comparative analysis was conducted 
using Logistic Regression (LR) and Decision Tree Classifier 
(DTC) on the Pima Indians Diabetes Dataset. The study 
applied preprocessing steps including normalization and 
trained the models using an 80:20 train-test split. Evaluation 
metrics such as accuracy, precision, recall, F1-score, 
specificity, and sensitivity were used to assess model 
performance. The results showed that LR achieved higher 
accuracy (82.46%) compared to DTC (78.57%). Although 
both algorithms were assessed thoroughly, the study focused 
solely on classical ML models and did not explore deep 
learning approaches or custom neural network architectures.  

In [12], a comparative study was conducted using both 
classical and hybrid machine learning models for diabetes 
prediction on the Pima Indians Diabetes Dataset and an early-
stage diabetes dataset. Classical models such as Multilayer 
Perceptron (MLP), k-Nearest Neighbors (k-NN), Support 
Vector Machine (SVM), and Naïve Bayes were evaluated 
alongside hybrid ensemble methods including Random 
Forest, AdaBoost, XGBoost, Extra Trees, Gradient Boosted 
Trees (GBT), and a stacked generalization approach. The 
study found that the stacked generalization model achieved 
the highest accuracy of 83.9% on the Pima dataset, 
outperforming all other models. However, the work focused 
primarily on combining multiple learners through meta-
classification and did not explore architectural customization 
within a single model. In [15], a rule-based classifier 
framework was proposed for diabetes prediction using 
Principal Component Analysis (PCA) to reduce the 
dimensionality of the Pima Indians Diabetes Dataset. The 
study evaluated three models—Decision Tree, Naïve Bayes, 
and Support Vector Machine (SVM)—with and without 
PCA. The goal was to generate minimal classification rules 
with high accuracy. Results showed that Naïve Bayes 
achieved the highest accuracy (77.36%) after PCA was 
applied, followed by Decision Tree (76.22%) and SVM 
(68.68%). While the model benefited from dimensionality 
reduction, it relied solely on traditional classifiers and did not 
address advanced learning techniques or interaction-aware 
modeling.  

In [16], several classification algorithms including Naive 
Bayes, Sequential Minimal Optimization (SMO), Reduced 
Error Pruning Tree (REPTree), and Simple Logistic 
Regression were evaluated on the Pima Indians Diabetes 
Dataset. The study applied the SMOTE oversampling 
technique to handle class imbalance, followed by 10-fold 
cross-validation for performance evaluation. Results showed 
that Simple Logistic Regression achieved the highest 
accuracy (75.7%), followed closely by REPTree and SMO. 
Naive Bayes performed the least accurately. While the study 

focused on classical classifiers and basic resampling 
techniques, it did not explore deep learning architectures or 
interaction-aware learning. In [17], a cross-country 
evaluation framework was introduced to assess the 
performance of machine learning models trained on the Pima 
Indians Diabetes Dataset and tested on a hospital dataset from 
Bangladesh. The study applied four classifiers—Decision 
Tree, k-Nearest Neighbor (KNN), Random Forest, and Naïve 
Bayes—after conducting preprocessing steps such as 
normalization and handling unit mismatches across datasets. 
Three-fold cross-validation and hyperparameter tuning were 
used to optimize model performance. Random Forest 
achieved the highest AUC (0.83) on the PIMA test set, while 
Naïve Bayes yielded the best AUC (0.84) on the Bangladeshi 
dataset. Despite robust evaluation, the models relied on 
traditional architectures and lacked mechanisms to model 
nonlinear feature interactions. In [18], a comparative study 
was conducted using five machine learning algorithms—K-
Nearest Neighbor (KNN), Naïve Bayes (NB), Logistic 
Regression (LR), Random Forest (RF), and Support Vector 
Machine (SVM)—to predict diabetes based on the Pima 
Indians Diabetes Dataset. The authors applied preprocessing 
steps including mean imputation for missing values, 
normalization, and Pearson correlation for feature selection. 
The study evaluated models using both train-test split (70/30) 
and K-fold cross-validation, reporting that SVM achieved the 
highest accuracy (83%) using the split method. Although the 
framework achieved competitive results, it primarily focused 
on classical classifiers and statistical feature filtering. 

In [19], a comparative analysis of five machine learning 
classifiers—Naïve Bayes, Random Forest, Logistic 
Regression, Neural Network, and Support Vector Machine—
was conducted on the Pima Indians Diabetes Dataset using 
Weka. Preprocessing involved outlier removal and missing 
value imputation using mean and median techniques. The 
models were evaluated using 10-fold cross-validation with 
metrics such as accuracy, precision, recall, F1-score, and 
ROC-AUC. Logistic Regression achieved the highest 
accuracy (77.2%) and ROC-AUC (0.832), followed by SVM 
and Naïve Bayes. Although neural networks were included in 
the evaluation, the architecture used was standard 
feedforward without modification. In [20], a comparative 
analysis was performed using six machine learning 
algorithms—Support Vector Machine (SVM), Random 
Forest (RF), Gradient Boosting (GB), Decision Tree (DT), K-
Nearest Neighbor (KNN), and Logistic Regression (LR)—to 
predict diabetes in female patients using the Pima Indians 
Diabetes Dataset. The study applied preprocessing steps 
including mean imputation for missing values and conducted 
model training using an 80:20 train-test split. SVM achieved 
the highest accuracy (83.5%), followed closely by RF 
(82.8%). Although the study evaluated a range of classical 
models, it did not explore any deep learning approaches or 
customized architectures. In [21], a comparative study was 
conducted to evaluate the performance of various machine 
learning algorithms—Logistic Regression, Decision Tree, 
Random Forest, k-Nearest Neighbor (KNN), Naive Bayes, 
AdaBoost, and XGBoost—for predicting diabetes risk among 
the Pima Indian population. The study employed a 
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comprehensive preprocessing pipeline, encompassing 
missing value imputation, feature selection using correlation 
analysis and Recursive Feature Elimination (RFE), and data 
standardization. Among the various machine learning models 
evaluated, the Random Forest classifier demonstrated 
superior performance across all key metrics. Specifically, it 
achieved an accuracy of 78.12%, precision of 75.68%, recall 
of 55.13%, F1 score of 63.87%, and an area under the curve 
(AUC) of 0.83. Despite the model diversity, the study 
primarily focused on ensemble-based and classical classifiers 
without proposing any novel architecture.  

In [22], a hyperparameter-tuned diabetes prediction model 
was developed using four classical classifiers—K-Nearest 
Neighbor (KNN), Support Vector Machine (SVM), Decision 
Tree (DT), and Random Forest (RF)—on multiple 
preprocessed versions of the Pima Indians Diabetes Dataset 
(PIDD). Each version of the dataset was generated through 
different preprocessing strategies, including missing value 
removal, mean imputation, and outlier exclusion. The study 
implemented exhaustive hyperparameter tuning for each 
classifier to optimize the F1 score and accuracy. The highest 
performance was achieved using the Random Forest model 
on the version of PIDD where rows with missing values were 
excluded, yielding a precision of 74.47%, recall of 72.73%, 
and accuracy of 80.52%. Although the study demonstrates 
rigorous preprocessing and optimization techniques, it does 
not incorporate any deep learning architectures or model 
explicit feature interaction mechanisms. In [23], four 
ensemble-based machine learning classifiers—Decision Tree 
Classifier (DTC), AdaBoost Classifier (ABC), Gradient 
Boosting Classifier (GBC), and Extra Trees Classifier 
(ETC)—were evaluated for type 2 diabetes prediction using 
the Pima Indians Diabetes Dataset (PIDD). The study 
addressed class imbalance through up-sampling and applied 
an 80:20 train-test split. Among all models, the ETC achieved 
the highest performance, reporting an AUC of 0.96. Other 
models, such as AdaBoost and GBC, yielded moderate ROC 
values ranging between 0.75 and 0.90. Although the study 
incorporated robust preprocessing and evaluation techniques, 
it focused exclusively on ensemble classifiers and did not 
explore deep learning or Artificial Neural Network (ANN)-
based architectures. 

2.2. ANN-Based Models and Deep Learning 
for Medical Data  

Artificial Neural Networks (ANNs) and deep learning models 
have become increasingly popular in diabetes prediction due 
to their capacity to model complex, nonlinear relationships in 
medical data. Several studies have demonstrated that ANN-
based approaches can outperform traditional ML models 
when applied to datasets such as PIDD. However, many rely 
on generic architectures, limiting their adaptability and 
effectiveness in clinical prediction tasks. This subsection 
reviews notable ANN-based studies focused on diabetes 
prediction and highlights their contributions and limitations. 

In [24], an artificial neural network (ANN)-based classifier 
was implemented as part of a unified machine learning 

framework for diabetes prediction using the Pima Indians 
Diabetes Dataset (PIDD). The dataset was preprocessed by 
removing correlated features, and training was conducted 
using a 70:30 train-test split. The ANN architecture 
comprised a standard feedforward structure with one hidden 
layer and sigmoid activation, though the exact number of 
neurons was not specified. Performance evaluation was 
carried out using 10-fold cross-validation and included 
metrics such as accuracy, precision, recall, F1-score, and 
specificity. Among the six evaluated classifiers, the ANN 
model yielded the lowest performance, with an accuracy of 
68%, precision of 67%, recall of 68%, F1-score of 67%, and 
specificity of 41%. These results indicate a limited capacity 
of the ANN to generalize across imbalanced clinical data. In 
[25], an artificial neural network (ANN) model was 
developed alongside Random Forest and K-means clustering 
for early prediction of diabetes using the Pima Indians 
Diabetes Dataset. The study employed principal component 
analysis (PCA) for feature reduction and binning techniques 
for categorical transformation of variables such as glucose, 
BMI, blood pressure, and age. Association rule mining was 
used to identify frequent attribute combinations, with 
findings confirming the strong influence of BMI and glucose 
on diabetes risk. The ANN model achieved the highest 
classification accuracy of 75.7% and AUROC of 0.816, 
outperforming both Random Forest and K-means. While the 
study demonstrated performance benefits, the ANN used a 
simple architecture and focused on parameter tuning (e.g., 
hidden neurons, learning rate) rather than structural 
innovation. In [26], an artificial neural network (ANN) model 
was developed for predicting diabetes using the Pima Indians 
Diabetes Dataset. The study used 688 records for training and 
80 for testing and applied mean imputation to handle missing 
values. Priority-based weighting was manually assigned to 
features, and the model was built in core Python using a basic 
feedforward ANN with sigmoid activation and 
backpropagation for training. The system achieved an ROC 
value of 0.88 and an error rate of 8%, indicating strong 
classification performance. However, the architecture relied 
on manual parameter tuning without introducing structural 
innovations or interaction-aware modeling.  

In [27], an improved artificial neural network (ANN) 
model was proposed for diabetes prediction using a custom 
framework called ABP-SCGNN (Artificial 
Backpropagation–Scaled Conjugate Gradient Neural 
Network). The model was trained on the Pima Indians 
Diabetes Dataset with various hidden neuron configurations 
ranging from 5 to 50. The best validation accuracy of 93% 
was achieved using 20 hidden neurons, outperforming 
conventional models like multilayer perceptron (MLP) and 
Bayesian regularization. The study also reported lower mean 
squared error (MSE) and higher regression correlation 
coefficients compared to standard ANN methods. While the 
architecture included enhanced training procedures and 
gradient-based optimization, the model retained a single-
layer structure without integrating feature interaction 
modeling or parallel subpaths. In [28], a neural network-
based prediction system was proposed to identify diabetes 
using the Pima Indians Diabetes Dataset. The architecture 
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consisted of a simple three-layer feedforward ANN with one 
hidden layer of 12 neurons and sigmoid activation. The 
system was implemented using TensorFlow and Keras, and 
trained over 500 epochs. Data preprocessing included 
normalization and feature filtering, followed by user 
interaction through a chatbot and GUI interface. The model 
achieved over 85% accuracy on the test data. While the 
system incorporated practical elements such as user-friendly 
prediction tools, it relied on standard neural network 
configurations without incorporating deeper architectural 
improvements or feature interaction mechanisms. In [29], 
three artificial neural network (ANN) models with varying 
hidden layers were implemented for diabetes prediction using 
the Pima Indians Diabetes Dataset. The authors applied 
extensive preprocessing including mean imputation, outlier 
removal, correlation-based feature selection, and 
normalization. The ANN with two hidden layers and 400 
epochs achieved the highest accuracy of 88.6%, 
outperforming both one-layer and three-layer configurations. 
While the study demonstrated the performance impact of 
network depth and hyperparameter tuning, the ANN 
architecture remained sequential and lacked structural 
enhancements for feature interaction modeling.  

In [30], an improved artificial neural network (ANN) 
model was proposed for diabetes prediction, evaluated 
alongside traditional classifiers such as Multilayer Perceptron 
(MLP), Support Vector Machine (SVM), k-Nearest Neighbor 
(KNN), and Decision Tree (DT) using the Pima Indians 
Diabetes Dataset. The study implemented standard scaling 
and min-max normalization, followed by iterative tuning of 
hyperparameters including learning rate, regularization, and 
hidden layer size. The improved ANN achieved the highest 
accuracy (89.2%) and outperformed all baseline models 
across precision, recall, and F1-score. The model used a two-
layer feedforward architecture trained via backpropagation 
and adaptive learning but lacked structural innovations such 
as parallel subpaths or feature interaction layers. In [31], an 
artificial neural network (ANN) model was developed and 
compared with Support Vector Machine (SVM) and k-
Nearest Neighbor (KNN) algorithms for predicting diabetes 
using the Pima Indians Diabetes Dataset. The ANN was 
implemented with four hidden layers and ReLU activation, 
and the model was trained with different epoch and batch size 
settings. Among all models, ANN achieved the highest 
accuracy (84.64%), outperforming SVM (81.65%) and KNN 
(76.34%) across precision, recall, and F1-score. The study 
highlighted the importance of batch size and training 
iterations in improving ANN performance but did not 
introduce structural innovations beyond layer scaling.  

In [32], an IoT-integrated framework was proposed for 
diabetes prediction, incorporating an Artificial Neural 
Network (ANN) alongside other machine learning and deep 
learning models. The ANN employed a standard feedforward 
architecture and served as a baseline for evaluating 
performance. Using real-time data collected from wearable 
IoT devices, the ANN achieved an accuracy of 68% and the 
highest recall among all models at 56%. While the system 
effectively combines IoT and predictive analytics, the study 
did not introduce any architectural enhancements or novel 

design elements within the ANN model. In [33], an improved 
artificial neural network (IANN) model was developed for 
diabetes prediction using the Pima Indians Diabetes Dataset. 
The proposed model was based on a modified Multilayer 
Perceptron (MLP) implemented using Keras and 
TensorFlow. The architecture consisted of four hidden layers 
using ReLU and sigmoid activation functions, along with 
dropout for regularization. The model was trained using 
stratified 10-fold cross-validation and evaluated with metrics 
including accuracy, precision, recall, and F1-score. The 
IANN achieved a training accuracy of 79% and a test 
accuracy of 77%, with a maximum precision of 83% and 
recall of 81%. While the architecture showed performance 
improvements over classical models such as Naive Bayes, 
Random Forest, and J48, it retained a sequential structure and 
did not explore interaction-aware mechanisms or feature-
level modularization. In [34], a comparative study was 
conducted to evaluate the performance of six machine 
learning algorithms—Support Vector Machine (SVM), k-
Nearest Neighbor (KNN), Artificial Neural Network (ANN), 
Logistic Regression (LR), Naïve Bayes (NB), and Decision 
Tree (DT)—alongside an ontology-based classifier using the 
Pima Indians Diabetes Dataset. The study used Weka and 
Protégé for implementation and evaluated models using 
accuracy, precision, recall, F-measure, and ROC area under 
both 10-fold cross-validation and 66% split test mode. The 
ontology classifier achieved the highest accuracy (77.5% and 
79.7%) and precision (81.2%) across both validation modes. 
ANN achieved 75.4% accuracy with 10-fold validation and 
83.6% in the split mode. Although the study highlighted the 
potential of combining ontology and ML, the ANN model 
remained structurally simple without integrating interaction-
aware learning or architectural enhancements.  

In [35], a prediction model for type 2 diabetes mellitus was 
developed using seven classifiers—Artificial Neural Network 
(ANN), K-Nearest Neighbors (KNN), Support Vector 
Machine (SVM), Naïve Bayes (NB), Decision Tree (DT), 
Random Forest (RF), and Linear Discriminant Analysis 
(LDA)—trained and tested on the Pima Indians Diabetes 
Dataset (PIDD). The ANN architecture consisted of an input 
layer, two hidden layers with 10 neurons each, and a sigmoid-
activated output layer. After applying preprocessing 
techniques such as normalization and encoding, the ANN 
achieved an accuracy of 78.1% on PIDD. While this 
performance was competitive, the architecture remained 
relatively shallow and lacked feature interaction modeling. In 
[36], a hybrid machine learning framework incorporating an 
Artificial Neural Network (ANN) was proposed for diabetes 
prediction, evaluated specifically on the Pima Indians 
Diabetes Dataset (PIDD). The ANN model achieved a test 
accuracy of 70.56%, with a sensitivity of 58.75% and a 
precision of 57.31% under a 70:30 train-test split. When the 
split was adjusted to 75:25, the accuracy improved to 71.35%. 
Although the study conducted detailed metric-based 
evaluations, the ANN employed a conventional architecture 
without any architectural customization or explicit modeling 
of feature interactions. In [37], a hybrid model combining 
Latent Dirichlet Allocation (LDA) and an Artificial Neural 
Network (ANN) was proposed for diabetes classification 
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using the Pima Indians Diabetes Dataset (PIDD). The 
approach leveraged LDA-generated probability distributions 
to initialize the weights of a backpropagation-based ANN, 
aiming to enhance predictive performance. Feature selection 
was conducted using a bivariate filter and Pearson correlation 
to retain the most relevant attributes. On the PIDD, the ANN-
LDA model achieved a notable accuracy of 93%, 
outperforming several baseline classifiers, including KNN 
(76%), Logistic Regression (78%), SVM (87%), and a 
standalone ANN (82%). Despite the improved performance 
through hybridization, the ANN architecture remained 
sequential and did not incorporate advanced design elements 
such as parallel dense layers or interaction-aware feature 
fusion. In [38], a basic feedforward artificial neural network 
(ANN) was implemented as one of the baseline models for 
diabetes prediction using the Pima Indians Diabetes Dataset 
(PIDD). The ANN consisted of a single hidden layer and was 
evaluated using standard classification metrics. It achieved an 
accuracy of 79.55%, which was lower than that of ensemble 
methods like MLHA and XGBoost. While the ANN served 
as a performance benchmark, it lacked structural 
enhancements such as multi-path processing or interaction-
aware layers.  

2.3. Research Gap and Our Contribution 

Despite extensive research on diabetes prediction using the 
Pima Indians Diabetes Dataset (PIDD), several key 
limitations persist across existing studies. Classical machine 
learning algorithms such as Logistic Regression, Decision 
Trees, Random Forests, and Support Vector Machines have 
demonstrated reasonable predictive performance. However, 
these models often fall short in effectively handling class 
imbalance, generalizing across diverse patient populations, 
and capturing complex nonlinear relationships among clinical 
features. 

More recently, artificial neural network (ANN)-based 
approaches have been introduced to address some of these 

challenges. While such methods have shown improved 
accuracy, the majority employ conventional feedforward 
architectures with minimal structural modification. Prior 
studies typically rely on sequential dense layers and standard 
activation functions, with limited emphasis on feature-level 
interaction modeling or architectural customization. 
Although a few hybrid models and parameter optimization 
strategies have been proposed, they often lack architectural 
transparency and are not benchmarked comprehensively 
against both traditional and deep learning methods. 

To address these gaps, we propose a novel ANN 
architecture tailored specifically for structured clinical data 
such as PIDD. The proposed model integrates: 

• Feature-wise normalization, allowing for stable and 
individualized scaling of input variables; 

• Parallel dense sublayers, enabling diverse 
transformation paths and improved feature 
representation; and 

• Interaction-aware fusion, which explicitly captures 
nonlinear dependencies between features. 

This architectural design aims to enhance model 
generalization, classification accuracy, and interpretability. 
Additionally, we conduct a systematic performance 
comparison against classical ML models and recent ANN-
based frameworks to validate the effectiveness of our 
approach. 

3. Methodology 

This section presents the design of the proposed Artificial 
Neural Network (ANN) architecture for diabetes risk 
prediction using structured clinical data. The architecture is 
specifically developed to address the limitations of 
conventional ANN models by incorporating feature-wise 
normalization, an attention-inspired feature interaction 
mechanism, and a parallel feature enrichment path (see 
Figure 1). The model is trained and evaluated on the Pima 
Indian Diabetes dataset. 

 
Figure 1. Proposed DeepDiabFusion model for diabetes prediction 
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3.1. Dataset 

The Pima Indians Diabetes Dataset (PIDD) is used in this 
study. The PIDD is originally from the National Institute of 
Diabetes and Digestive and Kidney Diseases [39]. The 
dataset consists of 768 observations, with 268 cases of 
diabetes and 500 non-diabetic cases. It includes eight 
numerical medical predictor attributes and one binary target 
attribute, as detailed in Table 1. In this study, we split the 
PIDD dataset into training and validation sets, with 653 
samples used for training and 115 for testing. 

Table 1. Brief description of diabetes dataset 

№ Attribute Description 

1 Pregnancies Number of times a woman 
gets pregnant 

2 Glucose  Plasma glucose concentration 
3 Blood pressure Diastolic blood pressure 
4 Skin thickness Triceps skin fold thickness  
5 Insulin 2 h serum insulin 
6 BMI Body Mass Index  

7 Diabetes pedigree 
function 

A function that scores the 
likelihood of diabetes based on 

family history 
8 Age Age of patient 
9 Target variable Diabetic/Non-diabetic  

3.2. Input Features and Preprocessing 

Each of the eight clinical variables is treated as an 
independent input feature. These inputs are passed 
individually through separate Input Layer components, each 
of shape (None, 1), followed by dedicated Batch 
Normalization layers. This feature-wise normalization 
approach standardizes each attribute based on its specific 
statistical distribution, thereby enhancing convergence 
stability and allowing the model to more effectively learn 
feature-specific patterns without interference from inter-
feature scale discrepancies. 

3.3. Feature Aggregation 

The normalized outputs from all eight input branches are 
concatenated using a Concatenate layer to produce a unified 
feature vector of dimension (None, 8). This operation enables 
the simultaneous processing of all input attributes while 
preserving the normalized scale of each feature, thus 
facilitating coherent downstream learning. 

3.4. Interaction-Aware Modeling 

To capture latent interdependencies among features, the 
concatenated vector is simultaneously processed through two 
parallel dense layers, each producing an 8-dimensional 
output. These outputs are then merged using an element-wise 
Multiply operation, which functions as an attention-inspired 
mechanism. This mechanism enables the model to assign 

dynamic relevance to feature combinations, enhancing its 
capacity to model complex, nonlinear relationships that may 
underlie the onset of diabetes. 

3.5. Parallel Feature Enrichment 

In parallel with the interaction block, the same concatenated 
input vector is passed through a third dense layer comprising 
64 units. This layer functions as a high-capacity pathway for 
feature abstraction, learning enriched representations through 
nonlinear transformations. The parallel structure facilitates 
the simultaneous modeling of both local feature interactions 
and global abstraction. 

3.6. Feature Fusion and Output Layer 

The outputs from the interaction-aware module and the 
enrichment pathway are concatenated to form a 
comprehensive 72-dimensional feature vector. To mitigate 
the risk of overfitting, a Dropout layer is applied. The final 
classification is performed using a dense output layer with a 
sigmoid activation function, producing a probabilistic output 
in the range [0,1], indicative of the likelihood of diabetes 
onset. 

This architectural design integrates normalization, parallel 
processing, and interaction modeling in a unified ANN 
framework. It demonstrates enhanced generalization and 
interpretability compared to conventional ANN 
configurations, making it well-suited for application in 
clinical decision support systems. 

3.7. Formal Equations of the Model 

To enhance clarity and ensure reproducibility, the 
DeepDiabFusion architecture is formally defined through a 
sequence of mathematical expressions that represent its key 
components. The model processes structured clinical data 
consisting of eight features, denoted as X= [𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥8]  ∈
𝑅𝑅8. The following equations describe the flow of data through 
the network: 

Input normalization 
Each input feature undergoes independent batch 

normalization to standardize its scale: 

𝑥𝑥𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑥𝑥𝑖𝑖−𝜇𝜇𝑖𝑖

�𝜎𝜎𝑖𝑖
2+𝜖𝜖

,  ∀∈ {1, … , 8}   (1) 

The normalized features are then concatenated to form the 
normalized input vector: 

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥1𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 𝑥𝑥2𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, … , 𝑥𝑥8𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) ∈ 𝑅𝑅8 (2) 

Interaction-aware dense paths 
The normalized vector is passed through two parallel 

dense layers, each with 8 units and ReLU activation: 

ℎ1 = 𝜙𝜙(𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ⋅ 𝑊𝑊1 + 𝑏𝑏1), ℎ2 = 𝜙𝜙(𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ⋅ 𝑊𝑊2 + 𝑏𝑏2) (3) 
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where 𝑊𝑊1,  𝑊𝑊2  ∈ 𝑅𝑅8×8, ℎ1, ℎ2 ∈ 𝑅𝑅8, and 𝜙𝜙 denotes the 
ReLU activation function. 

Element-wise interaction fusion 
The outputs of the parallel paths are combined through 

element-wise multiplication to model interactions between 
learned representations: 

𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = ℎ1 ⊙  ℎ2  ∈ 𝑅𝑅8   (4) 

Feature enrichment path 
Simultaneously, the normalized input is processed by an 

additional dense layer with 64 units: 

𝑧𝑧𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ = 𝜙𝜙(𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ⋅ 𝑊𝑊1 + 𝑏𝑏1),     

𝑊𝑊3  ∈ 𝑅𝑅8×64, 𝑧𝑧𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ = 𝑅𝑅64  (5) 
 

Feature fusion, dropout, and output 
The outputs of the interaction and enrichment paths are 

concatenated: 

𝑧𝑧𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝑧𝑧𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ� ∈ 𝑅𝑅72  (6) 

To improve generalization and mitigate overfitting, 
dropout is applied: 

𝑧𝑧𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑧𝑧𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 , 𝑝𝑝 = 0.3)  (7) 

Finally, a dense output layer with sigmoid activation 
produces the predicted probability of diabetes onset: 

𝑦𝑦� = 𝜎𝜎�𝑧𝑧𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ⋅ 𝑊𝑊4 + 𝑏𝑏4�, 𝑦𝑦� ∈ 0,1) (8) 

where 𝜎𝜎 denotes the sigmoid function. 

4. Experimental Results and Discussion 

This section evaluates the performance of the proposed 
DeepDiabFusion model on the Pima Indians Diabetes Dataset 
(PIDD). Results are reported using key classification metrics 
and compared against traditional machine learning 
algorithms and existing ANN-based models. An ablation 
study is also included to assess the contribution of individual 
architectural components. 

4.1. Evaluation metrics 

We conducted the experiments using four performance 
evaluation metrics to evaluate the results of the diabetes 
prediction. Equations 9-11 describe and formulate these 
metrics.  

AUC (Area Under the Curve) is a metric used to evaluate 
the performance of classification models. It represents the 
probability that a randomly chosen positive instance will be 
ranked higher than a randomly chosen negative instance. A 
higher AUC indicates better model performance. 

Accuracy measures a model's ability to predict outcomes 
correctly. It is calculated as the ratio of accurate predictions 
to total predictions. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = (𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇)
(𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹)

  (9) 
Where, 
TP = True Positives, TN = True Negatives, FP = False 

Positives, FN = False Negatives. 
Precision measures the accuracy of positive predictions 

made by a machine learning model. It is calculated by 
dividing the number of true positive predictions by the total 
number of positive predictions. A higher precision indicates 
that the model is better at avoiding false positives. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

   (10) 
Recall measures the completeness of positive predictions 

made by a machine learning model. It is calculated by 
dividing the number of true positive predictions by the total 
number of actual positive instances. A higher recall indicates 
that the model is better at avoiding false negatives. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

   (11) 

4.2. Performance Comparison with Seven 
Traditional ML Models Used in This Study 

In Table 2, the classification algorithms, such as LR, KNN, 
RF, SGD, GB, DT, LDA, and the proposed ANN, have 
prediction accuracy of 78.44%, 79.31%, 84.48%, 68.97%, 
90.52%, 85.35%, 79.31%, and 93.04%, respectively. In 
contrast, the proposed ANN based model predicts the 
diabetes cases more accurately than the other algorithms. In 
comparison, in terms of prediction precision: the algorithms 
obtained 62.5%, 75%, 80%, 30%, 80%, 80%, 65%, and 
86.21% for LR, KNN, RF, SGD, GB, DT, LDA, and the 
proposed ANN, respectively.  

Table 2. Comparison of the proposed model with employed ML models in this study 

№ Algorithm Accuracy % Precision % Recall % AUC 
1.  LogisticRegression(random_state=16) 78.44 62.5 71.43 0.7467 
2.  KNeighborsClassifier(n_neighbors=7) 79.31 75 68.18 0.7829 
3.  RandomForestClassifier() 84.48 80 76.19 0.8342 
4.  SGDClassifier(max_iter=5) 68.97 30 60 0.5974 
5.  GradientBoostingClassifier() 90.52 80 91.43 0.8803 
6.  DecisionTreeClassifier() 85.35 80 78.05 0.8408 
7.  LinearDiscriminantAnalysis (n_components=1) 79.31 65 72.22 0.7592 
8.  Proposed 93.04 86.21 93.10 0.951 
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Figure 2. Graphical representation of experimental results 

As per Fig. 2, the ANN-based model outperforms the other 
algorithms in terms of diabetes case prediction precision. In 
terms of recall, the algorithms demonstrated the following 
performance: LR (71.43%), KNN (68.18%), RF (76.19%), 
SGD (60%), GB (91.43%), DT (78.05%), LDA (72.22%), 
and proposed ANN (93.10%). Comparing recall scores, the 
proposed ANN based model outperformed the other 
algorithms (see Figure 2), achieving a recall of 93.10%, while 

SGD achieved the lowest recall at 60%. When comparing 
AUC scores, the algorithms achieved the following results: 
LR (0.7467), KNN (0.7829), RF (0.8342), SGD (0.5974), GB 
(0.8803), DT (0.8408), LDA (0.7592), and proposed ANN 
(0.951). In terms of AUC, the proposed ANN based model 
demonstrated the best performance with a score of 0.951, 
while SGD achieved the lowest AUC at 0.5974. 

 
 

Figure 3. Comparison of experimental results on AUC 
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4.3. Performance Comparison with Existing 
ML Models 

A detailed comparison of Table 3 and Figure 4 across 
accuracy, precision, and recall metrics reveals that the 
proposed ANN model consistently outperforms previous 
methods. The proposed ANN model achieved the highest 
accuracy (93.04%), outperforming all previous models on the 
Pima Indians Diabetes Dataset (PIDD). It was followed by 
the Random Forest model in [9] with 92.10% and the Linear-
Kernel-SVM in [10] with 90.00%. In contrast, the lowest 
accuracy was reported by Simple Logistic Regression [16] 
(75.70%), Logistic Regression [19] (77.20%), and Naive 
Bayes [15] (77.36%), highlighting the limitations of 
traditional linear and probabilistic classifiers for this dataset. 

The Random Forest in [9] achieved the highest precision 
(90.00%), indicating a low false positive rate. It was followed 
by Linear-Kernel-SVM in [10] (88.00%) and the proposed 

ANN model (86.21%). Conversely, Naive Bayes [15] had the 
lowest precision (67.00%), suggesting a higher rate of 
incorrect positive predictions, followed by RF [22] and 
Simple-LR [21]. 

The proposed ANN model again led in recall (93.10%), 
showing its effectiveness in correctly identifying diabetic 
cases. Random Forest [9] and Extra Trees Classifier [23] also 
performed strongly, with recall scores of 93.00% and 
92.00%, respectively. In contrast, the lowest recall was 
observed in RF [21] (55.13%), followed by RF [11] and NB 
[15], indicating that these models missed a significant number 
of actual positive cases. 

These comparisons demonstrate the superiority of the 
proposed ANN architecture across all three metrics, 
underscoring the effectiveness of its architectural 
enhancements such as parallel dense paths and interaction-
aware fusion. They also highlight the limitations of 
conventional models, particularly in generalizing well across 
all evaluation criteria. 

Table 3. Comparison of our experimental results with previous studies on traditional ML models 

Ref. Year Dataset Algorithm/Model  Accuracy % Precision % Recall % 
[16] 2020 PIDD Simple LR 75.7 75.8 75.8 
[19] 2021 PIDD LR 77.2 76.7 77.2 
[15] 2019 PIDD NB 77.36 67 62 
[17] 2020 PIDD RF 77.9 81 89 
[21] 2023 PIDD RF 78.12 75.68 55.13 
[22] 2023 PIDD RF 80.52 74.47 72.73 
[11] 2021 PIDD LR 82.46 76 61 
[18] 2021 PIDD SVM 83 79 63 
[12] 2023 PIDD SG 83.9 83.7 76.7 
[23] 2023 PIDD ET 89 86 92 
[10] 2022 PIDD Linear Kernel SVM 90 88 87 
[9] 2021 PIDD RF 92.10 90 93 

Proposed PIDD ANN 93.04 86.21 93.10 
 

 
Figure 4. Comparison of the proposed model with existing ML studies in terms of accuracy, precision, and recall 
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4.4. Performance Comparison with Existing 
ANN-Based Studies 

An evaluation of accuracy across ANN-based models in 
Table 4 and Figure 5 show that the proposed model achieved 
the highest performance with an accuracy of 93.04%, 
marginally surpassing prior works in [27] and [37], both of 
which reported 93.00%. Other notable high-performing 
models include [26] and [30], which reported 92.00% and 

89.20%, respectively. In contrast, the weakest results were 
observed in [24] and [32], both reporting 68.00%, followed 
by [36] at 71.35%. These findings highlight the superior 
classification capability of the proposed architecture, which 
outperforms traditional ANN implementations by integrating 
architectural innovations such as feature-wise normalization 
and parallel sublayer design. 

 
 
 

 
 

Figure 5. Comparison of the proposed model with existing ANN-based studies in terms of accuracy 

 
In terms of precision, the proposed ANN model achieved 

a high score of 86.21%, outperforming most previous studies. 
While [30] reported a slightly higher precision of 88.00%, the 
proposed model still exceeded the results of [34], which 
achieved 83.60%. Meanwhile, the lowest precision values 
were recorded in [36] (59.21%), [32] (66.00%), and [24] 
(67.00%). These results emphasize the effectiveness of the 
proposed model not only in classifying positive cases 
accurately but also in reducing false positives—a critical 
factor in clinical diagnostic applications. 

Regarding recall, the proposed model achieved the best 
result with a value of 93.10%, indicating its high sensitivity 
in correctly identifying diabetic cases. This score slightly 
exceeded the results of [30] (89.00%), and those of [29] and 
[37], which each reported 88.00%. In contrast, [32] had the 
lowest recall at 56.00%, followed by [36] at 65.21%, and [24] 
at 68.00%. The substantial improvement in recall 
demonstrates the proposed model’s ability to reduce false 
negatives, thereby increasing its clinical utility for early 
diabetes detection. 

Table 4. Comparison of our experimental results with previous studies on ANN models 

Ref. Year Dataset Algorithm/Model Accuracy % Precision % Recall % AUC 

[24] 2018 PIDD ANN 68 67 68 - 
[25] 2019 PIDD ANN 75.7 - - 0.816 
[26] 2019 PIDD ANN 92 - - - 
[27] 2021 PIDD ANN 93 - - - 
[28] 2021 PIDD ANN 85 - - - 
[29] 2021 PIDD ANN 88.6 - 88 - 
[30] 2021 PIDD ANN 89.2 88 89 - 
[31] 2022 PIDD ANN 84.64 78 79 - 
[32] 2022 PIDD ANN 68 66 56 - 
[33] 2022 PIDD ANN 79 83 81 - 
[34] 2022 PIDD ANN 83.6 83.6 77.5 0.772 
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[35] 2023 PIDD ANN 78.1 - - - 
[36] 2023 PIDD ANN 71.35 59.21 65.21 - 
[37] 2024 PIDD ANN-LDA 93 81 88 - 
[38] 2024 PIDD ANN 86.58 - - - 

Proposed PIDD ANN 93.04 86.21 93.10 0.951 
 

4.5. Ablation Study: Assessing the Impact of 
Architectural Components 

To evaluate the individual contributions of key architectural 
components in the proposed DeepDiabFusion model, an 
ablation study was conducted. This analysis systematically 
deconstructs the architecture by removing or modifying 
specific modules, allowing us to assess their relative impact 
on overall model performance. The study focuses on three 
critical components: (i) the interaction-aware fusion block, 
(ii) the parallel enrichment path, and (iii) the feature-wise 
normalization mechanism. 

Five experimental variants were created for comparison: 

• Full Model (DeepDiabFusion): Includes all 
components—feature-wise normalization, interaction 
block, enrichment path, and dropout. 

• No Interaction Block: Excludes the two parallel dense 
layers and the element-wise multiplication, retaining 
only the enrichment path. 

• No Enrichment Path: Removes the enrichment path, 
relying solely on the interaction-aware block. 

• No Feature Normalization: Disables all batch 
normalization layers applied to individual inputs. 

• Baseline ANN: A standard two-layer feedforward ANN 
without any architectural enhancements. 

The comparative results are summarized in Table 5. 

Table 5. Performance comparison from ablation study of DeepDiabFusion architecture 

Variant Accuracy % Precision % Recall % AUC 

DeepDiabFusion (Full) 93.04 86.21 93.10 0.951 
No Interaction Block 89.35 80.45 88.30 0.9156 
No Enrichment Path 87.83 79.18 86.80 0.9012 

No Feature Normalization 85.50 75.21 84.00 0.8751 
Baseline ANN 82.17 72.46 80.33 0.8468 

 

 
Figure 5. Performance comparison from ablation study of DeepDiabFusion architecture 

Figure 5 illustrates the impact of removing individual 
components—interaction block, enrichment path, and 
feature-wise normalization—from the proposed 
DeepDiabFusion model. The full model achieves the 

highest performance across all evaluation metrics 
(Accuracy, Precision, Recall, and AUC), validating the 
contribution of each architectural component. 
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The ablation results clearly demonstrate the additive 
value of each architectural module. Removing the 
interaction block resulted in a substantial decline in recall 
and AUC, confirming its importance in modeling feature 
dependencies. The enrichment path also proved essential 
for capturing abstract feature representations, as reflected 
in the drop in precision and overall accuracy. Additionally, 
the exclusion of feature-wise normalization adversely 
affected all metrics, indicating its role in stabilizing 
training and improving generalization. The baseline ANN 
performed worst across all measures, reinforcing the 
effectiveness of the proposed architectural enhancements. 

These findings validate the design of DeepDiabFusion 
and underscore the significance of each component in 
improving the predictive accuracy and robustness of 
diabetes classification models. 

5. Conclusion 

This study introduced DeepDiabFusion, a novel artificial 
neural network (ANN) architecture designed to enhance 
the accuracy and robustness of diabetes prediction using 
structured clinical data. The proposed model integrates 
feature-wise normalization, parallel dense sublayers, and 
an interaction-aware fusion mechanism to better capture 
complex, nonlinear relationships among input features. 

Experimental evaluations on the Pima Indians Diabetes 
Dataset (PIDD) demonstrate that DeepDiabFusion 
outperforms both conventional machine learning 
algorithms and existing ANN-based models across 
multiple performance metrics. The model achieved an 
accuracy of 93.04%, precision of 86.21%, recall of 
93.10%, and an area under the curve (AUC) of 0.951, 
confirming its effectiveness in reliable risk classification. 

In addition to its predictive strength, the model’s 
modular architecture contributes to improved scalability 
and interpretability. Its ability to model structured feature 
interactions makes it a promising tool for broader 
applications in medical data analysis. 

Future work will focus on extending the architecture by 
incorporating explicit attention mechanisms, validating 
performance across diverse datasets, and investigating 
hybrid ensemble approaches. These developments aim to 
further enhance the model’s generalizability and utility in 
real-world medical contexts. 
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