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Abstract

In response to the growing global population and the consequent need for sustainable food security, effective
pest management is critical for enhancing agricultural productivity. This research presents YOLOv8, a state-
of-the-art deep learning model optimized for pest detection in agricultural environments, contributing to
modern food security efforts. Evaluated using the complex IP102 dataset, YOLOv8 demonstrated notable
improvements in pest detection accuracy, achieving scores of 66.9 mAP@0.5 and 42.1 mAP@[0.5:0.95]. The
key novelty of YOLOv8 lies in its architectural advancements, such as the CSPDarknet53 backbone, anchor-
free detection heads, and a composite loss function, which collectively improve its detection precision and
speed. These features enable YOLOv8 to surpass previous models like YOLOv5 and C3M-YOLO, making it
particularly suitable for real-time pest detection in diverse agricultural settings. These results underscore
YOLOv8’s robust performance across diverse detection scenarios, enabling more precise pest control and
reducing crop loss. However, in-depth dataset analysis revealed a bias towards larger pests, likely due to
bounding box size variations, which presents an opportunity for improvement. Addressing such challenges
is expected to further enhance pest detection accuracy and broaden YOLOv8’s applicability in agricultural
settings. These advancements highlight YOLOv8’s potential to significantly boost agricultural productivity
and support global food security through modern technologies.
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1. Introduction
As the global population continues to surge towards an
estimated 9 billion by 2050, the imperative to increase
agricultural output becomes ever more critical. The
intensification of agriculture must not only address the
quantity of food production but also the myriad of
challenges that threaten crop health and yield. Among
these challenges, pest management stands out due to its
direct impact on food availability and the agricultural
economy. Pests are responsible for the significant loss
of crops worldwide, with estimates suggesting that up
to 40% of global crop yields are lost to pests and
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diseases each year [1]. Traditional methods of pest
detection have predominantly been manual, involving
time-consuming visual inspections that are not only
labor-intensive but also prone to human error. These
methods lack the efficiency and scalability required in
today’s rapidly expanding agricultural landscape.

Recent advancements in artificial intelligence (AI)
and deep learning have ushered in a new era for agri-
cultural technology [2–5]. Deep learning, in particular,
has shown exceptional promise in addressing complex
problems across various domains [6–9], including agri-
culture. By leveraging sophisticated algorithmic inno-
vations, researchers have begun to transform pest detec-
tion from a reactive, manual process into a proactive,
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automated solution capable of handling the scale and
complexity of modern agriculture [10–13].

Among the various deep learning architectures, the
You Only Look Once (YOLO) series of models has
gained prominence for its ability to perform real-time
object detection [14, 15]. This capability is crucial
in agricultural settings where the timely detection
of pest infestations can prevent widespread crop
damage. Building upon this foundation, this research
incorporates the YOLOv5 model [16] enhanced with
a novel lightweight module inspired by MobileNetV3
[17] and a Global Attention Mechanism (GAM) [18].
This configuration aims to improve the model’s
accuracy and speed, which are critical for the real-
time application in diverse and challenging agricultural
environments.

The introduction of YOLOv5 [19] with enhancements
leverages a comprehensive dataset, the IP102 [20],
which comprises nearly 19,000 images spanning 102
types of agricultural pests from multiple crop varieties
such as rice, corn, and wheat . The diversity of
this dataset underscores the complex nature of pest
detection tasks, reflecting various pest behaviors,
appearances, and impacts across different crop types.

However, our preliminary studies with YOLOv5
and similar models reveal significant challenges
in achieving high levels of accuracy across all
pest types, particularly in varying environmental
conditions. To address these issues, the latest model
in the YOLO series, YOLOv8 [21], is introduced.
YOLOv8 brings forward advanced architectural and
algorithmic improvements that significantly enhance
pest detection capabilities. This study contributes to
the field of agricultural pest detection in several
ways. We employ the advanced YOLOv8 model to
achieve groundbreaking accuracy in real-time pest
detection, setting new performance benchmarks that
surpass those established by previous models. We
introduce novel data augmentation techniques that
are specifically designed for the complex task of
pest detection in agriculture. These techniques not
only improve the model’s ability to generalize across
different environmental conditions but also enhance its
capability to detect small and camouflaged pests that
are often overlooked by conventional models.

By pushing the boundaries of what is possible with
AI in agriculture, this research paves the way for future
innovations that will continue to improve the efficiency
and effectiveness of pest management strategies. These
advancements hold significant promise for enhancing
global food security and sustainability in agricultural
practices.

2. Dataset
The core of our research leverages the IP102 dataset
[20], a comprehensive collection specifically designed
for insect pest recognition in agricultural settings. This
dataset encompasses over 75,000 images across 102
distinct categories, representing a broad spectrum of
insect pests (see Fig.1). Each category corresponds to a
unique species, capturing a wide array of phenotypic
variations and developmental stages, from eggs to adult
pests. This diversity is crucial for training models to
recognize pests in various forms and under different
agricultural conditions.

The IP102 dataset’s most notable characteristic is
its reflection of real-world class imbalances, mirroring
the varying prevalence of different pest species in
agriculture. Such a distribution poses significant
challenges for model training, as illustrated in Fig.
2, necessitating strategies to handle data imbalance
effectively. Additionally, the dataset includes images
with annotated bounding boxes for a subset of the
collection, enabling object detection tasks alongside
classification.

The dataset is structured hierarchically, categorizing
pests not only by species but also by the crops they
affect. This hierarchical taxonomy aids in understand-
ing the ecological and agricultural contexts of pest
infestations, further enriching the dataset’s utility for
developing targeted pest management solutions.

Our study’s advancement in pest detection capabil-
ities is demonstrated through the application of the
YOLOv8 model on the IP102 dataset. The dataset’s
complexity, with its high intra-class variance and sig-
nificant inter-class similarities, provides a rigorous test-
ing ground for our model. By achieving superior per-
formance metrics on this dataset, our work sets new
benchmarks in the field of agricultural pest detection,
showcasing the potential of advanced deep learning
models to address critical challenges in food security
and agricultural productivity.

3. Architecture of YOLOv8
The YOLOv8 model, shown in Fig. 3, advances the
YOLO series with enhanced features for efficient
and precise real-time object detection. This version
improves on scalability and adaptability, effectively
managing diverse object sizes and complex settings.

Core Network
The core network of YOLOv8 is based on CSPDarknet53
[22], which excels at drawing out rich, hierarchical
features. The architecture benefits from Cross Stage
Partial (CSP) connections that boost gradient flow and
computational efficiency.
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Pest Data Samples

models aiming to improve pest detection and management in agriculture.

Figure 1. A diverse array of pest samples from the IP102 dataset, showcasing a variety of insect species across different crops, 
including rice, wheat, corn, and alfalfa. Each image captures a pest in its natural habitat, providing valuable data for machine 
learning
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Figure 2. Bar chart illustrating the distribution of top 75 pest categories based on sample counts, with the most prevalent species
listed at the top and the least common at the bottom, highlighting the variance in population sizes among different pest types.
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Figure 3. Schematic representation of anYOLOv8 model architecture showcasing the workflow from the backbone network through 
the Feature Pyramid Network (FPN) to the final output heads.The schematicd etails thec omponents involved in feature extraction, 
feature pyramiding, andd etection, including the integration of YOLO loss, cross-entropy loss,and L1 loss for precise object localization 
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Feature Pyramid Network (FPN)
YOLOv8 integrates a Feature Pyramid Network (FPN)
[23] to bolster multi-scale feature representation. This
enhancement processes feature maps from top to
bottom, ensuring effective detection at various scales.

Path Aggregation Network(PAN)
Enhancing feature integration, the Path Aggregation 
Network (PAN) [24] uses strategic skip connections 
to merge features across layers, improving semantic 
richness and localization precision.

Detection Heads
Innovations in detection heads in YOLOv8 include 
an anchor-free approach to directly predict object 
centers, as depicted in Fig. 3. This change streamlines 
the detection process and may increase the speed of 
inference by reducing the number of bounding box 
predictions.

Loss Function
The model employs an advanced composite loss 
function combining CIoU loss for bounding box

regression, adapted cross-entropy loss for multi-label
classification, and distribution focal loss to address
class imbalance. The function is depicted schematically
in Fig. 3 and defined in the following equation:

L(θ) = λbox
P

posLbox(θ) + λcls
P

posLcls(θ) + λdfl
P

posLdfl(θ) + φ
2 ||θ||2 ,

(1)

φ
2

where objective it to optimize the model parameters 
θ, balancing several components. The term Lbox(θ) 
represents the bounding box loss weighted by λbox, 
focusing on the accuracy of object localization. The 
classification loss Lcls(θ), weighted by λcls, measures 
the model’s classification capabilities. The term Ldfl(θ), 
weighted by λdfl, could denote an additional loss 
component such as a focal loss for addressing class
imbalance. Lastly, the regularization term  ||θ||2
mitigates overfitting by penalizing large values of 
the model parameters. Together, these terms guide 
the model towards a balanced performance on object 
detection tasks.

Training and Inference
YOLOv8 applies transfer learning and a robust data 
augmentation suite during training, including mosaic
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augmentation, to effectively train on diverse datasets.
For inference, the model processes images in real-time,
utilizing techniques like Soft-NMS for refined detection
output.

Performance Comparison
YOLOv8 surpasses its predecessors in various metrics,
achieving higher mAP scores on standard benchmarks
and enhancing detection capabilities, especially for
aerial objects.

Model Training
The YOLOv8 model’s training was approached with
meticulous care, striving for a balance between
precision and efficiency. By applying transfer learning,
we fine-tuned the pre-trained weights and directed
the optimization process through 70 epochs using the
AdamW optimizer with a learning rate of 0.001. The
model was exposed to complex data patterns critical for
robust pest detection in varied agricultural settings.

To further foster the model’s adaptability, our data
augmentation regime incorporated subtle yet effec-
tive transformations. These transformations included
applying a slight blur with a 1% probability to mimic
common image acquisition imperfections, median blur-
ring to reduce image noise and enhance model robust-
ness, conversion to grayscale to reinforce the model’s
capability to focus on texture and shape rather than
color, and utilizing CLAHE to improve contrast in
images with suboptimal lighting conditions. Each aug-
mentation was applied with a low probability, ensuring
a diverse but realistic range of image variations for the
model to learn from.

Data augmentation served as a key instrument in
reinforcing the model’s resilience against overfitting,
ensuring that it learned to identify pests under a
plethora of imaging conditions. Beyond augmentation,
the tuning of essential hyperparameters, such as batch
size and NMS settings, was pivotal in fine-tuning
the model’s accuracy. Further into the training, we
halted mosaic augmentation, allowing the model to
consolidate its learning on unmodified data.

Adjusting the loss weights was also a critical step
in addressing the challenge posed by class imbalances,
thus ensuring that each class had a balanced impact
on the learning process. Post-training validations shed
light on the model’s performance, setting the stage for
continuous improvement.

TABLE 1 outlines the hyperparameters set for the
model training, detailed to facilitate understanding and
enable replication of our methodology.

4. Results
The performance evolution of the YOLOv8 model
over the course of 70 epochs is depicted in Fig.

Table 1. YOLOv8 Hyper-parameters for Training

Hyper-parameter Value

Optimization technique AdamW
Base learning rate 0.001
Maximum epochs 70
Image dimensions (W×H) 512 ×512
Probability of mixup 0.15
Normalization parameters BN, momentum=0.03,

eps=0.001
Scale for affine transformation 0.5

4, where mean Average Precision (mAP) values are
plotted against various Intersection over Union (IoU)
thresholds. These thresholds, specifically 0.5, 0.5:0.95,
and 0.75, were chosen to thoroughly evaluate the
model’s precision with different degrees of bounding
box agreement with the ground truth annotations.

For the most stringent threshold of IoU 0.75, the
model displays a rapid increase in mAP, exhibiting a
steep climb within the first 20 epochs and subsequently
plateauing around the 0.9 mark. This indicates a high
degree of precision in bounding box predictions. At the
more lenient IoU threshold of 0.5, the model achieves
and consistently maintains an mAP score above 0.9,
signifying robust detection performance even with less
strict bounding box criteria.

The performance trend is particularly informative
when considering the average across a spectrum of
thresholds, ranging from IoU 0.5 to 0.95. Here, the
model demonstrates an expeditious attainment of a
high mAP just below 0.9 within the initial epochs, with
minimal variation thereafter. This suggests a consistent
detection capability across various levels of precision
requirements.

Comparative analysis detailed in TABLE 2 positions
YOLOv8 favorably against previous iterations of the
model, with a mAP@0.5 of 66.9, mAP@0.75 of 46.7,
and a mAP@[0.5:0.95] of 42.1, reflecting significant
improvements in the architecture and optimization of
the YOLOv8 model, which translate to superior object
detection performance.

Furthermore, TABLE 3 extends the evaluation to
include metrics such as mAP_s, mAP_m, and mAP_l,
shedding light on the model’s precision when detecting
objects of different sizes. The discrepancy in mAP
scores, with a notably lower performance for small
objects, highlights the need for dataset rebalancing to
ensure consistent detection across all object sizes. This
observation is visually corroborated by Fig. 5, which
reveals a skewed distribution towards larger bounding
box sizes within the IP102 dataset.

The aggregate of these findings indicates that the
model’s capacity for performance improvement reaches
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Figure 4. Performance trends of YOLOv8 model over 70 epochs, displayed for three Intersection over Union (IoU) thresholds: 0.5:0.95,
0.5, and 0.75. Each graph shows the mean Average Precision (mAP) values, where the model’s mAP increases rapidly in the initial
epochs and then plateaus, with dashed lines indicating the highest mAP achieved for each threshold.

saturation early in the training process. The plateau
in mAP scores after the initial surges suggests that
prolonged training may have diminishing returns on
the enhancement of model performance.

Table 2. YOLOv8 Comparison

Model mAP0.5 mAP0.75 mAP0.5:0.95
FPN [19] 54.9 23.3 28.1
TOOD [19] 43.9 28.7 26.5
SSD300 [19] 47.2 16.6 21.5
PAA [19] 42.7 26.1 25.2
DR-CNN [19] 50.7 30.3 29.4
SR-CNN [19] 33.2 23.8 21.1
YOLOv3 [19] 50.6 21.8 25.7
YOLOX [19] 52.1 32.3 31.1
YOLO [19] 57.2 38.5 34.9
YOLOv8 66.9 46.7 42.1

Table 3. Additional Model Evaluation Metrics

mAP_s mAP_m mAP_l

0.163 0.458 0.433

5. Discussion
The application of convolutional neural networks
(CNNs) [25, 26], particularly the YOLOv8 model, marks
a significant advancement in the field of agricultural
pest detection. This study highlights the increasing
necessity for advanced pest management strategies as
global food demand rises in parallel with the world’s
growing population. The YOLOv8 model, through its
robust performance, has proven to be a critical tool
in enhancing the efficacy of pest detection systems,

thus supporting the goal of maximizing crop yields and
minimizing agricultural losses.

YOLOv8’s performance, as evidenced by high mAP
scores across varying IoU thresholds, indicates substan-
tial progress in the precision of pest detection technol-
ogy. With a mAP@0.5 of 66.9 and a mAP@[0.5:0.95] of
42.1, as detailed in TABLE 2, the model demonstrates its
capability to address the complex challenges associated
with detecting a diverse array of pest species in real-
world agricultural settings.

The practical applicability of the model is further
reinforced by the IP102 dataset, which mirrors real-
world class imbalances typical in agricultural environ-
ments. This realistic dataset composition ensures that
our findings are not only theoretically sound but also
practically viable, translating directly into field appli-
cations.

Moreover, there is significant potential for deploy-
ing these algorithms on robotic platforms. A practi-
cal deployment pipeline for integrating YOLOv8 into
robotic systems involves equipping autonomous robots
with cameras for pest detection and precision spray-
ing mechanisms for targeted pest control. The algo-
rithm processes real-time data from the cameras to
detect pests and trigger appropriate responses. For
instance, a roadmap for implementation includes test-
ing in controlled environments, followed by large-scale
deployment across diverse agricultural settings. This
pipeline ensures adaptability to varied environmental
conditions and efficient field operations. The integra-
tion of YOLOv8 with autonomous systems like drones
or ground robots could enable real-time field-level
pest management, minimizing manual intervention and
improving efficiency. These advancements align with
broader trends in autonomous system development and
the application of robotics in diverse domains [27, 28].
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Figure 5. Distributions of bounding box sizes in the IP102 dataset, categorized by size: small, medium, and large. Histograms show
the frequency of each size category on a logarithmic scale, highlighting a skewed distribution with a predominance of large bounding
boxes compared to medium and small ones.

However, the analysis also reveals some limitations,
particularly in detecting smaller pests. The histograms
in Fig. 5 display a skewed distribution of bounding box
sizes within the IP102 dataset, predominantly towards
larger sizes. This imbalance might have predisposed
the model to favor detection of larger pests, potentially
overlooking smaller, yet equally harmful, pest species.
Reduced performance in detecting smaller pests could
limit the model’s effectiveness in scenarios involving
inconspicuous or early-stage infestations. Addressing
this issue is crucial for ensuring YOLOv8’s applicability
across a wider range of agricultural scenarios.

The notable disparity in performance between
different object sizes highlights the need for a
balanced approach to dataset composition. Strategies
to address this issue include rebalancing the dataset
by oversampling smaller pest categories, utilizing
data augmentation techniques such as scaling and
cropping, and incorporating synthetic data generation
through GANs. These methods can increase the
representation of smaller pests and reduce bias
towards detecting larger pests, thereby enhancing
model accuracy across all object sizes. Additionally,
generative models can be employed to create high-
quality synthetic data that accurately reflects the
characteristics of underrepresented classes. Future
research should focus on enhancing the representation
of smaller pests within training datasets.

Further efforts should also be directed towards
optimizing the model for early detection capabilities.
Detecting pests at an early stage is crucial for
effective pest management and can significantly
contribute to the sustainability of agricultural practices.
Improving the model’s ability to recognize smaller, less
conspicuous pests will enhance the overall granularity
and timeliness of pest detection.

Despite its strong performance, YOLOv8’s depen-
dency on high-quality annotations and large-scale

datasets poses challenges for deployment in resource-
limited settings. In such scenarios, it may be difficult to
collect annotated datasets with sufficient diversity and
quality. Developing methods to reduce the reliance on
extensive labeled data, such as weakly supervised or
unsupervised learning techniques, could make YOLOv8
more accessible in these environments.

The choice of YOLOv8 over more advanced architec-
tures, such as vision transformers, was driven by prac-
tical considerations. YOLOv8 offers a superior trade-
off between detection accuracy and computational effi-
ciency, making it ideal for real-time applications in
agriculture. Vision transformers, while achieving state-
of-the-art results in some domains, require significantly
higher computational resources, which can limit their
feasibility for deployment in resource-constrained envi-
ronments like farms. YOLOv8’s lightweight architec-
ture and high inference speed make it well-suited for
field applications where rapid and reliable pest detec-
tion is essential.

In addition to technical improvements, future
work should involve extensive field testing of the
YOLOv8 model across diverse agricultural settings.
Validating the model’s performance in real-time
field conditions will help assess its scalability and
adaptability to different environmental and operational
constraints. Testing YOLOv8 across diverse datasets
and agricultural conditions will further ensure its
robustness and adaptability. This would include
environments with varied crop types, pest species, and
climatic conditions, enabling the model to generalize
effectively across real-world scenarios. Robotic systems,
as outlined in [27] and [28], present promising avenues
for deployment in this regard, enabling efficient and
scalable solutions for pest management in agriculture.

In summary, this research confirms that advanced
deep learning models like YOLOv8 have the potential
to revolutionize pest management in agriculture. By
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setting new standards in detection accuracy and
integrating with robotic platforms, our work paves the
way for future innovations aimed at protecting crop
health and securing global food supply.

6. Conclusion
This study underscores the potential of YOLOv8, an
advanced deep learning model, to significantly improve
pest detection in agricultural settings. The promising
results obtained from the IP102 dataset, particularly the
high mAP scores, indicate that YOLOv8 enhances the
accuracy of identifying a wide range of pest species.
This capability is crucial for boosting agricultural
productivity globally. However, the model’s tendency
to favor detection of larger pests—an issue likely
stemming from dataset imbalances—highlights critical
areas for further research. Future efforts should focus
on optimizing the training dataset to ensure a more
equitable detection across all pest sizes. Additionally,
refining the model to better detect smaller pests and
conducting extensive field trials in diverse agricultural
environments are essential. These steps will help
assess the model’s practical applicability and improve
its robustness, advancing pest management strategies
towards greater effectiveness and sustainability.
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