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Abstract

In recent years, the application of the LLM model has played an increasing role in more and more fields,
including network security. Some attackers exploit LLM to generate malicious code, craft phishing emails,
and analyze software vulnerabilities. It also inspires us to utilize LLM to maintain network security. In
previous research on malware detection, feature engineering often relied heavily on expert analysis, making
the process both challenging and resource-intensive, especially given the rapid evolution and constant
updates of malware. Therefore, we propose a malware detection method for intrinsic semantics. The method
first designs an API intrinsic semantic feature encoder, which extracts intrinsic semantic features from
API names and Microsoft’s official API definitions based on LLM-based prompt engineering and sentence
embedding techniques. Then the API co-occurrence feature encoder is designed, which mines the contextual
co-occurrence features of API from API call sequences based on the word2vec. The API semantic features and
API co-occurrence features are combined to improve the malware detection performance. Also, it uses TCN-
GRU to capture dependencies between API calls. Results on several public datasets show that our method
achieves better performance than other methods, and in addition, ablation study results demonstrate the
important role of intrinsic semantics in malware detection algorithms.
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1. Introduction
Recently, the development of malware has shown a
trend of sophistication and diversification. With the
popularization of the Internet and the acceleration
of the digitalization process, the means of cyber-
attacks continue to evolve, and malware has become
one of the main weapons of cybercriminals. Current
malware trends reflect the increasing use of social
engineering techniques, zero-day exploit attacks, and
ransomware by attackers for financial gain [1, 2].
In addition, the widespread adoption of the Internet
of Things (IoT) has provided new attack surfaces
for malware, especially the proliferation of botnets
and mining Trojans, exposing enterprise networks
to unprecedented threats. Meanwhile, attackers make
malware detection and response more difficult through
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encrypted communication, fuzzing techniques, and
multi-layered attack chains.

At the same time, the application of Large Lan-
guage Modeling (LLM) in the field of cyber-attacks
has gradually attracted attention. Generalized language
models can increase the efficiency and accuracy in text
generation [3]. Attackers use LLM to generate highly
realistic phishing emails for social engineering attacks,
automate vulnerability mining and exploitation, gen-
erate and obfuscate malicious code, write complex
attack scripts, and organize intelligence information
[4]. These capabilities enable attackers to conduct more
precise, stealthy, efficient threats, while significantly
lowering the technical threshold and increasing the
level of automation of attacks, posing greater defense
challenges to network security.

Application Programming Interface (API) gives
developers access to the functionality of a software
application or service without exposing internal
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implementation details [5]. Operating systems provide
a wide variety of API for applications to manage
hardware. For applications, the API provided by the
operating system plays a key role in their development
[6]. Malware often needs to directly or indirectly utilize
OS-provided API to achieve specific functionality. For
example, worms usually utilize file system API to find,
copy, and create files, and network API to establish
connections, transfer data, and communicate with other
systems; Trojans usually also use remote execution API
to execute code on other systems, etc.; and ransomware
utilizes file system API to obtain files and encryption
API to encrypt files.

Currently, many efforts have been made to apply
artificial intelligence to analyze API call sequences to
enhance the accuracy of malware detection. Compared
with complete code analysis, analysis of API call
sequences is relatively lightweight, making real-time
detection more efficient. In addition, API call sequence
analysis focuses on the interaction between interactive
programs and operating systems rather than specific
code implementations, thus helping to detect unknown
and unknown malware variants. Importantly, the API
provides dynamic information while the program
is running, allowing detection systems to observe
and analyze malicious behavior in real-time. Some
researchers use machine learning algorithms, such as K-
Nearest Neighbor (KNN), Naive Bayes (NB), Decision
Tree (DT), Support Vector Machine (SVM), Random
Forest (RF), etc., to analyze API call sequences [7–
11]. There are also researchers focusing on improving
the accuracy of malware detection by adopting
deep learning methods for feature extraction [12–18].
However, there are still two factors that limit the
effectiveness of API-based malware detection.

On the one hand, some of the current malware
detection efforts rely too much on manual analysis
by network security experts. Security experts need to
use static and dynamic analysis tools to decompile,
behaviorally analyze, and sandbox test malware
samples in order to get the behavioral characteristics of
the malware. We hope to address the difficulties in this
with deep learning methods, but deep learning in itself
still requires the help of security experts. Thanks to the
application of LLM by attackers, we are reminded that
we can use LLM to optimize this difficulty.

On the other hand, no attention has been paid to
the actual meaning of API. Current research usually
adopts the idea of word2vec, which considers API
calls as individual words, learns the co-occurrence
phenomenon between API to model the potential
relationship between words, and finally obtains word
vectors. But they seldom consider the rich and deep
meanings of API themselves, which are embedded in
the names and their meanings of API, which are related
to the behaviors of the API. For example, CreateFile is

often used to create a new file; ReadFile is often used
to read a specified number of bytes from a file handle
and store the data in a buffer; OpenProcess can be used
to get a handle to a specific process for subsequent
operations. Such intrinsic semantics can help us detect
malware.

In this paper, we propose new methods to detect
malware using API intrinsic semantics. First, we
propose a data enhancer based on LLM, which
commands LLM to supplement and enhance API
semantic data for us through Prompt engineering; then
we design the API intrinsic semantic feature encoder.
API intrinsic semantic features are extracted from both
the API name and API description. For API names,
using the data enhancer, we extract API operations
and operation objects from the name of the API and
model these data from the security perspective as API
name features. For API description, which contains the
expected behaviors, purposes, and effects of various
operations in the API, the API description provided by
Microsoft is crawled by a crawler, and the description
is supplemented and enriched by using LLM, and the
sentence embedding of the API description is extracted
by using a deep learning model as the API description
feature. The two parts of features are combined as API
intrinsic semantic features. At the same time, using
the API co-occurrence feature encoder, the word2vec
idea is used to view API calls as individual words,
learn the co-occurrence phenomenon between API to
model the potential relationship of words, and finally
get the API co-occurrence features. Finally, the deep
neural network is used to mine the dependencies
between multi-dimensional features of API calls to
detect malware. We have conducted experiments on
several publicly available large-scale malware detection
datasets, and the experimental results demonstrate that
the proposed method achieves better performance than
other state-of-the-art methods.

The contributions in this paper are as follows:

• To reduce the consumption of manual analysis,
we introduce the LLM-based data enhancer:
Using Prompt Engineering, LLM is utilized to
supplement and enhance API semantic data to
replace the work of experts who deeply analyze
the functional roles of different API and extract
the features embedded within the API.

• To extract the intrinsic semantics of the API,
we proposed the API intrinsic semantic Feature
Encoder: Extract API intrinsic semantic features
from API names and API descriptions. For
the API name, the data enhancer is used to
extract the operations and operation objects of
the API from the name, and these data are
modeled from a security perspective as API name
features. For API description, which contains
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the expected behaviors, purposes, and effects of
various operations in the API, the API description
provided by Microsoft is crawled by a crawler,
the description is supplemented and enriched
by using a data enhancer, and the sentence
embedding of the API description is extracted
by using a deep learning model as the API
description feature. The two parts of the features
are combined as API intrinsic semantic features to
improve the effect of malware detection.

• We conduct extensive experiments on public
datasets and verify the excellent performance of
this method in malware detection.

The rest of this article will be organized as follows:
Section 2 introduces related work on API-based
malware detection and LLM-based data enhancement;
Section 3 presents our malware detection method;
Section 4 gives a comparison of the experimental results
of our experimental setup and other methods. Ablation
studies and analysis are discussed in Section 5. The last
section summarizes the content of the full text.

2. Related Work
In this section, the related work on LLM-based data
enhancement and malware detection is presented.

2.1. LLM-based Data Enhancement
The training of LLMs on large-scale network data
has endowed them with comprehensive comprehen-
sion capabilities, demonstrating superior reasoning and
generalization abilities, which have driven innovations
in several domains, including creative writing, interac-
tive dialogue systems, and search engine design. There
are many scholars working on data annotation, fea-
ture engineering, and data augmentation using LLM,
empowering other fields and advancing science and
technology through LLM’s generalization capabilities.

Cao et al. uncover the multifaceted applications of
LLMs, ranging from elevating customer support and
fortifying fraud detection to reshaping market analysis
and prediction [19]. Han et al. proposed the FeatLLM
framework for feature engineering using LLM, which
analyzes feature-task relationships, develops rules
to generate new features, and then reasons about
them with simple downstream models [20]. Liu et
al. developed the MixSelfConsistencyQueryEngine to
augment tabular data using LLM, which aggregates
results from textual and symbolic reasoning through
a self-consistency mechanism (i.e., majority voting)
and achieves state-of-the-art performance [21]. Deng
et al. propose a semi-supervised learning approach
to augment market opinion analysis with LLM. The
LLM is first used to generate weak financial opinion

labels for Reddit posts, and then these data are used
to train a small model [22]. Lee et al. propose to use
off-the-shelf LLMs instead of human-labeled preference
data, train reward models based on these labeled data,
and fine-tune the LLMs with a reinforcement learning
approach to better understand human preferences [23].
While researchers are currently introducing LLM as
an alternative to manual analysis by experts in many
domains, there is a gap in similar work in the field of
cyberspace security, where many antecedent work relies
on cyberspace security experts.

2.2. Executables Based Malware Detection
Methods based on executables typically utilize machine
learning or deep learning methods to extract patterns
and features of malicious software from a large number
of executables, achieving high-precision malicious
software detection. For example, Hemalatha et al.
propose an efficient malware detection system based
on deep learning which uses the reweighted class-
balanced loss function in the final classification
layer of the DenseNet model to achieve significant
performance improvements in classifying malware
by handling imbalanced data issues [12]. Shaukat
et al. first visualize portable executable files as
images, then use a fine-tuned deep learning model to
extract deep features from those images. Finally, they
employ SVM for malware detection based on these
deep features [13]. Rajasekhar et al. propose a Deep
Learning-based Bidirectional-Gated Recurrent Unit-
Convolutional Neural Network (Bi-GRU-CNN) model
for detecting and classifying internet of thing (IoT)
malware using ELF binary file byte sequences as input
features [24]. Saleh et al. introduce a high-performance
malware detection system that combines deep learning
and feature selection methodologies to differentiate
malware from benign traffic [25]. However, due to the
rich information embedded in executables and their
large file size, the time cost of detecting executable files
is relatively high.

2.3. API Based Malware Detection
Methods based on API mostly focus more on whether
the API is called and its frequency. They often
overlook the impact of API parameters on API and
usually employ manual analysis for the relationships
between API. For example, Singh et al. captured
software API calls using the Cuckoo sandbox, selected
multiple types of API, and used their invocation as
features for optimizing machine learning algorithms
to detect malicious software [7]. Amer et al. proposed
an Android malware detection technique based on
API and permissions, collecting application features
by obtaining the most frequently used API calls and
permissions and utilizing machine learning algorithms

3
EAI Endorsed Transactions 

on AI and Robotics 
| Volume 4 | 2025 |



R. Hou et al.

for malware detection [8]. Amer et al. employed
word2vec to extract contextual relationships between
API sequences, cluster similar API, and ultimately
detect malware based on a Markov chain [9]. Sharma et
al. extracted important features for malware detection
from API call sequences, invocation situations, and
called frequencies obtained from the dynamic analysis
of malicious and benign samples. They used the TF-
IDF method to determine the importance of each
feature in these feature sets and evaluated the feature
effectiveness using machine learning algorithms such
as decision trees, support vector machines, logistic
regression, and k-nearest neighbors [10]. Ndibanje et al.
calculated the called frequency of each API in each API
sequence, represented each malware sample using this
frequency vector, and then applied the KNN machine
learning algorithm for feature extraction [11]. While
these works recognize the superior performance of API
calls in malicious software detection, methods based on
machine learning models often struggle to adequately
consider the internal dependencies within sequences.

With the introduction of deep learning-related tech-
nologies, researchers have begun to explore malware
detection from the perspective of API call sequences,
utilizing deep learning models to model sequence data
and uncover dependencies within the data. For exam-
ple, Liu et al. analyze malware and normal software
samples using the sandbox software. They collect API
calls and remove duplicate API calls. Then they use
vectorization techniques from natural language pro-
cessing (NLP) to explore relationships between the
API and obtain vectors representing API calls. Finally,
they employ Bi-directional Long Short-Term Memory
(Bi-LSTM) for malware detection [14]. Maniriho et al.
utilize the tokenizer in the Keras framework for tok-
enizing and encoding API. They propose an automatic
feature extraction approach based on Convolutional
Neural Networks (CNN) and Bi-directional Gate Recur-
rent Unit (BiGRU) deep learning architecture [15].
Feng et al. propose a novel documentation-augmented
Windows malware detection framework to extract the
information of official Windows API documentation
and construct API graphs [26]. The above studies have
overlooked the impact of API parameters on malware
detection.

Recently some researchers have started to explore
malware detection from API sequences with parame-
ters. For example, Zhang et al. used a hash method
to extract heterogeneous features from API names and
run-time parameters. These features were further con-
catenated and input into a deep learning model that
aggregates multiple gated CNN models and bidirec-
tional LSTM [16]. Li et al. proposed a hybrid fea-
ture encoder for extracting semantic features from API
names and parameters. Subsequently, an API call graph

was derived from the API call sequence, transform-
ing the relationships between API calls into structural
information of the graph. Finally, a graph neural net-
work was designed for malicious software detection
and type classification [17]. Chen et al. introduced a
classification method based on rules and clustering
to evaluate the sensitivity of parameters to malicious
behavior, obtaining a parameter-enhanced API call
sequence. Based on this sequence, native embeddings
and classification label embeddings were applied to
API calls, connecting the two to represent the API.
The embedded sequence was then input into a deep
neural network to train a binary classifier for malicious
software detection [18]. Zhao et al. employ parameter-
augmented semantic chains to improve the system’s
resilience to unknown parameters and design a deep
learning model consisting of gated CNN, Bi-LSTM, and
an attention mechanism to extract semantic features
embedded within the API sequences and improve the
overall detection accuracy [27]. Zhou et al. apply a
Multi-Layer Perceptron to analyze the API argument
features and propose a hybrid model that combines
the Hierarchical Attention Network and Multi-Layer
Perceptron to detect malware [28].

3. Method
In this section, the proposed method and the motivation
behind it are described in detail. The system framework
is shown in Figure 1, API Semantic Feature Encoder,
API Co-occurrence Feature Encoder, DNN.

The API encoder can be divided into two parts. One
is the API semantic feature encoder, the other is the
API co-occurrence feature encoder. The API semantic
feature encoder extracts intrinsic semantic features
from API names and Microsoft’s official API definitions
based on the LLM’s prompt engineering and sentence
embedding techniques. The API co-occurrence feature
encoder mines the contextual co-occurrence features of
API from API call sequences based on the word2vec.

During the TCN-GRU model, the API embedding
sequence is input into our designed deep neural net-
work. The TCN layer is employed to extract overall
temporal features from the API call sequence. Subse-
quently, the GRU layer is utilized for a comprehensive
analysis of the associated features extracted by the TCN
layer. Finally, the associated features extracted by the
GRU layer are input into the linear layer, and the
sigmoid activation function is applied for classification,
determining whether the corresponding software for
the API call sequence is from malware.

3.1. API semantic feature encoder
The API semantic feature encoder consists of three
parts as shown in the figure: the LLM-based API data
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Figure 1. Overview of Our Malware Detection Method. The system mainly consists of two parts. (1) API Encoder: to extract the
semantic feature of API. (2) DNN: to build the model that models the dependency of API, then train this model to classify.

enhancer, the API name-enhanced feature encoder, and
the API description-enhanced feature encoder.

Currently, many research works tend to regard API
as a meaningless symbol when utilizing API call
sequences for malware detection and tend to study
the dependency relationship between symbols and
symbols, i.e., between different API. Some researchers
statistically analyze API call sequences, while others
conduct NLP-like studies on API calls.

As a matter of fact, API is not just a meaningless
symbol, but we can dig rich deep information
from the names and meanings of API. The naming
of API names usually follows certain rules, and
the names can be used to intuitively understand
the scope of the API’s functions and uses. For
example, API “CreateFile” is responsible for creating
files, API “ReadProcessMemory” is responsible for
reading the memory of a specified process, API “
VirtualAlloc” is responsible for reading the memory
of a specified process, and API “VirtualAlloc” is
responsible for reading the memory of a specified
process. VirtualAlloc” is responsible for allocating
virtual memory, etc. The definition of API is very
important in development, which can help developers
quickly understand the use of API, and the definition
usually contains a description of the function of the
API, the use of scenarios, and precautions, to avoid
the developer misuse or abuse of API. CreateFile”
is to create or open files, devices, pipelines, etc.,
allowing the specification of file access rights, sharing
modes, and creation methods; API ‘GetWindowText’

is to retrieve the text of the title bar of the specified
window, which applies to non-control windows. The
API “GetWindowText” retrieves the title bar text
of the specified window, which applies to non-
control windows. This information can enrich the
semantic information, solve the problem of long-tailed
vocabulary, and then improve the representation of
API vectors to achieve the effect of enhancing the API
representation capability.

Therefore, we would like to extract information about
operations, operation objects, etc. from the API names.
Also, it is desirable to get a paraphrase about what kind
of work each API is responsible for. The design of each
component is as follows:

• LLM-based API Data Enhancer: Extracting infor-
mation such as operator, operation, operation
object, etc. from API names and providing a
description for the API is a challenging task.API
names are usually short and contain multiple
levels of semantic information, e.g. “CreateFile”
implies that the operator is the system/user, the
operation is creation, the operation object is the
file, etc. However, this information can be vague
and inconsistent. API names are often short and
contain multiple levels of semantic information,
e.g., “CreateFile” implies that the operator is
the system/user, the operation is to create, the
object of the operation is a file, etc., but this
information can be ambiguous and inconsistent.
Precise annotation of API names requires a deep
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Table 1. Detail of Prompt from LLM-based API Data Enhancer

Prompt Type Prompt

API Name Extraction You are an expert in the field of cyberspace security and Windows programming,
familiar with various Windows API, and have many years of experience in
using Windows API. Please extract for me the operations, operation categories,
operation objects, operation object categories, and API categories from some of
the specified API, which is “Networking”, “Persistence”, “Encryption”, “Anti-
Analysis”, “Stealth”, “Execution”, “Miscellaneous”. Miscellaneous”. Here are some
examples: “API name”: “CreateFile”, “action”: “create”, “action category”: “add”,
“object”: “file”, “object category”: “file”, “API category”: ” persistence". Here are
the API that needs to work:

API Description Generation You are an expert in the field of cyberspace security and Windows programming,
familiar with various Windows API, and have many years of experience in using
Windows API. Please provide a paraphrase for these API as per the official
Microsoft API paraphrases. Here are some examples:“API name”: “CreateFile”,
“description”: “Creates or opens files, devices, pipes, and so on, allowing file
access permissions, sharing modes, and creation methods to be specified.”. Here
is the API that needs to work:

understanding of naming conventions and con-
textual semantics. In the past, when faced with
similar tasks, it relied on manual analysis by
experienced senior experts. However, this may
lead to low efficiency, and consistency is difficult
and costly to ensure when multiple experts work
together. LLM, by pre-training on a large amount
of code and natural language corpus, can effi-
ciently understand and extract multi-level infor-
mation from API names, and assist in generating
descriptions for API. To achieve this goal, a good
prompt must be designed. Therefore, the LLM-
based data enhancer is designed to guide LLM
through prompt engineering in a few-shot man-
ner to accomplish these two tasks: extracting and
inferring structured information from API names,
and generating explanations for API. The prompt
used is shown in the table 1.

• API Name-enhanced Feature Encoder: With the
API Data Enhancer, the operation, operation cat-
egory, operation object, operation object category,
and API classification are extracted from the API
name. For example, the operation of API “Cre-
ateFile” is “Create”, the operation classification
is “Add”, the operation object is “File”, and the
object of the operation is “Add”. “File”, the opera-
tion object is classified as ‘File’, and the API clas-
sification is ‘Persistence’. The API name augmen-
tation feature encoder will be utilized to extract
the intrinsic semantic features embedded in API
names. Specifically, each API name is converted
into a 5-tuple (operation, operation classification,
operation object, operation object classification,

API classification) to form a name semantic chain.
Then, an embedding layer is used to convert the
name semantic chain into a matrix. Finally, the
one-dimensional convolutional layer is applied to
extract the features of the name semantic chain to
obtain the API name features.

• API Description-enhanced Feature Encoder: With
the API Data Enhancer, we are able to get a
detailed description of each API feature. For
example, the definition of API “CreateFile” is to
create or open a file, device, pipeline, etc., which
allows us to specify the file access rights, sharing
mode, and creation method. We will utilize the
API description augmentation feature encoder to
extract the intrinsic semantic features embedded
in the API description. Specifically, for each
API paraphrased text, we will use a pre-trained
sentence embedding model to dig deeper into
the semantic information of the text and convert
it into a fixed-length vector representation. At
the same time, in order to avoid dimensionality
catastrophe, we will also use Truncated SVD to
downscale the sentence embeddings.

3.2. API co-occurrence feature encoder
In fact, many API is not isolated from each other, they
depend on each other to help users realize specific
functions. For example, CreateFile for opening a file
often appears together with file manipulation API such
as ReadFile for reading a file or WriteFile for writing a
file to form a context for file manipulation. Similarly, in
network communication, WSAStartup, connect, send,
and recv often appear together to form a context about
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network communication, reflecting the lifecycle of a
network session.

These co-occurrence patterns are particularly useful
in malware analysis because malicious code often uses
specific API sequences to accomplish malicious tasks,
such as obtaining privileges, loading malicious mod-
ules, and performing process injection. For example,
the co-occurrence of VirtualAllocEx and WriteProcess-
Memory is often a sign of process injection. By iden-
tifying the co-occurrence patterns of API, malicious
behavioral patterns can be more effectively detected
and help distinguish between regular software and
malicious programs.

Word2vec is a natural language processing technique
that represents words as low-dimensional vectors
and generates vector representations by capturing co-
occurrence relationships between words. The basic idea
is that two words should be close to each other in
the vector space if they frequently co-occur in similar
contexts. Word2vec consists of two main models, the
Skip-Gram model which predicts the context based
on the central word, and the CBOW model which
predicts the central word based on the context and is
trained by an objective function that maximizes the
prediction probability. In this way, the models can
embed semantically similar words in regions of vector
space close to each other, allowing words with high co-
occurrence frequency to form clusters in vector space.

The API co-occurrence feature encoder utilizes the
Word2Vec technique for feature encoding. Specifically,
each API is considered as a “word” and each software
sample as a “document”, and contextual features are
generated based on the co-occurrence of API. By
using the CBOW model, the encoder can predict
the central API based on the contextual API and
train with an objective function that maximizes
the probability of predicting the central word. For
example, if two API functions frequently appear in the
same context, the CBOW model will utilize this co-
occurrence information to predict the target API by
the surrounding context, so as to learn the relationship
between the context API and the target API and
construct co-occurrence vectors, so that API with
similar functions or uses are close to each other in
the vector space. The target function formula is shown
below equation 1:

τ =
∑
w∈C

log p(w (context (w)) (1)

Where w denotes any word in the corpus C.

3.3. DNN
Previous research has often treated the problem of
malware detection based on API call sequences as a
sequence classification problem, typically employing

deep learning models such as Recurrent Neural
Networks (RNNs) and LSTMs. Models of this kind [29,
30] determine each output based on both the current
input and previous information. Therefore, they can
handle sequence data, uncover temporal information
in the data, and capture dependencies among sequence
data. However, when dealing with long sequences, these
models may encounter issues such as vanishing or
exploding gradients as the network depth increases.

Figure 2. Causal Convolution in TCN

TCN is a type of deep neural network model based
on one-dimensional convolution [31]. Due to its ability
to parallelly compute data from all time steps, as
well as its powerful capability to model long-term
dependencies with fewer parameters, TCN has been
widely applied in areas such as speech recognition,
motion detection, and time series classification. It
is built on two mechanisms: causal convolution and
dilated convolution.

Causal convolution is illustrated in Figure 2. The
value at position t in the output layer depends only
on the values at position t and earlier in the input
layer. Unlike traditional convolutional neural networks,
causal convolution cannot see future data; it has a
unidirectional structure. In other words, there must be a
cause before there is an effect, making it a strictly time-
constrained model, hence the name causal convolution.

Figure 3. Dilated Convolution in TCN

Simple causal convolution still has the problem of
traditional CNN, that is, the length of modeling time
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is limited by the size of the convolution kernel, and it is
difficult to obtain longer dependencies. The solution to
this problem is dilated convolution, as shown in Figure
3. Dilated convolution allows for interval sampling of
the input during convolution, and the sampling rate is
controlled by the dilated coefficient, i.e. d in the figure.
d = 1 means that every point in the input process is
sampled, and d = 2 means that every two points in
the input process are sampled once as input. Generally
speaking, the higher the level, the greater the value
of d. Therefore, dilated convolution makes the size of
the effective window increase exponentially with the
number of layers. In this way, the convolution network
can use fewer layers to obtain a large range of receptive
fields.

To ensure that the receptive field of the TCN covers
the entire history, i.e. the complete sequence, it is
necessary to control the number of layers to achieve a
wide receptive field.

For the given sequence length denoted as l, kernel
size denoted as k, dilation base denoted as b, and
number of layers denoted as n, the following inequality
equation 2 needs to be satisfied to cover the complete
history:

1 + (k − 1) · b
n − 1
b − 1

≥ l. (2)

Solving for n to obtain the minimum required
number of layers as following equation 3:

n =
⌈
logb

(
(l − 1) · (b − 1)

(k − 1)
+ 1

)⌉
. (3)

The two mechanisms of causal convolution and
expansion convolution are used to make the output of
each moment in the TCN network only convoluted with
the input at that moment and before. Therefore, the
output of TCN maintains a temporal sequence. In other
words, while TCN employs convolutional operations
to extract features from the sequence, these features
still possess temporal order. Consequently, TCN can be
combined with neural networks such as RNN, LSTM,
and GRU.

RNN is designed to handle sequential data and
capture temporal dependencies within the input
sequences. However, RNNs suffer from vanishing and
exploding gradient problems, making it difficult to
capture long-range dependencies. LSTM addresses this
issue by introducing gating mechanisms (input gate,
forget gate, and output gate) and memory cells,
allowing them to retain important information over
longer time horizons. GRU, a simplified version of
LSTM, contains only an update gate and a reset
gate, resulting in fewer parameters and more efficient
computation. GRU [32] typically offers performance
comparable to or even better than LSTM, especially in

scenarios where model complexity and computational
resources are limited. Therefore, by combining TCN
with GRU, we construct the deep neural network shown
in Figure 4. The deep neural network is used to
determine whether the input API call sequence is from
malware. The model consists of the TCN layer, the GRU
layer, and the Linear layer.

The model will take the API call sequence as input
and determine whether the API call sequence originates
from malware. The specific process is as follows: first,
based on the trained API embedding from the previous
step in API Embedding, construct the embedding
layer to transform the input API call sequence into
the API embedding sequence. Then, using the TCN
layer, explore the dependency relationships between
API calls, extracting temporal features of the API call
sequence. Next, input the feature vectors output by the
TCN layer into the GRU layer, overlaying bidirectional
feature information. This further explores the intrinsic
sequential correlations of the API call sequence in both
forward and backward directions, extracting deeper
temporal features. Finally, input the feature vectors
extracted from the GRU layer into the fully connected
layer. Through the sigmoid activation function, classify
whether the input API call sequence is from malware.

Additionally, the model applies Adam as the
optimizer and supervises each input sequence with the
label. To measure the loss of the training stage, the
binary cross-entropy function is used as follow:

BCE = −(y log(p) + (1 − y) log(1 − p)), (4)

where y is binary label and p is the probability of y.

4. Experiment
This section focuses on a detailed description of the
dataset used for the experiment, the environment in
which the experiment was conducted, and the results
of the experiment.

4.1. Experiment Setting
Four publicly available datasets are used to evaluate our
approach. The first dataset [33] contains a total of 8087
samples divided into three batches, each batch divided
by year. Each sample consists of a pair of API call
sequences and corresponding labels. The API call data
is collected via the CAPE sandbox and the labels are
generated by VirusTotal. We combined the data from all
years; the second dataset [34] contains 42,797 malware
API call sequences and 1,079 normal software API call
sequences. Each API call sequence consists of the first
100 non-repeating consecutive API calls related to the
parent process, which are derived from the Cuckoo
Sandbox report; the third dataset [35] is generated
by Cuckoo Sandbox and is based on the analysis of
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Figure 4. TCN-GRU Model Architecture. The TCN-GRU model consists of four parts. (1) Embedding: to embed API call sequence.
(2) TCN: to explore the dependency relationships between API calls. (3) GRU: to extract temporal features of the API call sequence.
(4) Linear: to classify where the API sequence is from.

API calls for the Windows operating system, which
is intended to provide cybersecurity researchers with
malware analytics data suitable for machine learning
applications. The dataset contains 5727 malicious
samples and 1380 sub-malicious samples. Due to
the significant imbalance in the number of positive
and negative samples in the above three datasets,
an oversampling technique is used to augment the
minority class samples in the training set so that the
ratio of positive and negative samples is adjusted to
at least 7:3, ensuring that the model is able to fully
learn the features of the minority class samples during
the training process and improve the classification
performance. Dataset 4 [36] was generated with a
sandbox and was used as the dataset for the Malicious
Code Detection track of the DataCon 2019 Big Data
Security Analytics Competition. The dataset contains a
total of 60,000 software samples, of which 40,000 are
malware and the other 20,000 are benign.

During the training, the five-fold cross-validation
method is employed, where the training set is randomly
divided into five equally sized subsets. Four subsets
are used for training, and the remaining one is
used for validation in each iteration. This process
is repeated five times, and the average results are
obtained. Simultaneously, the results on the training set
are referred to as training results, the results on the
validation subset as validation results, and the results
on the test set as test results.

In the proposed model, considering the median and
mean of the API sequence lengths in the dataset,
we have constrained the length of the API sequences
to 1000. Simultaneously, we set the size of the API
embeddings to 50 based on the size of the corpus
and the cost of unsupervised training of word2vec.

Considering the complexity of the malware detection
task and the length of the API call sequence, we also set
the kernel size of the TCN model to 3 and the output
channel of the TCN model to [100, 100, 100, 100, 100,
100, 100, 100, 100]. We set the hidden layer size of
the GRU model to 64 to balance task complexity and
training consumption. Finally, we set the dropout rate
to 0.5 to avoid overfitting.

To prevent overfitting, we employ regularization
techniques such as dropout. Additionally, we verify the
model with a separate validation set and perform cross-
validation to ensure the robustness of our results.

Accuracy, Precision, Recall, and F1-score are used as
the evaluation metrics of the proposed method:

Accuracy =
|T P | + |TN |

|T P | + |TN | + |FP | + |FN |
, (5)

P recision =
|T P |

|T P | + |FP |
, (6)

Recall =
|T P |

|T P | + |FN |
, (7)

F1 − score = 2 × P recision × Recall
P resion + Recall

, (8)

where TP represents the number of traces that are
correctly predicted as malware, TN denotes the number
of traces that are correctly classified as benign, FN
denotes the number of traces that are malware but are
incorrectly predicted as benign, and FP indicates the
number of traces that are benign but are predicted as
malware.
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4.2. Comparison with State-of-the-art
In order to evaluate our approach, we also compared the
proposed method with some of the methods proposed
by other researchers.

Sharma et al [10] analyzed the API call information
extracted from malware and normal samples by
dynamically analyzing them as important features for
malware detection. Three different feature sets were
used in the study; (i) API call usage, (ii) API call
frequency, and (iii) API call sequence. Also, these three
feature sets were combined into an integrated API call
feature set. Subsequently, the TF-IDF method is used
to determine the importance of each feature in the
feature set and these feature sets are represented as TF-
IDF vectors. The effectiveness of malware detection is
improved by such enhanced feature sets.

Maniriho et al [15] proposed API-MalDetect for
detecting malware attacks in Windows systems. The
framework uses an encoder with NLP approach to
process API calls and combines a hybrid automatic
feature extractor built with CNN and BiGRU to extract
features from raw and long sequences of API calls. The
proposed framework aims to detect unknown malware
attacks and avoid performance degradation over time
or due to different malware exposure rates by reducing
temporal bias and spatial bias during training and
testing. The method automatically identifies unique
patterns in API call sequences, effectively distinguishes
malware attacks from normal behavior, and provides
cybersecurity experts with the most important API call
information.

We will conduct experiments in Dataset 1, Dataset 2,
Dataset 3, and Dataset 4, and will divide each dataset
into two parts, a training set and a test set, in the
training set the proportion of normal software samples
will be increased by over-sampling techniques, and at
the same time the validation set will be sampled in
the training set. Four main metrics are considered for
experimental evaluation including Accuracy, Precision,
Recall, and F1-score.

As shown in Tables 2, 3, 4, and 5, the performance of
the proposed model outperforms almost all the models
proposed in other studies in Accuracy, Precision,
Recall, and F1-score. Our proposed malware detection
method achieves superior performance compared to
the methods of Sharma et al. and Maniriho et al. Our
proposed method achieves an F1-Score of 92.77% for
the test results in Dataset 1, which is 27.23% and
31.29% better than Sharma et al. and Maniriho et al.’s
methods, and 88.14% for the test results in Dataset
2, which is 38.76% better than Maniriho et al. and
38.76% better than the Sharma et al.’s method by 8.67%;
the F1-Score of the test results in Dataset 3 achieved
80.83%, which exceeded the methods of Sharma et al.
and Maniriho et al. by 3.48% and 22.86%. The F1-Score

of the test results in Dataset 4 is as high as 98.30%,
exceeding the methods of Sharma et al. and Maniriho
et al. by 3.04% and 5.63%. These results show that our
method not only considers the impact of API intrinsic
semantics on malware detection, but also enhances the
method’s ability to characterize API through feature
extraction techniques from LLM and Microsoft official
documents, which further improves the accuracy of
malware detection, and the experimental results verify
the effectiveness of these treatments, and thus the
performance in the experiments is able to outperform
them.

From the experimental results, it can also be found
that our proposed method performs better in Dataset
1 and Dataset 3, while it performs poorly in Dataset
2. The reason may be that actually the API call
sequences in Dataset 1 and Dataset 3 are complete from
the sandbox software, while the API call sequences
in Dataset 2 are de-duplicated. The API in Dataset
2 can only appear once in each call sequence, so
the internal dependencies between their sequence-to-
API calls are corrupted, leading to the frustration of
deep learning’s long sequence analysis methods, while
machine learning and statistical analysis methods work
better.

4.3. Comparison with Different Model
We compare the proposed method with some popular
deep learning methods nowadays (including RNN,
TCN, TCN-LSTM) in terms of F1-score, Precision,
Recall, and Accuracy. This is done by training validation
on the training set of Dataset 4 and testing on the test
set of Dataset 4. We will input the feature-processed
API sequences into all these baseline models separately.

The experimental results are shown in Tables 6, 7,
where our proposed method outperforms the baseline
model in both the validation and test sets. For example,
in the test results, our proposed model is 98.30%,
98.24%, 98.36%, 98.54% on F1-score, Precision, Recall,
and Accuracy, which is 1.15%, 1.79%, 0.38%, and 1.01%
better than the best baseline model. The improvement
mainly comes from the fact that our proposed method
considers the significance of API intrinsic semantics
in malware detection, using LLM to play the role
of a security expert with the help of Microsoft’s
official API description, extracting deeper information
from the API and extracting features from it using
feature extraction techniques. In terms of modeling,
comparing the temporal neural network model, i.e.,
RNN, our model utilizes the two mechanisms of
causal convolution and inflationary convolution of
spatiotemporal convolutional neural networks to obtain
a longer sensory field and extracts the features of the
longer context in the sequence of software API calls.
While comparing the TCN model, our model utilizes
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Table 2. Experiment Result in Dataset1

Method
Validation Results (%) Test Results (%)

F1-score Precision Recall Accuracy F1-score Precision Recall Accuracy

API-MalDetect [15] 65.89 83.20 64.96 76.71 61.48 59.12 65.77 97.38

TFIDF [10] 93.01 93.29 92.75 93.75 65.54 60.24 91.02 95.65

Proposed Method 99.06 99.15 98.97 99.16 92.77 88.32 98.47 99.36

Table 3. Experiment Result in Dataset2

Method
Validation Results (%) Test Results (%)

F1-score Precision Recall Accuracy F1-score Precision Recall Accuracy

API-MalDetect [15] 39.30 32.37 50.00 64.75 49.38 48.77 50.00 97.54

TFIDF [10] 97.09 97.59 96.59 96.00 96.81 97.49 96.14 95.62

Proposed Method 97.87 97.93 97.82 98.07 88.14 82 97.56 98.58

Table 4. Experiment Result in Dataset3

Method
Validation Results (%) Test Results (%)

F1-score Precision Recall Accuracy F1-score Precision Recall Accuracy

API-MalDetect [15] 52.94 61.1 56.45 59.52 57.97 59.34 57.35 76.39

TFIDF [10] 77.56 82.36 77.48 78.80 77.35 80.05 75.42 86.89

Proposed Method 83.09 83.54 82.98 83.24 80.83 78.95 83.48 87.03

Table 5. Experiment Result in Dataset4

Method
Validation Results (%) Test Results (%)

F1-score Precision Recall Accuracy F1-score Precision Recall Accuracy

API-MalDetect [15] 92.65 92.60 92.71 93.71 92.67 92.46 92.89 93.71

TFIDF [10] 95.65 95.50 95.81 96.27 95.26 95.03 95.50 95.92

Proposed Method 98.7 98.62 98.78 98.89 98.3 98.24 98.36 98.54

Table 6. Validation Results ( % ) of Comparison with Deep
Learning Model on Malware Detection

Approach F1-score Precision Recall Accuracy

RNN 89.38 88.64 90.29 90.78
TCN 97.31 96.67 98.05 97.66
TCN-LSTM 97.13 96.45 97.91 97.53
Proposed Method 98.70 98.62 98.78 98.89

the gated loop unit to comprehensively analyze the
correlation features extracted by the spatio-temporal
convolutional neural network on top of the features
extracted by the spatio-temporal convolutional neural

Table 7. Test Results ( % ) of Comparison with Deep Learning
Model on Malware Detection

Approach F1-score Precision Recall Accuracy

RNN 88.69 88.05 89.44 90.15
TCN 97.14 96.45 97.93 97.51
TCN-LSTM 97.15 96.44 97.98 97.53
Proposed Method 98.30 98.24 98.36 98.54

network and learns the deep temporal dependencies
embedded in the data. Finally comparing the TCN-
LSTM model, our model relies on GRUs with their
simplified gating structure and more efficient training
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process and shows a superior performance in malware
detection.

5. Discussion
In this section, the effects of the improvements made
in the proposed approach are discussed through the
ablation study first. Then, the impact of varying
the method of dimension reduction performance is
discussed.

5.1. Ablation Study
In this study, the ablation experiments aim to
evaluate the impact of the improvements made to
the methodology in this chapter on the malware
detection performance, verifying the contribution of the
individual modules to the overall effectiveness of the
model. By gradually removing or replacing certain key
parts of the model, the importance of each component
can be clarified, which in turn helps to understand the
strengths and limitations of the model.

The improvements of the methodology mainly
include the following parts: (i) API Name-Enhanced
Feature Encoder, which extracts the intrinsic semantic
features embedded in API names. Specifically, each
API name is converted into a 5-tuple (operation,
operation category, operation object, operation object
category, API category) to form a name semantic chain.
Then, an embedding layer is used to convert the
name semantic chain into a matrix. Finally, a one-
dimensional convolutional layer is applied to extract
the features of the name semantic chain to obtain
the API name features. (ii) API Description-Enhanced
Feature Encoder to extract the intrinsic semantic
features embedded in API description. Specifically,
for each API description text, a pre-trained sentence
embedding model will be used to dig deeper into
the semantic information of the text and convert it
into a fixed-length vector representation. Meanwhile,
in order to avoid dimensionality catastrophe, Truncated
SVD will also be used to downscale the sentence
embeddings. (iii) API co-occurrence features.

In order to verify the effectiveness of these improve-
ments, we design the following ablation experiments:
(1) only name-enhanced feature sets (only-name) (2)
API intrinsic semantic feature sets (only-semantic) (3)
only co-occurring features are retained (only-sequence)
and (4) the complete method. These ablation experi-
ments allow us to comprehensively assess the contribu-
tion of each module to the performance of the malware
detection system and provide a basis for subsequent
optimization.

The results of the ablation experiments in table 8
show that the performance of the model decreases
again when only co-occurring features are retained,
indicating that the co-occurring features are the

key factors in marking the behavioral patterns of
malware. The F1-Score, precision, accuracy, and recall
of the model drop when only name-enhanced features
are included, suggesting that the name semantic
information of API calls plays an important role in
malware detection. The accuracy and recall of the
model rebound in the results of the API intrinsic
semantic feature set, suggesting that the paraphrased
semantic information of API calls is pivotal to the
performance of the model. The best performance was
obtained for the complete model, demonstrating the
synergy of the individual modules.

In summary, the ablation experiments verify the
importance of API intrinsic semantic features and
API co-occurrence features in malware detection and
provide a strong basis for further optimization of the
model.

5.2. Different Methods of Dimensionality Reduction
The performance of the proposed model is mainly
affected by the Dimensionality Reduction methods used
in the API description features. In this section, we will
examine the impact of these factors by configuring the
proposed methods using different settings.

In this study, in order to evaluate the impact of
different dimensionality reduction methods on the per-
formance of malware detection models, we designed
dimensionality reduction experiments based on Trun-
cated SVD, t-SNE, and PCA. Dimensionality reduction
techniques are commonly used to reduce the dimen-
sionality of data, improve computational efficiency,
and reduce the risk of overfitting. However, dimen-
sionality reduction not only affects the computational
performance of the model but may also have a sig-
nificant impact on the final detection accuracy. These
experiments allow us to comprehensively evaluate the
effectiveness of dimensionality reduction methods in
malware detection tasks.

From the experimental results in table 9, the
F1-Score performance of using Truncated SVD, t-
SNE, and PCA with dimensionality reduction and
without dimensionality reduction in the experiments
are 98.30%, 97.39%, 97.87%, and 97.04%, respectively.
Without dimensionality reduction, the model performs
mediocrely in all indicators, mainly due to the presence
of a large amount of redundant information and
noise in the high-dimensional data, which affects the
model’s learning of key features. After dimensionality
reduction, the model performance is significantly
improved. Truncated SVD shows the best overall
results in the malware detection task, which is able
to effectively retain the key features of the data while
reducing the computational complexity and training
time. t-SNE, despite its excellent performance in data
visualization, its nonlinear dimensionality reduction
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Table 8. Experiment Result in Ablation Study

Performance
Validation Results (%) Test Results (%)

Only-name Only-
semantic

Only-
sequence

Complete
model

Only-name Only-
semantic

Only-
sequence

Complete
model

F1-score 97.18 98.19 96.52 98.70 96.73 97.83 96.37 98.30

Precision 96.50 97.72 95.59 98.62 96.02 97.37 95.49 98.24

Recall 97.95 98.69 97.65 98.78 97.55 98.34 97.44 98.36

Accuracy 97.56 98.44 97.00 98.89 97.16 98.13 96.83 98.54

Table 9. Effect of Different Methods of Dimensionality Reduction

Method
Validation Results (%) Test Results (%)

F1-score Precision Recall Accuracy F1-score Precision Recall Accuracy

unprocessed 97.12 96.32 98.05 97.49 97.04 96.26 97.96 97.42

t-SNE 97.48 97.57 97.4 97.85 97.39 97.53 97.26 97.78

PCA 98.32 98.11 98.54 98.56 97.87 97.72 98.02 98.17

SVD 98.70 98.62 98.78 98.89 98.30 98.24 98.36 98.54

property makes it less effective than Truncated SVD
and PCA in traditional classification tasks. PCA is
not as effective in the traditional classification task in
the case of data with low dimensionality or strong
linear relationships between features, but PCA is not as
effective as Truncated SVD in complex feature spaces.

6. Conclusion
In the paper, a new malware detection method is
proposed for API intrinsic semantics. The method first
designs the API intrinsic semantic feature encoder,
which extracts intrinsic semantic features from API
names and Microsoft official API paraphrases based on
LLM’s cue word engineering and sentence embedding
techniques. Then the API co-occurrence feature encoder
is designed, which mines the contextual co-occurrence
features of API from API call sequences based on
the word2vec technique. The API intrinsic semantic
features and API co-occurrence features are combined
and the dependencies between API calls are captured
by the TCN-GRU to improve the malware detection
performance. The results on several publicly available
malware detection datasets show that our approach
achieves better performance than other state-of-the-
art methods, and in addition, the ablation experiment
results demonstrate the important role of semantics in
malware detection algorithms.
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