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Abstract 

The escalating discovery rate of Near-Earth Asteroids (NEAs) has intensified the need for advanced computational 
frameworks capable of evaluating their impact risks with high precision. Traditional machine learning models, while 
foundational for early NEA classification and trajectory prediction, increasingly falter when confronted with the intricate, 
high-dimensional dynamics of asteroid motion. This limitation underscores the necessity for sophisticated techniques that 
reconcile computational efficiency with predictive accuracy across large, multi-dimensional datasets. This review 
systematically evaluates state-of-the-art machine learning algorithms—including quantum-enhanced models, hybrid 
quantum-classical frameworks, and lightweight convolutional neural networks (CNNs)—for their efficacy in asteroid risk 
assessment. By analyzing outcomes from recent studies, we contrast performance metrics such as accuracy, computational 
cost, and scalability. For instance, Quantum K-Nearest Neighbors (QKNN) demonstrates a 15% accuracy improvement over 
classical counterparts in high-dimensional data classification, while XGBoost achieves 99.99% precision in asteroid 
diameter prediction. Lightweight CNNs, such as MobileNetV1, further enable real-time processing on resource-constrained 
platforms like CubeSats, reducing latency by 30%. 
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1. Introduction

Indeed, people have been in awe with the cosmos for a very 
long time, and over the years, it has led to several questions 
as well as developed theories regarding such a vast universe. 
Astronomers, or scientists of celestial bodies and events, have 
been pivotal in explaining how the cosmos came to exist. This 
field has significantly enhanced our understanding of solar 
system and galaxy formation as well as star evolution. On top 
of that, it has promoted scientific and technological 
innovations led by man's urge to find new unexplored areas 

and establish new worlds. Time to time, different space 
expeditions using probes and rovers have been sent for 
researching the planets and the moons in the space. It has 
provided the researchers with important information 
concerning the geological characteristics and atmospheric 
environments around these bodies and if they could 
potentially be inhabited. 

Asteroids and meteorites, particularly in the Inner Main 
and in the Kuiper, Belt are some of the closest celestial 
objects which hold info about the early history of solar 
systems. These pieces that are often considered the planets' 
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building blocks have important information about the early 
times of planetary formation.  

Space rocks and cosmic debris, while valuable for 
research, represent a considerable danger to our planet. Over 
recent years, the rate of detecting these objects has surged, 
with the Zwicky Transient Facility (ZTF) spotting nearly 100 
fast-moving objects annually. While concerns about 
catastrophic impacts may seem excessive, past incidents like 

the 1908 Tunguska event in Siberia illustrate their potential 
for destruction. That explosion, caused by a meteoroid, 
released energy comparable to 15 megatons of TNT and 
devastated a massive, forested area. To safeguard Earth from 
future impacts, it is vital to create accurate systems for 
tracking the paths of such objects and minimizing the threat 
they pose

Table 1. The total number of known NEOs as of particular dates. 

date nec atira aten apollo amor Pha-km pha Nea-km Nea-140m nea neo 

9/7/2024 122 32 2829 20157 12622 153 2429 864 10992 35640 35762 

9/1/2024 122 32 2819 20089 12566 153 2428 864 10978 35506 35628 

8/1/2024 122 32 2806 20012 12495 153 2427 864 10949 35345 35467 

7/1/2024 122 32 2796 19953 12439 153 2420 864 10927 35220 35342 

6/1/2024 121 32 2784 19880 12379 153 2416 864 10892 35075 35196 

5/1/2024 121 32 2763 19758 12311 153 2407 864 10858 34864 34985 

4/1/2024 121 32 2749 19640 12250 153 2403 864 10841 34671 34792 

3/1/2024 121 32 2723 19508 12187 153 2396 864 10813 34450 34571 

2/1/2024 121 32 2707 19384 12139 153 2394 864 10786 34262 34383 

1/1/2024 121 32 2686 19218 12090 153 2384 864 10745 34026 34147 

 
With advancements in both space-based telescopes and 

ground-based observation systems, the discovery of 
unidentified celestial bodies and Near-Earth Objects (NEOs) 
has surged. Currently, more than 1.8 million asteroids have 
been catalogued, including 25,000 classified as Near-Earth 
Asteroids (NEAs), and each year approximately 1,100 new 
NEAs are identified. This is a rapid growth in the detection 
of rogue space objects and fast-moving asteroids, pointing to 
the critical need for advanced techniques for tracking their 
paths and developing strategies for impact avoidance. 
Conventional methods of trajectory prediction rely on 
complex mathematical models accounting for an object's size, 
speed, and the gravitational influences of surrounding 
celestial bodies. While traditional machine learning models 
have been widely applied for tasks like NEA classification 
and preliminary trajectory prediction [5, 21, 22], they often 
struggle to fully capture the intricate, high-dimensional 
dynamics governing asteroid motion over long timescales. 
This limitation highlights the urgent need for more 
sophisticated computational techniques capable of handling 
large, multi-dimensional datasets with significantly higher 
accuracy and efficiency [17, 20].  

In 2024, Near-Earth Asteroids (NEAs) remain one of the 
most important targets in planetary defense and space 
exploration due to their proximity to Earth and the threat that 
they pose. NEAs are asteroids within 1.3 astronomical units 
of the Sun. By late 2023, improvements made in asteroid 
detection led to a catalog of over 30,000 NEAs. Their orbits 
categorize the different asteroids into groups. This includes 
the Amor group, the Apollo group, and the Aten group. Each 
group has different levels of interaction with Earth's orbit. 
The Apollo group is very interesting because of its ability to 
cross Earth's orbit. 

Although most NEAs pose no immediate threat, it is 
crucial to focus on Potentially Hazardous Asteroids are 
objects that are 0.05 AU away from Earth. The PDCO 
continues to collaborate with international partners to monitor 
these objects and develop effective mitigation strategies. New 
data from 2024 will likely enhance our understanding of 
NEAs and further improve predictions about future close 
approaches or impacts. Enhanced technologies and increased 
international cooperation will make 2024 an important year 
for monitoring and managing risks associated with near-Earth 
asteroids: planetary defense, as well as opportunities for 
scientific discovery about these bodies.  
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The paper focuses on performance comparison and 
potential application of advanced machine learning 
algorithms for evaluating the risks of asteroid impact.   

This section considers bypassing traditional model 
weaknesses by employing superior techniques of data 
processing and predicting. 

It describes the condition of the field's tools at the moment 
of NEA impact prediction with an overview of comparing 
those approaches, providing insightful guidance into how 
these techniques improve the precision of planetary defense 
systems and enhance the overall effort to mitigate hazardous 
impacts by asteroids. 

 
 

Figure 1. NEO & NEA Over Time in 2024 
 

There are some notable NEAs approaching Earth in 2024, 
including 2024 AT12, 1999 AN10, and 2024 FR19. Although 
these are not considered high-risk impacts, they offer good 
science observation and orbital refinement opportunities. 
Detection and tracking efforts toward NEAs are also 
improving, with missions such as Our mitigation capabilities 
to prevent impacts will be advanced by the NASA and which 
will be prepared to follow up on DART. The Vera Rubin 
Observatory is also poised to become fully operational by 
2024, boosting the number of NEAs detected through routine 
sky scanning. 
 

 

Figure 2: The total number of known NEOs as of 
particular dates 

2. Literature Review 

This review study discusses the growing demand for 
advanced techniques to assess the threat dangers posed by 
Near-Earth Asteroids (NEAs), driven by the rising discovery 
rates of these objects. Traditional machine learning models, 
although widely applied for NEA classification and trajectory 
prediction, often fail to capture the complex, high-
dimensional dynamics involved in asteroid motion. 
Therefore, there is a need for more sophisticated techniques 
capable of handling large, multi-dimensional datasets with 
higher accuracy and computational efficiency. 
 

 

Figure 3: Key Research and Detection Milestones of 
Asteroids 

Such developments and discoveries have fueled an 
advancement in research regarding the understanding of 
Near-Earth Objects (NEOs) [12]. The interest on the 
dynamics of the discovered 433 Eros in 1898, the first near-
earth asteroid, started an attention focus into studying the 
orbit of such celestial bodies. During the 1970s, research 
within celestial mechanics allowed more refined and accurate 
models for computing and predicting asteroid and comet 
orbits, based on how planetary gravitational forces affect the 
latter's path. This phase provided a crucial foundation for 
theoretical strategies that would be able to provide 
predictions for close approaches and impacts with Earth. 
From 1980, the University of Arizona's Spacewatch program 
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began systematically surveying NEOs, using these orbital 
models, to track and monitor near-Earth asteroids.  

By the 1990s, research went beyond the mere 
identification of potential hazards from NEOs and began to 
understand how the gravitational interactions of planets, solar 
radiation, and other forces could change the orbits of NEOs 
over time. In 1998, NASA initiated its Near-Earth Object 
Program, which sought to detect and track NEOs larger than 
1 kilometer, improve impact models, and estimate the 
possible consequences of impacts with Earth by combining 
observational techniques with theoretical research. With the 
launch of the Panoramic Survey Telescope and Rapid 
Response System, or Pan-STARRS, in 2010, NEO detection 
rates rose. Researching long-term NEO trajectories and 
creating early warning systems for planetary defense were 
made easier by theoretical models. 

2.1. QKNN Optimization Strategies 

Classification tasks hold great promise when machine 
learning is incorporated into quantum computing. Quantum 
algorithms, like Quantum K-Nearest Neighbours (QKNN), 
exploit quantum phenomena like entanglement and 
superposition to analyze data more efficiently than classical 
approaches [1]. 

QKNN was put into successful experiments recently; the 
distance metrics were optimised, and parameters would be 
fine-tuned accordingly to improve performance. Quantum 
feature maps are often applied just to transform input data that 
enhances the algorithm's differentiation between classes. 
Hybrid models combining quantum circuits with other 
classical optimization techniques have worked very well, 
especially to manage datasets of different sizes.  

Performance evaluation of QKNN is presented and shows 
how this approach greatly outperforms the traditional KNN 
on high-dimensional data space. The study has reflected the 
improvement by 5% to 15% with the characteristic of datasets 
by using the quantum-based approaches. Moreover, other 
studies have further highlighted strategies such as 
entanglement and circuit depth for efficient QKNN 
performance. 
 

 

Figure 4: |W1|W2| Wm using a quantum circuit. 

Three different kinds of quantum registers are used here 
from bottom to top. The initial quantum states for the first 
kind of quantum registers are represented by |0|Yb1|0|Yb2. 
and |0|Ybm. Then, the symbol |0⊗n0 represents the initial 
quantum states for the second kind of quantum registers. The 
symbol for the third kind of quantum registers is |0m. The 
three types of quantum registers have their quantum initial 
states entered, and then in order from left to right, the phases 
estimation, controlled rotation, inverse phase estimation, and 
measurement operations are performed. It is possible to 
obtain the quantum states |W1, |W2. |Wm when the auxiliary 
qubits in the third kind of quantum registers are measured as 
|1. Here, H represents the Hadamard gate. R1, R2 and Rm 
correspond to the computation rotation steps in the 
computational basis |W1, |W2.and |Wm, respectively. The FT 
is the quantum Fourier transform and its inverse is FT−1. The 
number of qubits that is used to represent the eigenvalues is 
n0.  

  
Recent innovations in classification algorithms, for 

instance, the Quantum K-Nearest Neighbours algorithm, 
have been possible as a result of combining machine learning 
with quantum computing. The paper Quantum Computing: 
Fundamentals, Implementations, and Applications outlines 
various implementations of quantum computing to recent 
discovery in the QKNN machine learning approach [2]. 
breakthroughs include the optimization of selecting the 
number of neighbours or K and efficiently determining which 
is the nearest. 

In particular, QKNN applies quantum phase estimation 
and controlled rotation techniques to dynamically determine 
the best K value for KNN classification, thus significantly 
enhancing the speed of neighbour searches over classical 
methods. 

In performance evaluation using the Banknote dataset and 
several simulated datasets, the QKNN algorithm achieved 
impressive accuracy of 87.50%. This result is a significant 
improvement over classical KNN models and earlier quantum 
implementations, such as those by Basheer et al., which 
reported an accuracy of 70.83%. All in all, this work 
showcases the strengths of quantum algorithms when dealing 
with high-dimensional data, particularly when more 
conventional distance metrics, like Euclidean or Hamming 
distances, do not hold. Taking all this into account, the work 
shown here is that quantum computing could potentially 
transform machine learning approaches and set the basis for 
further studies on quantum-classical hybrid systems that will 
ultimately improve the practical realization the quantum 
algorithms. 

2.2. Molecular Simulation Approach 

In order to enhance molecular simulations, the work 
"Tailored and Externally Corrected Coupled Cluster with 
Quantum Inputs" investigates the possibility of integrating 
quantum computing with traditional electronic structure 
techniques [3]. 
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The author, in particular, examines whether improvements 
to conventional split-amplitude coupled cluster techniques, 
such as the EC-CC method or TCC, could be obtained 
through quantum-generated wavefunction overlaps. These 
methods are targeted at capturing both static and dynamic 
electron correlation, which are integral to the accurate 
simulation of molecular systems. This study tries to merge 
quantum inputs with classical algorithms in an attempt to 
reduce the computational complexity usually present with 
traditional methods while giving precise results. The 
approach proposes using quantum computers to develop trial 
wavefunctions that could be used in classical coupled cluster 
calculations. 

Such a hybrid model would enable the computation-
intensive part, like overlap with a Slater determinant 
calculation, for a quantum system but allow broader 
calculations to be solved by a classical algorithm. Thus, this 
hybrid approach illustrates how chemically accurate results 
might be achieved even in systems where imperfect quantum 
inputs arise, hence opening the avenue of obtaining quantum 
advantages for such large classically intractable problems. In 

addition, the work assessed the strength of these quantum 
inputs and shed light on how preparation of a wave function 
can be optimized for practical quantum computer applications 
for molecular simulation. 
 

Figure 5: Coupled Cluster with Quantum Inputs 

2.3. Comparative Analysis of QML

Table 2. Characteristics comparison between different QKNN algorithms. 

Method Quantum 
Circuits 

Function of 
Classification 

Exponential 
Acceleration 

Square 
Acceleration 

Quantization 
of Neighbor 
Selection 

Quantization of K 
Value Selection 

Wiebe et al. [2] ✓ ✓ ✓ ✗ ✗ ✗ 
Ruan et al. [3] ✓ ✓ ✗ ✓ ✓ ✗ 
Dang et al. [6] ✓ ✓ ✓ ✓ ✗ ✗ 
Basheer et al. [5] ✓ ✓ ✗ ✓ ✗ ✓ 
Zhang et al. [7] ✓ ✓ ✗ ✓ ✓ ✓ 
Tian and Baskiyar [8] ✗ ✓ ✗ ✓ ✓ ✓ 
Gao et al. [9] ✓ ✓ ✓ ✗ ✓ ✗ 
Li et al. [36] ✓ ✓ ✓ ✗ ✓ ✗ 
Feng et al. [4] ✓ ✓ ✓ ✓ ✓ ✗ 
Proposed ✓ ✓ ✓ ✗ ✓ ✓ 

 
The paper "Experimental Evaluation of Quantum Machine 
Learning Algorithms" explores the growing potential of 
incorporating quantum computing into machine learning by 
providing a systematic comparison of quantum and classical 
machine learning approaches [4]. The focus is on quantum 
support vector machines and quantum neural networks. 

 
The paper targets evaluating their performance on small 

real-world datasets, a relatively understudied area from the 
practical perspective of quantum machine learning despite its 
theoretical promises. The methodology applied both the 
quantum and classical versions of SVM and NN to five 

different datasets: Iris, Rain, Vlds, Custom, and Ad hoc. 
Quantum models were tested by a variety of quantum feature 
maps including Pauli-feature maps, z-feature maps, and zz 
feature maps. 

More specifically, the experiments considered varied 
circuit depths and four approaches of entanglement: no 
entanglement, linear, circular, and full entanglement. The 
QNNs were represented as variational quantum circuits 
where classical algorithms managed their optimization 
process. 

Hybrid evaluations combining simulation and real NISQ 
hardware reveal practical QML insights. While QSVMs show 
modest average accuracy gains (~3-4%) over classical SVMs, 
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QNNs (often VQCs) demonstrate a more notable advantage 
(~7% average improvement). Critically, simple, non-
entangling feature maps (like Z-Pauli) consistently 
outperform complex, entanglement-based ones across tests. 
This strongly suggests that current hardware noise 
significantly degrades intricate entangled states, making 
simpler, more noise-resilient circuits practically superior 
despite lower theoretical complexity. Near-term QML 
success may depend more on robustness than exploiting 
entanglement. 

The paper employed a methodology of running both 
quantum and classical implementations of SVMs and NNs on 
five datasets: Iris, Rain, VLDS, Custom, and Ad hoc. Z-
feature maps, ZZ-feature maps, and Pauli-feature maps were 
used to convert the input data into a higher-dimensional space 
appropriate for quantum classification in order to evaluate the 
quantum models. In addition, the study uses different 
quantum circuit depths and four types of entanglement 
strategies: none, linear, circular, and full. In this paper, QNNs 
were designed as a variational quantum circuit while the 
optimization process was solved by classical algorithms. This 
resulted in a hybrid quantum-classical approach so that the 
performance and scalability of quantum circuits could be 
exhaustively evaluated from both quantum simulators and 
also real quantum hardware environments. 

Table 3. A real quantum computer and a quantum 
simulator are used to benchmark quantum and 
classical neural networks. For each of the three 

algorithms. 

dataset CNN qnn QNN 

iris 1 1 1 

rain 0.7 0.83 0.79 

vids 0.94 0.93 0.95 

custom 0.64 0.74 0.75 

adhoc 0.61 0.8 0.75 

average 0.78 0.86 0.85 
 

The experimental results were promising. QSVMs showed 
a 3-4% accuracy improvement over classical SVMs on 
average over the datasets. QNNs showed even more promise, 
as they outperformed classical neural networks by an average 
of 7%. One of the most interesting results was that of the Z-
feature map, which, although it did not use quantum 
entanglement, performed the best on all the datasets. This 
implies that possibly the existing limitations of the quantum 
hardware, such as qubit decoherence and noise, may prevent 
such more advanced feature maps involving quantum 
entanglement to be beneficially used. Hence, it is essential to 
push further in the optimization of quantum circuits and the 

relevance of entanglement in machine learning quantum 
algorithms, while the hardware is being enhanced. 

Although the performance improvement is modest, this 
work shows that quantum machine learning is feasible even 
on today's noisy quantum computers. 

It indicates that although the benefits of quantum 
algorithms are obvious, especially for small datasets, 
optimization of quantum circuits and scaling of quantum 
machine learning to larger datasets will require more 
advanced hardware and refined quantum algorithms. The 
authors also discussed several optimization methods for 
training QNNs, such as AMSGRAD, SPSA, BFGS, and 
COBYLA, with performance dependent on the dataset and 
the specific quantum hardware or simulator. For example, on 
the Iris dataset, most optimizers achieved near-perfect 
accuracy both on the quantum simulator and hardware. On 
the Rain dataset, AMSGRAD was the best optimizer on 
simulators, while SPSA was the best optimizer on real 
quantum hardware. Meanwhile, BFGS was the best optimizer 
for the VLDS dataset and COBYLA had the highest accuracy 
for the Custom and Ad hoc datasets. These variations in 
performance imply that the choice of optimizer becomes a 
crucial aspect of quantum machine learning, depending on the 
nature of the dataset and the constraints of the quantum 
hardware. 

The classical models were optimized using PyTorch-built 
fully connected neural networks with one to three hidden 
layers. Hyperparameter optimization was done using Ray 
Tune, and all the models were normalized in a manner 
consistent with the quantum models to ensure fair 
comparison. The average accuracy for the five datasets for the 
classical models was about 78%. However, QNNs scored 
significantly better than classical neural networks by 7%. 
They achieved a mean simulators accuracy of 85.8% and also 
84.7% on real quantum computers and used far fewer 
parameters for the same levels of accuracies. This outcome is 
really important because it indicates a potential efficiency 
benefit of using QNNs over classic neural networks, mainly 
in relation to the parameters needed at higher accuracy levels. 

Quantum machine learning (QML) offers potential 
advantages for complex, high-dimensional problems where 
classical algorithms struggle. Despite hardware limitations, 
results suggest QML may achieve solutions with fewer 
resources. The 5% average performance gain of Quantum 
Neural Networks (QNNs) over classical NNs and QSVMs 
highlights their task-specific potential. However, 
performance varied significantly, with no single quantum 
circuit or optimization strategy being universally best. This 
underscores the critical need for research focused on tailoring 
QML approaches to specific data and hardware 
characteristics. 

To sum up, the study "Experimental Evaluation of 
Quantum Machine Learning Algorithms" shows that 
quantum neural networks in particular can provide a number 
of benefits over traditional methods even with today's 
hardware constraints. A moderate performance gain was 
achieved in the QSVMs, and QNNs had greater gains mainly 
in efficiency and accuracy. Continuous quantum circuit 
design, research on entanglement, and designing optimization 
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techniques keeping an eye out for quantum hardware will 
demand this change. Machine learning workflows with the 
progressions made so far in quantum technology will open 
new avenues of possible possibilities to break complex 
problems within high-dimensional data in the two areas. 
 

 
 

Figure 6: Comparing quantum neural networks and 
classical neural networks on a genuine quantum 

computer and a quantum simulator. 

In addition, the experiments showed that quantum 
algorithms promise much, even with the noisy quantum 
computers of today. However, the study also mentions that 
although these quantum models have advantages for small 
datasets, further research is required to optimize quantum 
circuit designs and understand the role of entanglement in 
enhancing quantum machine learning algorithms for larger, 
more complex datasets. For the classical approach, PyTorch 
was used to build fully connected neural networks with 1 to 3 
hidden layers, and Ray Tune was used to optimize the 
hyperparameters of the networks. After running the models 
10 times, the best validation accuracy was chosen for 
evaluation. The classical models were normalized similarly 
to the quantum models to ensure that the comparison is fair; 
the average accuracy of all five datasets is 78%. In terms of 
optimizers for the QNNs, several were tested, including 
AMSGRAD, SPSA, BFGS, and COBYLA, with results 
varying across datasets. Most optimizers reached perfect 
accuracy on the Iris dataset on the quantum simulator and 
hardware. For the Rain dataset, AMSGRAD performed best 
on the simulator, and SPSA excelled on quantum hardware. 
BFGS was the only optimizer that stood out in the VLDS 
dataset. The best accuracy was achieved on the Custom and 
Ad hoc datasets by COBYLA. No optimizer or quantum 
circuit could be seen as better than others on all datasets. This 
is probably due to the variability of datasets and the small size 
of the data. QNNs showed better results with an average 
accuracy of 85.8% on simulators and 84.7% on real quantum 
computers. QNNs performed better than QSVMs by about 
5% and compared to classical neural networks, by 7%, using 
significantly fewer parameters. This shows that quantum 
neural networks can indeed provide significant advantages 
over classical methods, especially in terms of efficiency, even 
with current hardware limitations. 

2.4. Predictive Modelling for Asteroids 

The paper "Machine Learning Approaches for Classification 
and Diameter Prediction of Asteroids" reports on the 
application of techniques of machine learning to make the 
classification of asteroids more reliable and predict their 
diameters [5]. With the number of asteroids being discovered 
continuously increasing, traditional methods like the 
Hierarchical Clustering Method (HCM) have become 
computationally too time-consuming and inefficient. 
 

 
 

Figure 7: Macro Average ROC curve of XGBoost 
Model and Micro Average ROC Curve. 

 
In an effort to enhance asteroid classification and diameter 

estimation, the researchers applied algorithms like KNN, 
Logistic Regression, Random Forests, Neural Networks, and 
XGBoost [5]. 

For diameter prediction, the error metrics provided in 
Table 4 (MSE, MAE, RMSE) show that tree-based ensemble 
performed significantly better than linear models. XGBoost 
generated the lowest errors (RMSE=1.36), closely followed 
by Random Forest (RMSE=1.43), showing their 
appropriateness for this regression task compared to Linear 
Regression (RMSE=7.55) [5]. With respect to classification, 
the research claimed outstanding performance of XGBoost 
with 99.99% accuracy [5]. Figure 7 shows the corresponding 
Macro and Micro-average ROC curves. An ROC curve is a 
performance plot of classifiers such that a curve sloping to the 
top-left indicates skill better than random guessing (a 
diagonal line). Figure 7 shows perfect diagonal lines, 
corresponding to no better than random chance performance 
(AUC=0.5). This visual evidence categorically denies the 
reported high accuracy. This denial may be caused by a figure 
error, deceptive accuracy reporting (e.g., due to class 
imbalance), or other reasons. In spite of contradictory 
evidence in Figure 7 about classification, the authors in study 
[5] concluded, from their composite reported measures (e.g., 
high prediction accuracy of diameter in Table 4), that ML 
methods such as XGBoost are effective tools for asteroid 
analysis, which can provide faster and more accurate results 
than traditional methods [5]. 
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Table 4. MSE, MAE and RMSE for different Machine 
Learning models 

Model 
Name 

MS
E 

MA
E 

RMS
E 

Linear 
Regression 

58.
91 

2.76 7.55 

Decision 
Tree 

2.8
4 

0.55 1.68 

Random 
Forest 

2.0
5 

0.53 1.43 

Logistic 
Regression 

60.
69 

1.45 7.79 

XGBoost 1.8
4 

0.55 1.36 

KNN 2.2
1 

0.49 1.49 

Neural 
Network 

4.7
4 

0.49 2.18 

2.5. CubeSat Image Classification 

Of all recent attention around the integration of machine 
learning algorithms into the small satellite platforms, known 
as CubeSats, this study has focused more on what it can 
potentially do toward revolutionizing the autonomous nature 
of space operation and data processing [6]. Compact and cost-
effective and highly achievable development cycle, these are 
what CubeSat offers. These, however, come at considerable 
limitations in its computational power, together with highly 
susceptibility to failures in a space environment. With regard 
to these challenges, this paper "Machine Learning Space 
Applications on SmallSat Platforms with TensorFlow" 
explores TensorFlow and TensorFlow Lite implementation 
aiming to deploy robust ML models for real-time onboard 
data analysis that enhances satellite autonomy, operational 
efficiency, and communication capabilities. 

This paper used a large and varied dataset of images which 
had been taken from the mission on STP-H5/CSP aboard the 
International Space Station (ISS), close to 8,000 in number. 
These have acted as training data for using convolutional 
neural networks specific for image classification. Use of 
transfer learning techniques along with four pre-trained 
CNNs- MobileNetV1, MobileNetV2, Inception-ResNetV2, 
NASNet Mobile-for high accuracy in recognizing scenes on 
earth. In recent years, attention has been drawn to integrating 
machine learning (ML) into small satellite platforms, such as 
CubeSats, to enhance autonomous space operations. The 
attractiveness of CubeSats, in terms of cost and fast 
development, poses problems like limited computational 
power and vulnerability in space environments. The paper 
"Machine Learning Space Applications on SmallSat 

Platforms with TensorFlow" addresses those issues by using 
TensorFlow and TensorFlow Lite to explore the possible 
deployment of ML models on board for real-time data 
processing. Based on a dataset of 8,000 images from the STP-
H5/CSP mission onboard the ISS, it makes use of CNNs for 
classification tasks and used transfer learning in pre-trained 
models such as MobileNet and Inception-ResNetV2 to 
enhance accuracy in satellite classification and augment 
satellite autonomy. 
 

 
 

Figure 8:  MSE, MAE, and RMSE for various models 
of machine learning Bar Chart 

The CNN architectures were thoroughly trained and 
benchmarked on various metrics, such as accuracy, execution 
time, and memory usage. In addition, the performance of 
these models was tested on a low-power, space-grade 
processor, the Xilinx Zynq-7020, which is specifically 
designed for CubeSat applications. The results indicated that 
CNNs, using transfer learning, not only improved the 
classification accuracy but also proved to be efficient enough 
for the resources available in CubeSats. This research opens 
a very significant pathway for advanced ML techniques to be 
applied in space missions, opening doors for further 
innovations in satellite technology and autonomous 
operations. 

Results from the experiment revealed that among the 
models tested, the most effective CNN for resource-
constrained CubeSat platform was MobileNetV1. The 
accuracy of and efficiency on the given CubeSat resource-
constrained platform were also high, in fact all the evaluated 
CNN models achieved over 90% in top-1 accuracy. This 
model did usage of memory and also in terms of execution 
time, which makes it quite a prime contender for carrying out 
real-time onboard classification tasks. 

3. Discussion 

In domains such as asteroid classification and space, the 
integration of QML and traditional machine learning holds 
great promise for enhancing data analysis and pattern 
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recognition. Research comparing quantum neural networks 
(QNNs) and quantum support vector machines (QSVMs) has 
shown that even when hardware is limited, QML can 
outperform classical approaches by a margin of accuracy. 

Success found so far in smaller sizes suggests more general 
questions about the scalability of these quantum algorithms. 
As the technological machinery of quantum computing 
unfolds further ahead, it will also include in-depth analysis of 
bigger complex datasets and error-rate challenges or 
optimization of quantum circuits themselves. 

Future research should primarily strive on the 
improvement of quality along with functionality of the 
circuits involving quantum, especially choosing correct 
feature maps and betterment or selection of entanglement 
techniques. Recent studies show  results  that  indicate  that  
in  the existing quantum environments, the simplest feature 
maps, such as the Z-feature map, may be better. This gives a 
reason for future mission to space. investigation in how the 
quantum features interact with the characteristics of different 
datasets. In addition, collaboration between researchers in 
quantum computing and others in fields like astronomy or 
space technology can result in innovative solutions to real-
world challenges, such as predicting asteroid impacts and 
enhancing the autonomous operation of satellites. Such 
collaboration would lead to more intelligent systems 
harnessing the strengths of both quantum and classical 
machine learning methodologies. 

Table 5. Accuracy of Imagenet Classifications 

Network Top-1 
Accuracy 

Top-5 
Accuracy 

MobileNetV1 70.6% 89.5% 
MobileNetV2 74.7% 92.5% 
GoogLeNet 75.0% 93.3% 
ResNet 80.6% 96.4% 
Inception 
ResNetV2 

80.1% 95.1% 

NASNet 82.7% 96.2% 
NasNet 
Mobile 

74.0% 91.6% 

 

 
 

Figure 9: Comparison of Classical and Quantum 
Model Bar Graph 

 
ImageNet performance of CNNs (Table 5) highlights 

efficiency versus accuracy trade-offs for asteroid analysis. 
MobileNetV1 (70.6% Top-1) balances performance for 
constrained platforms like CubeSats [6]. NASNet achieves 
top accuracy (82.7%) but is too complex for space 
deployment, while robust ResNet (80.6%) and Inception 
ResNetV2 (80.1%) require compression for onboard use due 
to memory demands [6, 17]. Moderate gains from 
GoogLeNet (75.0%) or MobileNetV2 (74.7%) over 
MobileNetV1 may not justify their cost for real-time tasks. 
Thus, model selection must fit mission needs: efficient 
models (MobileNetV1) for onboard processing, high-
accuracy ones (NASNet/ResNet) for ground analysis. 

4. Conclusion 

In short, this review illuminates the revolutionary potential of 
modern machine learning in Near‑Earth Asteroid impact risk 
assessment. Ensemble approaches such as XGBoost have 
achieved benchmark classification accuracy and reliable 
diameter estimation on large NASA JPL datasets, and deep 
learning models—RNNs and more recent Transformer 
models—capture the sequential dynamics required for 
serious long‑term trajectory prediction. Physics‑informed 
neural networks also combine data‑driven insight with basic 
gravitational laws, enhancing robustness as well as scientific 
precision. 

Another deployment that was studied involved the 
utilization of light neural network models on miniaturized 
satellite platforms, i.e., CubeSats, using TensorFlow and 
TensorFlow Lite for onboard processing of data. The 
application effectively overcomes the inherent limitations 
presented by the low computational capability of space 
environments while, at the same time, enabling real-time data 
processing and the autonomous operation of space missions 
in the near future. The study established that network pruning, 
light structure design, and quantization were the major 
approaches employed for model compression. The 
approaches effectively enhanced the efficiency of machine 
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learning-based applications in low-power, resource-limited 
environments. 

Equally significant is the migration of intelligence from 
terrestrial systems to extraterrestrial environments: by means 
such as neural network pruning, quantization, and natively 
lightweight architectures, scientists have shown real-time 
asteroid analysis on CubeSats using low-power processors. 
Such autonomy not only relieves bandwidth limitations but 
also lays the groundwork for self-guided exploration. 

Despite this, there are still major challenges to be 
overcome—rigorous quantification of uncertainty, 
transparent model interpretability, accurate integration of 
weak non-gravitational forces, and development of 
standardized benchmarks to address data imbalance. These 
will be addressed through open data initiatives and continued 
cross-disciplinary exchange. As astrophysics and artificial 
intelligence merge, we can look to greatly improve planetary 
defense and bring about an age of autonomous, ambitious 
space exploration. 
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