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Abstract

A recent significant progress has been made in development of intelligent mobile robots that is capable of
autonomous navigation using an edge-computing system. This could sense changes in its environment to
control its mechanical behavior towards accomplishing preprogrammed motions. Several algorithms were
used in developing the robot’s control software. These include the moving average filter, the extended Kalman
filter, and the covariance algorithm. Using these algorithms, the robot could learn from its sensors to estimate
and control its position, velocity, and the proximity of obstacles along its path, while autonomously navigating
to a predetermined location on the earth’s surface. Results show that our algorithmic approach to developing
software systems for autonomous robots using edge-computing devices is viable, cost-efficient, and robust.
Hence, our work is a proof of concept for the further development of edge-based intelligence and autonomous
robots.
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Nomenclature
δφ Error tolerance in longitude measurement

δθ Error tolerance in latitude measurement

` Displacement of point P2 from point P1

γ Halve the distance between the wheels on either
sides

H(Θ) Haversine function

x[k] State vector

z[k] GPS sensor’s model

ω Yaw-rate of the robot

∗Corresponding author. Email: samrexbenzil@gmail.com

φ1, φ2 Longitude of points P1 and P2 respectively

Bearing of P2 from P1 with reference to the
magnetic north pole

τL Torque generated by wheels on the left

τR Torque generated by wheels on the right

Θ Central angle between P2 and P1 on earth
surface

θ1, θ2 Latitude of points P1 and P2 respectively

ε Course angle with reference to the desired path

ϕ Bearing of robot at P1 with reference to the
magnetic north pole

ϑ Steering angle with reference to the desired path

distF Estimated proximity of an obstacle from the
robot
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IT Total inertial moment of the robot

Iw Inertial moment of a particular robot wheel

JF Jacobian state transition matrix

JH Jacobian observation transition matrix

K[k] Kalman gain

mT Total mass of the robot

P [k] Covariance matrix of the state

Q Covariance matrix of the noise

R Covariance matrix of the observation noise

r, β Radius of the of the earth and wheels respec-
tively

V Resultant linear velocity of the robot

1. Introduction
A popular approach to developing an autonomous
robot is to adopt Central Processing Unit (CPU) based
computers for running the robot’s control software
[1]. The NVidia hybrid GPU-CPU computer is a
popular platform for developing such autonomous
systems, which comes with great development cost [2].
Evidently, the size of computing power that is required
to make a robot become intelligent depends on the type
and complexity of the intelligent algorithm that needs
to be computed [3]. Considering the recent advances
in microprocessor technology, today’s roboticists now
have more robust and versatile system-on-chip (SoC)
computers and microcontroller platforms at their
disposal. Unlike the types of microcontrollers that were
available few decades ago, today’s microcontrollers
and single-board computers now compete with
the orthodox central processing unit (CPU) based
platforms in terms of speed, processing power, memory
size, input/output interfaces, and programmability for
computing simple artificial intelligence (AI) algorithms
and autonomous functions. These have made it possible
to develop various AI-based embedded software that
run on SoC-computers and microcontrollers, by an
approach that is popularly and more recently dubbed
"edge-computing".

In this paper, we propose an algorithmic approach
to implementing edge-based intelligent motion control
scheme for our quadrupedal-wheeled robot in [4].
The hardware components of the robot’s control
system include a system-on-chip computer and a
microcontroller. The robot’s control software comprises
both parallel and object-oriented algorithms, which
constitute its intelligence schema. We also introduced
a method for creating robotic systems that are

intelligent and capable of autonomous behaviors using
edge-computing devices. This enabled us to explore
the possibilities in achieving microprocessor-grade
computations with edge-based devices. Our aim is to
show how effectively an edge-computing device could
be adapted for point-to-point autonomous navigation of
a mobile robot. This involves physical improvements on
the robotic system developed by us in [4], development
of the controller, and formulation of relevant parallel
computation and control algorithms using object-
oriented (OOP) programming techniques.

We would start with a review of relevant literature in
Section 2. Our experimental platform would be detailed
in Section 3 with the explanation of the newly proposed
intelligent schema in Section 4. We would discuss the
states estimation and motion control of the robot in
Section 5. We conclude with the summary of the result
of our field experiments in Section 6 while discussing
its possible applications.

2. Literature Review
The microcontroller is a complete single-chip computer
system that is optimized for the primary function
of control. Basically, the microcontroller comprises
a microprocessor, a Read-Only Memory (ROM), a
Random-Access Memory (RAM), several Input/output
(I/O) interfaces, and one or more serial ports.
Modern microcontrollers are enhanced with higher
processor’s speed, Radio/Wi-Fi capability, sufficient
memory, integrated Analog-Digital Converter (ADC),
and a boot-loader (i.e., an embedded operating system)
to facilitate OOP. These novel features have opened the
possibility of implementing AI and Internet of Things
(IoT) functions with the microcontroller [5].

Besides high development cost, the adoption of
CPU-based computers for autonomous robot could
lead to over computerization, which in turn could
result to a huge and clumsy robot that takes so
much time and energy to perform simple intelligent
tasks. This is evident in a study by Stewart et al.,
which discusses the need to implement AI right
inside the microchip [6]. According to them, “it
makes no sense to use the CPU to put just a bit of
intelligence into a thermostat”. Thus, the future of AI
will see a major paradigm shift, from the traditional
method of cloud- and CPU-based AI computation to
localized computations in the microcontroller, which
is referred to as edge intelligence or edge-computing
[6]. To avoid the computational redundancy and the
economic constraints associated with CPU-based AI-
computation, some roboticists now adopt the concept
of edge-computing. For instance, Mamdoohi et al.
adopted the PIC32MX Microcontroller to demonstrate
how a microcontroller could be used to implement
a genetic algorithm for polarization control [7].
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Their experiment showed real time computation
of the complex algorithm with an average latency
of 17 microseconds, which according to them, is
low enough for their application. Also, Hussain et
al. developed autonomous robot using the ATMEL
AT89C52 Microcontroller for logistical navigation,
based on their hypothesis that high-level algorithms
can be encoded into microcontroller for simple AI-
based tasks [8].

The concept of edge-computing is also applicable to
domestic service robotics as a home automation system.
This has inspired the development of microcontroller
based robots with sufficient intelligence to perform
simple household chores. For example, Mir-Nasiri et
al. developed a pneumatically actuated wall-climbing
robot using the PIC16F877A Microcontroller [9].
This could perform glass cleaning tasks, while it is
navigating autonomously along the exterior walls
of high-rise buildings, under the guidance of four
proximity sensors and an optical odometer. Similarly,
Apoorva et al. used an Atmega328 Microcontroller
board to develop an autonomous robot with a low-
level intelligence for tracking, picking, and disposing
garbage. Thus, citing how this simple AI could relieve
humans from the monotonous and hazardous job of
waste collection [10].

For autonomous navigation, the SoC-computer and
the microcontroller have proven to be effective edge
computing devices. An exciting demonstration of this,
is the work of Efaz, which involves the design of
a speed-controlled path-finding obstacle avoidance
robot, using OOP techniques [11]. This shows the
practicality of edge-based physical computing using
object-oriented algorithms. The Kalman filter is a
simple AI algorithm that takes input data from
multiple sensors and estimates unknown variables,
amidst potentially high level of signal noise; making
it a very significant tool for autonomous navigation.
Because of its simplicity, many engineers use it to
develop edge-based guidance systems for autonomous
robots. For example, Vukelic et al. implemented the
Extended Kalman Filter (EKF) algorithm for fusing data
from an inertial sensor and a Global Positioning System
(GPS) Sensor using the mbed-LPC1768 Microcontroller,
for the autonomous robot navigation [12]. Their
results showed no difference between the practical
implementation of the EKF on the microcontroller and
that of the system simulation.

The second class of edge-computing devices that
competes well with many desktop machines in
terms of computing power, graphics processing and
versatility are the aforementioned SoC-computers. This
is attributed to the continual shift from single-core to
multi-core processors in embedded systems and edge

computing, coupled with the availability of efficient
parallel programming technologies [13]. A typical
example is the Linux-based Raspberry Pi-2, which
becomes very crucial when two or more algorithms
are to be executed in parallel. With SoC platforms,
robot software developer can now create complex
edge intelligent systems that were only possible with
conventional desktop computers [14].

3. Experimental Platform
To test our computational hypothesis, we adopted
the robotic system that we developed in [4], as our
experimental platform. The Fig. 1 shows that the
robotic system features an active suspension system,
skid steering mechanism, several sensors, and an
edge-based control system.

The 3D model of our robot’s mechanical system is
shown Fig. 2. The details of the underlying mechanics
are given in [4]. Hence, the rest of this paper will
focus on the formulation of parallel/objected-oriented
mathematical algorithms that can be executed by
mean of edge-computing to estimate and control the
navigational status of our robot as an intelligent system.

Figure 1. Experimental platform

Figure 2. 3D model of robot mechanical system

3.1. Edge-computing architecture and hardware
The computing and control architecture of our robotic
system incorporates the Raspberry PI-2 SoC-computer
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and an Atmega2560 Microcontroller (MCU) board as
shown in Fig. 3. The Raspberry PI-2 SoC-computer
serves as the "companion computer" that executes
complex calculations in parallel to support the control
functions of the MCU board (i.e., the main controller),
which performs all the low-level computing and control
functions. The algorithms that are implemented on the
companion computer include the proximity data fusion
algorithm (i.e., Algorithm 2), covariance algorithm
(i.e., Algorithm 3), and the localization algorithm (i.e.,
Algorithm 5). A companion computer is necessary
because these algorithms require high computing
power and also the scheduling function of an operating
system to run in parallel. For this purpose, the
open message passing (Open-MP) application program
interface (API) is used based on the concepts in [13];
and takes advantage of the multi-core ARM processor
in the Raspberry Pi-2 (i.e., the companion computer of
our robot). This performs the functions of

• collecting measurement data from the naviga-
tional sensors on-board the robot

• estimating the states of the robot

• transmitting the resulting information to the main
controller.

The types and functions of these sensors are cataloged
in Table 1. Among these sensors are the proximity
sensors of our robotic system, which comprises an
ultrasonic sensor and an Infrared (IR) distance sensor
that are mounted on the frontal projection of the
robot’s chassis through a servo-controlled revolver
(with a yaw rotation span of 0◦ to 180◦). At the
lower-level, the algorithm that are implemented on
the main controller include the intelligence scheming
algorithm (i.e., Algorithm 1), obstacle avoidance
algorithm (i.e., Algorithm 4), path-tracking algorithm
(i.e., Algorithm 6), and the maneuvering algorithm (as
described in Subsubsection 5.2). The main controller is
enhanced with an L293D-IC based motor driver, which
enables it to regulate the flow of electrical power to the
driving motors, during motion control.

Again, using the Universal Asynchronous Reception
and Transmission (UART) protocol, two serial com-
munication channels are established between the com-
panion computer and the main controller, to enable
real-time transfer of information, control signal, and
computational request between the two devices. Both
the companion computer and the main controller fea-
tures additional I/O ports for the integration of more
sensors and actuators as external peripherals, when
necessary or during field tests. The entire hardware
system is powered through a DC-DC bulk converter,
which is used to convert the 12 volts DC supply from
the robot’s battery to the current/voltage requirement

of the companion computer, main controller, and their
peripherals.

Figure 3. Edge-computing architecture, hardware, and algorith-
mic structure

4. Intelligence Schema
The intelligence schema (i.e., Intel_schema function
in Algorithm 1) of our robot’s control flow involves
three basic functions for the direct control of the robot’s
perceptual responses and motion. These objective
functions are enumerated as follows:

1. Change_path (in Algorithm 4).

2. Auto_navigate (in Algorithm 6).

3. Move_fwd (in Listing 2).

These above listed functions call upon one another
and other subordinating functions (that are discussed in
Section 5) to make the robot act as an intelligent agent.
Algorithm 1 starts up the robotic system once its power
switch is turned on. It coordinates Algorithm 4 and 6,
which are the actual autonomous control functions of
the robot, of which precision dependent on the accuracy
of two other subordinate functions, which are

1. Prox_estimate (in Algorithm 2), and

2. Position_estimate (in Algorithm 5).

The Algorithm 2 is a data fusion algorithm. The input
to this algorithm are proximity measurements from
the ultrasonic sensor and IR distance sensor that are
embedded on the robot. This algorithm fuses the duo
proximity data into a single distance estimate, distF , to
minimize measurement error and noise. The estimated
value of distF is used in Algorithm 1 to decide what
action the robot should take (i.e., obstacle avoidance
or auto-navigation), while it is moving to the target
location. The value of distF is also used to regulate
the driving speed (V ) of the robot. Here, V is a scalar

4 EAI Endorsed Transactions on 
Context-aware Systems and Applications 

Vol. 8 (2022)



An Algorithmic Approach to Adapting Edge-based Devices for Autonomous Robotic Navigation

Table 1. List of navigational sensors on-board the robot and their functions (Note: ’wrt’ is short for "with respect to")

S/N Sensor type Function

1 Ultrasonic sensor Obstacle proximity measurement
2 Infrared sensor Obstacle proximity measurement
3 GPS sensor Geo-spatial position measurement
4 Compass sensor Measures bearing wrt magnetic North
5 Inertial sensor Measures roll/pitch and acceleration

function of distF . This enables the robotic system to
adapt to the variation in the proximity of obstacles
along its path, while it is maneuvering to the target
location. In essence, Algorithm 1 acts as a central caller
based on the value of distF as computed by Algorithm 2.
The complete description of how Algorithm 1 functions
in coordination with the other subordinate Algorithms
is discussed in the remaining part of this paper.

Algorithm 1 Intelligence schema (Note: P1 and P2 are
the location of the robot and the target respectively)

Require: distF . proximity estimate
1: function Intel_schema

2: repeat
3: distF ← Prox_estimate . in Algorithm 2
4: . ———-Proximity controlled motion———–
5: set Lef t_motor_speed as (distF cm/s)
6: set Right_motor_speed as (distF cm/s)
7: continue . To keep moving
8: . ———————-Decision———————-
9: if d ≤ 40cm then

10: call Change_path . Avoid obstacles
11: else if 40cm < d ≤ 120cm then
12: call Move_fwd . Move forward
13: else if d ≥ 120cm then
14: call Auto_navigate . Move to target
15: end if
16: until (P1[θ1, φ1] ≈ P2[θ2 ± δθ, φ2 ± δφ])
17: end function

5. States Estimation and Motion Control
Autonomous navigation involves the solution to the
problem of finding a collision-free motion between an
initial and a target location in space and time [15].
Therefore, mathematical algorithms are formulated in
this section for accurate estimation of an obstacle’s
proximity from the robot and the position of the
robot in the geographical coordinate system. These are
used to perform obstacle avoidance and path tracking
motion-control functions respectively. The former is
discussed in Subsection 5.1 while the latter is discussed
in Subsection 5.2. We ensured that the adopted
mathematics and models are as simple as possible so

that the resulting algorithms can be implemented using
the companion computer and the main controller. In
this regard, only a non-holonomically constrained 2-D
model of our robot is used.

5.1. Proximity sensing and obstacle avoidance
To enhance the control of our robot’s motion during
obstacle avoidance, a technique was developed for
detecting the proximity of an obstacle from it as
shown in Fig. 4. This technique involves the use of
the ultrasonic sensor and the infrared distance (IR)
sensor to simultaneously measure how distant the
obstacle is from the robot. This is to minimize the error
associated with each of these two sensors, while also
harnessing their peculiar advantages. For instance,
unlike the infrared sensor, the ultrasonic sensor can
scan a wider volume of space and detect transparent
barrier, but has some limitation when it comes to
detecting hot materials. In contrast, the infrared sensor
is more accurate since its beam is less conical than the
ultrasound wave. To economize computing resources,
we formulated a data fusion algorithm that combines
the Moving Average Filter (MAF) and the covariance
formula to fuse the incoming data from the two sensors
and to also filter-off the noise in the signals, thereby
minimizing error in proximity measurement. Based on
[16], the mathematical derivation of the MAF is shown
as follows,

d̄k =
dk−n+1 + dk−n+2 + dk

n
, (1)

where d̄k in Eq. (1) is the average from (k − n + 1)th

to kth measurement values, while n is the total number
of values. Hence, the moving average of the previous
measurement is given in Eq. (2) as,

d̄k−1 =
dk−n + dk−n+1 + dk−1

n
, (2)

∴ d̄k = d̄k−1 +
dk − dk−n

n
. (3)

Eq. (3) is the MAF formula in the form of a recursive
function. The application of Eq. (3) is described in
Algorithm 2, which contains the Move_ave (dist)
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function, where ’dist’ is the parameter for fetching raw
proximity input-data from either sensors. This function
could be called upon at real-time to consecutively
calculate the moving averages of the streams of
measurement data from each of these sensors. Hence,
two moving average proximity values are computed
at every instant – one for the ultrasonic sensor’s
measurements and the other for that of the infrared
sensor. Prior to fusing these two moving averages, we
derive a covariance (Cov) formula which is applied
to ensure that the raw measurements from the two
sensors are consistent with each other – both sensors
are ranging the same obstacle. The Cov is given by

Cov =
n∑

index=1

(L1[index] − Ave1) · (L2[index] − Ave2)
n − 1

,

(4)
where L1 ⇐ dist1 denote proximity measurements
from the ultrasonic sensor, and L2 ⇐ dist2 denote
proximity measurements from the infrared sensor. The
index is the sampling integer (where index = 1, 2, ..., n),
and n is the total number of measurement samples.

At any instant, if the value of Cov in Eq. (4) is
positive, the mean value of the two moving averages
is calculated as distF and returned as the measurement
estimate of an object’s proximity from the robot. But if
the value of Cov is negative, Algorithm 2 is recalled,
to repeat the data fusion process.The algorithm for
the application of Eq. (4) is given in Algorithm 3.
With this scheme, we significantly reduced error in
measurements by the robot’s proximity sensors to a
level that is acceptable and applicable for the obstacle
avoidance motion control of our robot. The Algorithm
for obstacle avoidance is given in Algorithm 4. This
involves several calls to various maneuvering functions
(as described in Subsubsection 5.2), in an effort to
find the most obstacle-free direction, before returning
control to the Intel_schema in Algorithm 1. Therefore,
our robot could reliably and intelligently avoid both
static and moving obstacles along its navigational
pathway to a given target location.

5.2. Mechanics, Localization and Path-tracking
Here, a model is developed to describe how the robot
would navigate, from an initial point, P1(θ1, φ1), to the
target point, P2(θ2, φ2), via the shortest path possible
between the points as shown in Fig. 5. This involves the
knowledge of the the robots dynamics, position, and
the application of control. Fig. 5 describes our robot
as a skid-steering robot where ϕ is the instantaneous
bearing of the robot at position, P1(θ1, φ1), and ψ is
its bearing from the targeted location, P2(θ2, φ2), with
respect to the magnetic North. The angle ϕ is the

Figure 4. Depiction of obstacle’s proximity measurement using
both the ultrasonic and infrared sensor (Note: distF is the
proximity of obstacle from the robot)

variable to be controlled, while ψ is the reference angle.

Figure 5. Robot navigation control model (Note: θ1 and φ1 are
the latitude and longitude of P1, while θ2 and φ2 are those of
P2, respectively)

For unregulated mobility, the yaw rate (i.e., sideways
angular velocity) of the robot, ω, and linear velocity, V
are calculated by the difference between the torques of
the left and right wheels (i.e., τL and τR), which directly
influence the speeds (VL and VR) of the wheels. The
term 2γ is the kinematic width of the robot, while β
is the radius of each of the wheels. Based on rotational
mechanics, V and ω are expressed in Eqs. (5) and (6) as,

V = (ωL +ωR)
β

2
(5)

ω = (VR − VL)
β

2γ
(6)

Following [17], the dynamics of motion of the robot
is expressed in Eq. (7) as,
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Algorithm 2 Proximity-data fusion algorithm (Note:
dist1 and dist2 are incoming data from the ultrasonic
and infrared sensors respectively)

Require: dist1 and dist2 . Sensors’ data
Require: distF . Fused sensors’ data

1: n← 10 . Number of samples
2: . ——————–Main_Function————————–
3: function Prox_estimate

4: Ave1 ←Mov_ave(dist1)
5: Ave2 ←Mov_ave(dist2)
6: CovVALUE ← COvariance(dist1, dist2) . In

Algorithm 3
7: if CovVALUE > 0 then
8: distF ← (Ave1 + Ave2) ÷ 2
9: else

10: call Prox_estimate . Repeat process
11: end if
12: return distF
13: end function
14: . ——————Mov_Average_Filter——————–
15: function Mov_ave(dist)
16: index← 0
17: sum← 0
18: average← 0
19: repeat
20: k ← 0
21: d[k]← 0 . Initialize array cells
22: k ← k + 1
23: until k ≥ n
24: while loop < 0 do
25: loop← 0 . Start loop
26: sum← sum − d[index]
27: d[index]← dist
28: sum← sum + d[index]
29: index← index + 1
30: if index ≥ n then
31: index← 0
32: end if
33: loop← loop + 1 . Loop forever
34: end while
35: average← sum ÷ n
36: return average
37: end function

(mT γ + 2
Iw
β

)V̇ = (IT + 2
γ2

β2 Iw)ω̇ = τR − τL. (7)

where ω̇ is the angular acceleration in rad.s−2 and Iw
is the moment of inertial in Kg.m2

For regulated navigation, u =
[
τR τL

]T
is the

input vector to the robot drive system, whose function
is to implement motion control, by differentially

Algorithm 3 Covariance algorithm

Require: Ave1, Ave2, dist1 and dist2
Ensure: cov

1: n← 10 . Number of samples
2: . ————–Covariance_computation——————-
3: function Covariance(l1, l2)
4: index← 0
5: sum← 0
6: repeat
7: k ← 0
8: L1[k]← 0
9: L2[k]← 0

10: k ← k + 1
11: until k ≥ n
12: while index < n do
13: L1[index]← l1
14: L2[index]← l2
15: sum← sum + (L1[index] − Ave1) ∗

(L2[index] − Ave2)
16: index← index + 1
17: cov ← sum ÷ (n − 1)
18: end while
19: if index = n then
20: return cov
21: end if
22: end function

driving either pair of the robot’s wheels according to
Eq. 7. This input vector is electronically generated
by the main controller, during which instantaneous
value of τR and τL are determined, based on the robot’s
states and perception of its environment. Therefore,
the value of τR and τL influence the mobility and
direction of motion of the robot. This is measured by

the embedded inertial sensor as u∗ =
[
V ω

]T
. The

application and direct control of these τR and τL, at the
electromechanical level, are extensively discussed in
Subsubsection 5.2.

According to the work of [18], the lateral, l, of the
robot with respect to the desired path is related to ω by
Eqs.(8) and (9), where ϑ and ε are the steering angle and
the course angle, with respect to the desired path.

l̇ = V sin (ε) (8)

and,

ε̇ = ω + ϑ̇. (9)

Again, the time-discrete state space model of our
robot is given in

x[k + 1] = F · x[k] + B · u∗[k] (10)

and,
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Algorithm 4 Obstacle avoidance algorithm

Require: distF . from Algorithm 2
1: function Change_path

2: call Brake
3: call Reverse
4: continue for 1.5 s
5: call Brake
6: . —-Measure proximity of obstacle on the right—-
7: point proximity_sensor right
8: continue for 0.5 s
9: distRight ← Prox_estimate

10: continue for 0.5 s
11: . —-Measure proximity of obstacle on the left——
12: point proximity_sensor left
13: continue for 0.5 s
14: distLef t ← Prox_estimate

15: continue for 0.5 s
16:

17: point proximity_sensor forward . Default
18: continue for 0.5 s
19: . ———————-Decision—————————
20: if distRight > distLef t then
21: while ϕ , 90◦ do
22: call Rotate_cw
23: if ϕ ≈ 90◦ then
24: call Intel_schema
25: end if
26: end while
27: else if distLef t > distRight then
28: while ϕ , 270◦ do
29: call Rotate_ccw
30: if ϕ ≈ 270◦ then
31: call Intel_schema
32: end if
33: end while
34: else
35: call Intel_schema
36: end if
37: end function

l[k] = M · x[k] + 0, (11)

where;

F =


0 1 0
0 0 1

e−
Ts
τ −(1 + 2e−

Ts
τ ) (2 + e−

Ts
τ )

 , (12)

B =

 0
0
1

 , (13)

and

M =


(1 − e−

Ts
τ )V T

2
s

4γ

(1 − e−
Ts
τ )V T

2
s

4γ
0

 . (14)

While Eq. (12) is the state matrix, Eqs. (13) and Eq.
(14) are the input and output matrices respectively.
Also, the variables τ and Ts are the time delay and
sampling time respectively. Either l or ϕ can serve
as the controlled variable , with respect to ε and
ψ, respectively. Unlike, [18], we selected ϕ as the
controlled variable in order to minimize computational
load. The model in Eq. (10) only serve to provide
real-time estimates of the robot’s location on the earth
surface, which is a prerequisite for path tracking.
Thus, our robot could be controlled towards the target
location as a quasi-closed feedback system.

In order to ensure accurate positional mappings of
the robot at all instants, we derive a position vector (x)
equation given by

x =
[
x(k) y(k) ϑ

]T
⇒ map

[
θ1 φ1 ϕ

]T
. (15)

The position vector, x, is mapped to the instantaneous
location of the robot as expressed in Eq. (15).
By applying the methods in [19] and [20], we
performed the transformation between the Cartesian
and geographical coordinate system as this is crucial for
the real-time visualization of our robot’s navigational
routes.

Again, the input variable, V in vector u∗[k],
is approximately equal to the integration of the
instantaneous acceleration, ainst , of the robot in the
forward direction (i.e., v ≈

∫
(ainst)dt ), according to

the inertial sensor’s measurements. The computational
syntax for this is expressed in Listing 1. Alternatively,
we could directly measured the linear speed, V , of the
robot, by attaching an optical speed sensor to one of the
robot’s wheels.

Listing 1: Function for computing speed from accelera-
tion

/* d e l t a _ t = time between i n e r t i a l
sensor readings . */
f l o a t speed_est imator ( )
{

V_forward += accel_forward * d e l t a _ t ;
return V_forward ;

}

The instantaneous yaw-rate, ω, of the robot equals
the first derivative of the yaw angle, ϑ (i.e., ω = ϑ̇), as
measured by the inertial sensor and calculated by the
controller. Hence, the vectors x[k]⇒ x[k − 1] and u∗[k]
serve as the inputs for estimating the real-time position
of the robot.
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Using the GPS sensor, the robot could directly
measure its real-time position as z[k] = [x(k), y(k)].
Therefore, the GPS sensor’s model is expressed in Eq.
(16) as,

z[k] = Hx[k]. (16)

In the present paper, two algorithms are adopted for
the control of point-to-point navigation, based on the
work of [21]. These include the localization and the path
tracking algorithms in Subsubsections (5.2) and (5.2)
respectively.

Localization: position estimation function. For real time
estimation of the robots motion on the surface of the
earth, the EKF is applied. This is used to formulate
a localization algorithm that starts by predicting and
then, estimating (i.e., updating) the position of the
robot. This function is outlined in Algorithm 5.

Algorithm 5 Localization algorithm

Require: x[k − 1],P[k − 1],u∗[k], z[k]
Ensure: position[lat1, lon1, ϕ]

1: function Position_estimate

2: const j = 0
3: repeat . Start loop
4: . ——————–Predict—————————
5: x[k]← F ∗ x[k − 1] + B ∗ u∗[k]
6: P[K]← JF ∗ P[k − 1] ∗ JTF +Q
7: . ————-Compute Kalman gain————–
8: K[k]← P[k] ∗ JTH ∗ (JH ∗ P[k] ∗ JTH + R)

−1

9: . ————————Update———————–
10: x[k + 1]← x[k] + K[k] ∗ (z[k] −H ∗ x[k])
11: P[k + 1]← (1 − K[k] ∗ JH ) ∗ P[k]
12: float position[lat1, lon1, ϕ]← x[k + 1]
13: return position[lat1, lon1, ϕ]
14: until j > 0 . Loop forever
15: end function

Here, the state transition and observation matrices
are defined by the Jacobians in Eq. (17) and Eq. (18)
respectively as,

JF =
∂F
∂x

xt ,ut
, (17)

and

JH =
∂H
∂x

x∗t
. (18)

Algorithm 5 describes a recursive function that
would run forever to continuously update the informa-
tion about the position of the robot once its controller is
electrically powered.

Figure 6. Navigational geometry of the robot in the geographic
coordinate system

Path tracking: auto-navigation function. Having developed
a means (i.e., Algorithm 5) to reliably estimate the
position of the robot on the surface of the earth,
we can now formulate an algorithm that computes
the displacement of the target location, P2, from the
measured initial location, P1, of the robot in the
geographic coordinate system; and also, to maneuver
the robot to the target location, as shown in Fig. 6.
To do this, we implemented the "Haversine formula"
according to the review by [22], for computing the
great-circle distance (i.e., the shortest path), `, on
the earth’s surface between P2 and P1, from their
longitudes and latitudes, while ignoring the presence of
opportunistic obstacles along the path. This formula is
described in Eq.(19) and Eq.(20) as,

H(Θ) = sin2
(
∆θ
2

)
+ cos (θ1) · cos (θ2) · sin2

(
∆φ

2

)
, (19)

and
` = 2r arcsin

(√
H(Θ)

)
, (20)

where Θ = `
r , ∆θ = θ2 − θ1, and ∆φ = φ2 − φ1.

The bearing of P2 from P1 (i.e., ψ) is to be computed
as well. Therefore, the adopted geometrical formula is
given in Eq. (21) as,

= arctan(X, Y ), (21)

where
X = cosθ2 · sin∆φ (22)

and

Y = cosθ1 · sinθ2 − sinθ1 · cosθ2 · cos∆φ. (23)

In our path tracking and auto-navigation algorithm,

the required destination coordinates, P2 =
[
θ2 φ2

]T
,

is requested from the user as an input value during
the start-up sequence of the robotic system; while the
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updated value of initial position, P1 =
[
θ1 φ1 ϕ

]T
,

is recursively fetched from Algorithm 5, such that P1 ⇐
x[k + 1]. The goals of the path tracking algorithm are to:

1. plot the shortest path between P1 to P2,

2. calculate the bearing, ψ, of P2 from P1,

3. orient the robot’s motion along the bearing, ψ and

4. cause the robot to move in this direction until
P1 ≈ P2.

In pseudocodes, this task is more sufficiently
described as Algorithm 6. The boundary conditions
for the application of Algorithm 6 are enumerated in
Definition 5.2.

Algorithm 6 is valid under the following conditions:

1. The earth is assumed to be a perfect sphere.

2. The range of navigation (i.e., `) is limited to 500
m.

3. The robot can not reverse its motion (i.e., it can
only yaw and drive forward), except Algorithm 4
is called to enable the robot avoid an obstacle.

4. Proximity of obstacles ahead must be greater than
120 cm.

5. Test navigation is performed in a controlled
environment.

Maneuvering: motor control functions. For efficient
maneuverability during obstacle avoidance or auto-
navigation of our robot, the main controller should be
able to control the flow of the required electric power to
the robot’s drive motors. To achieve this, we introduced
the l293d-ic based motor driver, as an electro-software
and mechanical interface, between the main controller
and the four drive motors as shown in Figs. 7 and 8.
This configuration involves four geared Direct Current
(DC) motor (i.e., M1, ... , M4) that produces mechanical
torques (i.e., τL and τR) in order to propel the robot
over a given terrain. This process is activated by a
maneuvering algorithm (i.e., Algorithm 7), which is
also encoded into the main controller.

The maneuvering algorithm involves several low-
level functions, some of which are given in Table 2.
Any of these functions could be called to control the
supply of electrical voltage (ranging from 0 to 12 Volts)
to the robot’s four drive motors, so that they would
rotate according to the set speed for the robot to move
in the specified direction. This is done so that the
speed and direction of rotation of each drive motor is
directly proportional to the magnitude and sign of the
voltage applied across its terminals. For instance, the
function/function call for Move_fwd and Rotate_cw

Algorithm 6 Path tracking algorithm

Require: position[lat1, lon1, ϕ] . from Algorithm 5
Require: lat2, lon2, δθ, δφ and δψ . Inputs from user
Ensure: `, θ1, φ1 and ψ . Outputs for visualization

1: function Auto_navigate

2: while distF ≥ 120 cm do
3: r ← 6.399x107 cm . Approx. earth radius
4: . ——-Fetches compass/GPS sensor data——-
5: float P1[]← Position_estimate

6: θ1 ← P1[lat1]
7: φ1 ← P1[on1]
8: ϕ ← P1[ϕ] . Robot yaw angle
9: . ———Requests input data from user———

10: float P2[]← (Enter destination, [lat2, lon2])
11: θ2 ← P2[lat2]
12: φ2 ← P2[lon2]
13: . ————Haversine Computations————
14: ∆φ← (φ2 − φ1)
15: ∆θ ← (θ2 − θ1)
16: H← [sin (∆θ/2)]2 + cosθ1 ∗ cosθ2 ∗

[sin (∆φ/2)]2

17: ` ← 2 ∗ r ∗ sin−1(
√

H)
18: if ` ≤ 5.0x104 cm then
19: X ← cosθ2 ∗ sin (∆φ)
20: Y ← cosθ1 ∗ sinθ2 − sinθ1 ∗ cosθ2 ∗

cos (∆φ)
21: ← tan−1 (X, Y )
22: . —————–Yaw control——————–
23: while ϕ , ψ ± δψ do
24: if ψ ≤ 180◦ then
25: call Rotate_cw
26: else
27: call Rotate_ccw
28: end if
29: end while

. —————Position control—————–
30: while ϕ = ψ ± δψ do
31: if P1[θ1, φ1] , P2[θ2 ± δθ, φ2 ± δφ]

then
32: call Move_fwd . Move to target
33: else
34: call Brake . Stop at target
35: end if
36: end while
37: end if
38: end while
39: return `, θ1, φ1, ψ
40: end function

are expressed in Algorithms 8 and 9 respectively. The
control parameters (i.e., v1, v2, v3, v4, dir1, dir2, dir3,
dir4) of Algorithm 7 only have to be modified according
to Table 3 to create the remaining low-level functions
for motor control, which in turn, translate to a possible
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movement of the robot towards a desired direction,
as required by Algorithm 1, 4 or 6. Also included in
Table 3, are the redundant low-level functions, which
could also be activated to modify the robot’s motion.
The integers 1, 2, and 4 in Table 3 are internally
assigned to the parameters forward, backward and
release (for brake), respectively, in the motor driver
library.

Algorithm 7 Maneuvering algorithm: Motor Control
Function
Require: Parameters from function calls

1: function Motor_control(v1, v2, v3, v4, dir1, dir2,
dir3, dir4)

2: M1.setSpeed (v1) . Sets motor1 rpm
3: M2.setSpeed (v2) . Sets motor2 rpm
4: M3.setSpeed (v3) . Sets motor3 rpm
5: M4.setSpeed (v4) . Sets motor4 rpm
6: M1.run (dir1) . Sets direction for Motor1
7: M2.run (dir2) . Sets direction for Motor2
8: M3.run (dir3) . Sets direction for Motor3
9: M4.run (dir4) . Sets direction for Motor4

10: end function

Algorithm 8 Move_fwd function
(forward← 1 in the motor driver’s library)

1: function Move_fwd . The function
2: float v ← distF . Proximity value as speed

parameter
3: call Motor_control (v, v, v, v, 1, 1, 1, 1)
4: end function
5: call Move_fwd . The function call

Algorithm 9 Rotate_cw function
(forward← 1 and backward← 2 in the motor driver’s
library)

1: function Rotate_cw . The function
2: float v ← 250.00 . Sets motors speed to 250.00

rpm
3: call Motor_control (v, v, v, v, 1, 2, 2, 1)
4: end function
5: call Rotate_cw . The function call

6. Results and Discussion
The navigational schemes and algorithms in Sections 4
and 5 are implemented using the experimental
platform in Section 3. The Algorithms 2, 3, and 5
are encoded in Python programming language for
execution on the companion computer as objected-
oriented parallel programs. For low-level control, the

Figure 7. Configuration of the low-level controller (featuring the
power supply, inertial sensor, main controller, motor driver, and
their electrical connections)

Figure 8. Connection of motors to the motor driver (the motor
driver enables the main controller to control the speed and
direction of the motors)

maneuvering functions (as described in Subsubsection
(5.2)) and Algorithms 1, 4, and 6 are written in
embedded C++ language and then uploaded onto the
main controller to serve as functions for localized
computation and real-time control of the robot’s
motion.

We conducted experiments in an open field as shown
in Fig. 9 to test the validity of the mathematical
models upon which the algorithms are based, and to
evaluate the performance of the robot in the physical
world. These involve the telemetry of navigational
data to the remote data acquisition computer for real-
time analysis. Our experimental procedure, analytical
techniques, and the results are discussed below in
Subsections 6.1 and 6.2.

6.1. Experimental procedure and results
As the navigational precision of our robotic system
depends on the accuracy of its sensors, our field
tests aim at evaluating the accuracy with which our
robot could perform both obstacle avoidance and
autonomous navigation, while maneuvering towards a
target location.

Evaluation of proximity measurement technique. To ensure
precision in obstacle avoidance, we evaluate the
accuracy of each of the two adopted proximity sensors
and the Algorithm 2. To do this, we plot the real-time
values from the the ultrasonic sensor (i.e., distUltrasonic),
infrared sensor (i.e., distInf rared), and their fusion (i.e.,
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Table 2. List of relevant motion control functions

S/N Function Actuational effect

1 Move_fwd Robot moves forward in a straight-line
2 Reverse Robot moves backward in a straight-line
3 Rotate_cw Robot yaws clockwise direction
4 Rotate_ccw Robot yaws counter-clockwise direction
5 Brake Robot stops moving

Table 3. Full list of motion control functions and their parameters corresponding to Algorithm 7 (Note: v = distF , the redundant
functions are in gray-colored texts)

S/N Function v1 v2 v3 v4 dir1 dir2 dir3 dir4

1 Move_fwd v v v v 1 1 1 1
2 Reverse 200 200 200 200 2 2 2 2
3 Rotate_cw 250 250 250 250 1 2 2 1
4 Rotate_ccw 250 250 250 250 2 1 1 2
5 Brake 0 0 0 0 4 4 4 4
6 Move_right 250 50 50 250 1 1 1 1
7 Move_left 50 250 250 50 1 1 1 1
8 Reverse_right 250 50 50 250 2 2 2 2
9 Reverse_left 50 250 250 50 2 2 2 2
10 Fast_fwd 250 250 250 250 1 1 1 1
11 Slow_fwd 100 100 100 100 1 1 1 1

Figure 9. Performance evaluations in field tests

distF from Algorithm 2) against time (in seconds). Also,
we plot the estimate ’distF ’ and the true proximity of
the obstacle from the robot (i.e., distActual , as measured
with a meter-rule), against time (in seconds). The result
of this experiment is presented in Fig. (10 and 11). This

visualizes the error present in the robot’s sensitivity to
the proximity of obstacles along its path.

Graphical visualization of the robot’s routes. To evaluate
how accurately our robot could autonomously move
to a target location (based on Definition 5.2), we
visualized the actual navigational routes of our robot in
comparison to the desired path, using real-time position
estimates from Algorithm 5. For experimentation,
variations in the navigational environment included
the number of pre-stationed obstacles along the robot’s
path of travel and also, the length of the path. The
results of this experiment are presented in Figs. 12 to
14.

6.2. Discussion

The plots in Fig. 10 shows how effectively Algorithm 2
fuses the measurement data from the ultrasonic
and infrared sensor as distF . Based on Fig. 11, we
observe that the fusion product (distF) is consist with
the proximity values (distActual), thus increasing the
accuracy in the measurement of an obstacle’s proximity
from the robot, unlike the direct measurements
from the individual sensors (i.e., distUltrasonic and
distInf rared), which individually contains higher level
of noise.
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Figure 10. Proximity values (i.e., distUltrasonic, distInfrared, and distF ) vs time
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Figure 11. Proximity values (distF and distActual) vs time

Figure 12. Path-plot 1: Graph visualizing the robot’s routes
(navigated distance ≈ 69.72 m, number of obstacles = 0)

According to our observations in Figs. 12 to 14,
Algorithm 6 is effective, within the bounds of
Definition 5.2, at homing the robot to a position near
the target location (Note: the blue dots in the plot for
the followed-path indicates the turning points, that is,
the points at which the robot changes its direction of
motion). In particular, the plot in Fig. 12 shows that in
the absence of obstacles, the robot will move along a
near-straight line from its starting point to the target
location, which is evident in the relatively less number
of turning points. Comparatively, the plots in Figs. 13
and 14 show that the motion of the robot to a target

Figure 13. Path-plot 2: Graph visualizing the robot’s routes
(navigated distance ≈ 120.78 m, number of obstacles = 5)

point will exhibit more turning points, deviations from
the expected-path, and course-correction with increase
in the range of the navigation path and the number of
obstacles along the path.

Limitations. Based on our field tests observations,
the technical possibility of flaws in the sensors
measurements limit the performance of our robot.
Other limitations arises from the topography of the
terrains and the mechanical constraints of the robot’s
drive system. We observe that unlike on paved paths,
the robot experiences transitional difficulties and
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Figure 14. Path-plot 3: Graph visualizing the robot’s routes
(navigated distance ≈ 216.40 m, number of obstacles = 10)

inadequate steering power when maneuvering over
rough terrains and grasslands; which is as a result of
increased friction between the wheels and the ground.
Apart from these constraints, the overall performance
of our robot is satisfactory and meets the design
objectives.

Applications. Potential applications of our autonomous
robotic system include:

1. Autonomous seed-planting: Similar to the work
of [18], the construct of our robotic system as
well as the underlying auto-navigation algorithm
could be applied in the development of an
autonomous seed-planter for enhanced precision
and efficiency in crop farming.

2. Environmental monitoring: Similar to the work
of Olakanmi et al. in [23], our robotic system could
be re-purposed as a multi-sensor surveillance
system for environmental monitoring, especially
in hazardous and industrial environments.

3. Office-file movement: Our robotic system could
be developed into a semi-autonomous door-to-
door file mover along passageways in a large office
building.

4. Home delivery: Our robotic system could find
application in logistics as a logistical robot that
uses geospatial data and local beacon signals to
autonomously navigate along streets and deliver
merchandises to homes.

7. Conclusion
In this work, an edge-based autonomous robotic
system is developed for point-to-point navigation using
geospatial data. This system is able to avoid obstacles
on its path to a target location using the fusion of
proximity measurements of obstacles from itself, as
detected by both the ultrasonic and infrared proximity
sensor. In operation, several algorithms are used. These
included the proximity sensor fusion algorithm for

obstacle avoidance motion control and the localization
algorithm for autonomous navigation of the robot
to a target location. The embedded hardware of the
robot comprises two edge-devices – the main controller
and the companion computer, which work together
as complimentary systems to implement the robot’s
control algorithms.

Several field tests were also conducted to evaluate
the performance of the robot. These included the
evaluation of how accurately the robot could detect
obstacles along its travel path and maneuver them
and also, how precisely it could get to its target
location. Results show that our robot performs as
expected, regardless of its operational constraints.
In essence, our work proves that edge-devices like
the microcontroller and SoC-computers are applicable
to the development of intelligent and autonomous
systems. Future developments in this area of research
may explore the potential applications of our system;
such as autonomous seed-planting, environmental
monitoring, logistical automation etc., as mentioned
in Section 6.2. Therefore, we hope that our work
stimulates interest and enthusiasm, especially with
regard to the practical applications of our robot and its
corresponding algorithms.
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