
EAI Endorsed Transactions
on Context-aware Systems and Applications Research Article

1

Automatic FPGA-based Hardware Accelerator Design: A
Case Study with Image Processing Applications
Cuong Pham-Quoc1,2*

1Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam
2Vietnam National University – Ho Chi Minh City, Thu Duc District, Ho Chi Minh City, Vietnam

Abstract

We present a case study of automatic FPGA-based hardware accelerator design using our proposed framework with the
image processing domain. With the framework, the ultimate systems are optimized in both performance and energy
consumption. Moreover, using the framework, designers can implement FPGA platforms without manually describing any
hardware cores or the interconnect. The systems offer accelerations in execution time compared to traditional general
purpose processors and accelerator systems designed manually. We use two applications in the image processing domain
as experiments to report our work. Those are Canny edge detection and jpeg converter. The experiments are conducted in
both embedded and high-performance computing platforms. Results show that we achieve overall speed-ups by up to
3.15´ and 2.87´ when compared to baseline systems in embedded and high-performance platforms, respectively. Our
systems consume less energy than other FPGA-based systems by up to 66.5%.

Keywords: FPGA-based design framework, Hardware accelerator, Image processing

Received on 10 April 2020, accepted on 10 May 2020, published on 12 May 2020

Copyright © 2020 Cuong Pham-Quoc licensed to EAI. This is an open access article distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and
reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/eai.12-5-2020.164497

* Corresponding author: cuongpham@hcmut.edu.vn

1. Introduction

In reccent years, FPGAs (Field programmable gate arrays)
have been considering as a promising approach to overcome
many obstacles in SoC designs such as time-to-market,
power consumption as well as flexibility. However, FPGA
designs still suffer from higher NRE (non-recurring
engineering) cost than general pupose procesosrs or require
knowledge of both hardware and software. These issues
usally prevent the use of FPGA in real application domains
such as image processing, voice recognization, artificial
intelligent, or machine learning. Although a number of
toochains have been proposed to pursuade designers to
exploit FPGAs advantages like high-level synthesis tools,
designers still need hardware knowledge and skills.

Our previous work presented in [1] proposed an
automatic framework for designing and implementing

FPGA-based hardware accelerator systems with an
optimized hybrid interconnect to reduce data
communication overhead. When using the framework,
designers are helped to build FPGA accelerator systems
without much hardware knowledge and skills. The proposed
framework already solved a number of issues from which
other similar toolchains suffer. For example, they could be
used for only a dedicated application domain [2][3][4][5][6]
or used for different applications without an interconnect
optimized [7][8]. One of the most important contribution of
our framework is to optimize the interconnect of hardware
cores because data communication is one of the two main
sources of overhead in multicore systems [9]. Each
interconnection type, such as crossbar, bus or network-on-
chip, offers different advantages while suffering various
disadvantages [10]. Therefore, a hybrid interconnect
consisting of multiple interconnect architectures is an
appropriate approach for keeping performance of an FPGA-
based hardware accelerator improved further.

EAI Endorsed Transactions on
Context-aware Systems and Applications

 11 2019 - 05 2020 | Volume 7 | Issue 20 | e5

Cuong Pham-Quoc

2

In this paper, we report a case study for the image
processing domain. We use the design framework to
implement two different applications, the Canny edge
detection and the jpeg image converter. We discuss design
steps and conduct experiments with the systems in both
embedded and high-performance computing platforms. We
analyze experimental results of both the systems in terms of
execution time and energy consumption. We then compare
our system with general purpose processors and traditional
FPGA-based accelerators.

The main contributions of this paper are summarized into
two folds.

• We first briefly introduce a case study of the image
processing domain with two applications when using
our proposed framework;

• We analyze and compare results of the systems
designed by the framework and other systems.

The rest of the paper is organized as follows. Section 2
quickly presents the framework designed and reported in our
previous work. Section 3 discusses steps in developing two
applications in the image processing domain with our
framework. We present our experimental results with two
computing platforms in Section 4. Finally, the paper
contributions are concluded in Section 5.

2. The automatic design framework

In our previous work [1], we already proposed an automatic
framework for designing an FPGA-based hardware
accelerator with a hybrid interconnect. The framework
allows designers to develop a hardware accelerator system
for a particular application without much knowledge and
working effort at the hardware level. Figure 1 depicts the
design flow of the proposed framework. Although the
design flow includes five automatic processing steps,
designers are also able to interfere to manually make further
improvements.

Figure 1. The proposed framework proposed in [1]

In this framework, a target application (developed in high
level programming language) is profiled in Step 1 to collect
execution time of functions in the application. This profiling
step also creates a communication graph to represent data
communication of functions inside the application. Based on
this data communication graph, a hybrid interconnect for
hardware kernels as well as between the hardware device
and the host processor can be defined appropriately.

The application is then partitioned into hardware and
software parts in Step 2. Computationally intensive
functions should be candidates for accelerating with
hardware kernels in FPGA. Moreover, based on the data
communication graph, non-intensive functions may also be
implemented in FPGA for reducing off-chip data
communication.

As stated above, the data communication graph is used to
define the most suitable hybrid interconnect for hardware
kernels in Step 3. The hybrid interconnect may comprise
bus, crossbar, network-on-chip, or shared buffer depended
on the communication patterns of the kernels. The main
purpose of this step is to reduce data communication
overhead while keeping hardware resources usage for the
interconnect minimized. That, in turn, will save energy
consumption of the system since the less resources are used,
the more energy is saved.

The selected functions are then synthesized by high-level
synthesis (HLS) toolchains (in this case we use the Vivado
HLS from Xilinx) to create hardware kernels described by
hardware description languages (in our work, we prefer
Verilog-HDL). With the support of HLS tools, functions
written in high level programming languages can be
compiled to Verilog-HDL automatically. This solves one of
the most difficult issues that designers usually have.

Finally, the entire system is developed, synthesized and
mapped to hardware platforms by tools provided by FPGA
manufacturers (in our case, we use Xilinx Vivado since
Xilinx platforms are targeted). Based on the resources
availability of the target platforms, computationally
intensive kernels can be replicated to further improve overall
performance.

As summarized above, designers do not need to interfere
with the framework much because all steps can process
automatically. However, in case designers would involve
themselves to modify some kernels or the interconnect, they
are still able to do.

3. Case study

In this section, we introduce our hardware accelerator
systems developed for the two applications, Canny edge
detection [11] and jpeg image converter [12] using the
framework.

3.1. The Canny edge detection

The main purpose of this application is to detect edges of
images by applying a number of operators like Gaussian

EAI Endorsed Transactions on
Context-aware Systems and Applications

 11 2019 - 05 2020 | Volume 7 | Issue 20 | e5

Automatic FPGA-based Hardware Accelerator Design: A Case Study with Image Processing Applications

3

filter, gradient calculation, non-maximize suppression, and
finally hysteresis thresholding. The application was first
introduced in 1986 and coded by ANSI C. The profiling
results indicate that three operators Gaussian filter, gradient
calculation and non-maximize suppression are the most
computationally intensive. The framework also generates
the data communication graph shown in Figure 2.

Figure 2. Data communication graph of the Canny
edge detection application

According to the profiling results, three aforementioned
operators (implemented as functions gaussian_smooth,
magnitude_x_y, non_max_supp) are good candidates to be
accelerated by hardware kernels. However, as illustrated in
the data communication graph, the derivative_x_y function
should also be accelerated by hardware kernels because
there is a huge amount of data transferred between this
function and other candidates. Therefore, all the four
functions are implemented as accelerators. Other procedures
of the application are kept processing on the general-purpose
processor.

During the hybrid interconnect generation step, the most
suitable interconnect is designed for data communication
among the four hardware kernels above. Please note that, the
communication infrastructure for transferring data between
the processor and kernels is already defined by the target
platform used for building the system. In this application, a
shared buffer is used for the interconnect of the
gaussian_smooth and derivative_x_y accelerators while a
network-on-chip (NoC) is used for transferring data among
the derivative_x_y and the rest two kernels.

As discussed above, in this work we target Xilinx
platforms for implementing our systems; we therefore use
Xilinx Vivado HLS to generate Verilog-HDL description

modules for our hardware kernels. Figure 3 shows a part of
the Verilog-HDL description generated by Xilinx Vivado
HLS for the gaussian_smooth function.

Figure 3. Part of the gaussian kernel generated by
Vivado HLS

In this work, we implement applications on both
embedded system with the Xilinx ML510 board [13] and
high-performance computing system with Micron HC-2ex
[14]. Therefore, the final step needs to be performed for two
different target platforms. For the embedded platform,
because there exists only one FPGA device, we are able to
build the system with 5 kernels. Hence, only the
gaussian_smooth kernel is duplicated. Meanwhile, the high-
performance computing platform consists of 4 modern
FPGA devices that can host more kernels. Consequently, we
replicate the kernels up to 64 accelerators in total.

The system finally is synthesized and mapped to FPGA
devices by the Xilinx Vivado toolchain. This final step is
technology dependent. Resources usage and other
parameters are reported in detail in Section 4.

3.2. The jpeg image converter

The jpeg image converter is the second application used as
our case study. The main purpose of this application is to
encode bitmap images to the jpeg format. The application
was implemented in ANSI C and reported in the benchmark
in [12]. The main part of the application includes four
computationally intensive functions. Those are huff_dc_dec,
huff_ac_dec, dquantz_lum, and j_rev_dct.

Figure 4. Data communication graph of the jpeg
image converter application

input_functions

gaussian_smooth

1287880 Bytes
13360 UnMAs
13360 UnDVs

derrivative_x_y

8 Bytes
8 UnMAs
8 UnDVs

magnitude_x_y

8 Bytes
8 UnMAs
8 UnDVs

non_max_supp

8 Bytes
8 UnMAs
8 UnDVs

689420 Bytes
53316 UnMAs
163444 UnDVs

106400 Bytes
26600 UnMAs
 26600UnDVs

1120 Bytes
60 UnMAs
 64UnDVs

53200 Bytes
53200 UnMAs
53200 UnDVs

65266 Bytes
53200 UnMAs
53200 UnDVs

248 Bytes
64 UnMAs
860 UnDVs

128380 Bytes
26600 UnMAs
26600 UnDVs

output_functions

35282 Bytes
26600 UnMAs
26600 UnDVs

283937 Bytes
607 UnMAs

61130 UnDVs

13348 Bytes
13300 UnMAs
13300 UnDVs

EAI Endorsed Transactions on
Context-aware Systems and Applications

 11 2019 - 05 2020 | Volume 7 | Issue 20 | e5

Cuong Pham-Quoc

4

Figure 4 illustrates the data communication graph mainly
focusing on the four mentioned functions. All those
functions are accelerated by hardware kernels. Similar to the
Canny edge detection application, a NoC should be used for
data communication of the three first kernels while a shared
local buffer involves in transferring data between the
dquantz_lum and j_rev_dct accelerators. Similar to the
systems for the Canny edge detection application, Vivado
HLS is also used for generating Verilog-HDL descriptions
for these functions from the C code.

This application is also implemented in both the above
embedded and high-performance computing systems. With
the embedded system, the huff_ac_dec kernel is duplicated
only while there are 64 kernels built in the high-performance
computing system. Figure 5 illustrates the architecture of the
jpeg application when implemented on the embedded
platform.

Figure 5. The architecture for jpeg application in the
embedded platform

4. Experiments

In this section, we present our experiments to verify the
FPGA-based accelerator systems reported above. Kernels
performance as well as overall system performance are
presented. Energy consumption compared to baseline
systems is shown also.

4.1 Experimental setup

As presented above, the embedded and high-performance
computing systems used as our target platforms are ML510
and Micro HC-2ex, respectively. The ML510 board consists
of only one Xilinx xc5vfx130t FPGA device. Inside the
FPGA device, there exist two embedded hardwired
PowerPC processors that are used as host processors to
process the software part of applications. Hardware
accelerators are mapped into the reconfigurable area of the
device. In this paper, we configure the processors
functioning at 400 MHz while hardware kernels can work at
100 MHz only due to huge amount of reconfigurable logic
resources used. To compare performance, the applications at

first are executed on the host processor. They then are
processed by the entire accelerator systems, i.e., hardware
kernels process computationally intensive functions while
software part still is kept executing on the host.

For the high-performance computing system, Micron
HC-2ex (formerly Convey) is used as our experiment
platform. The system includes of four Virtex-6 xc6vlx760
FPGA devices and one Intel Xeon X5670 processor. While
the host processor can function at 2.93 GHz, the accelerators
are set to work at 200 MHz. Similar to the embedded
system, we first execute the applications on the host
processor with full parallelization, i.e., the whole 12 cores of
the processor are used to process the applications. They then
are processed by the entire accelerator systems to compare
execution time.

4.2 Experimental results

In this section, we discuss our experimental results with the
two aforementioned systems when processing the two
applications. Performance of kernels and entire systems as
well as energy consumption and resources usage are
analyzed.

Performance analysis
Table 1 depicts the kernels and the overall accelerator
systems speed-ups when compared to their host processors
(PowerPC for the embedded system and Intel Xeon for the
high-performance computing system) in the third and the
fourth columns, respectively. The table also presents speed-
ups compared to baseline systems (the baseline systems are
the traditional accelerator systems without helps of our
framework for optimizing data communication but including
replicated kernels for a fair comparison) in the fifth and the
sixth columns, respectively.

Table 1. Speed-ups comparison between our systems
and others

Platform App.
w.r.t host

processors
w.r.t baseline

systems
kernels overall kernels overall

EMB(1) Canny 3.88´ 3.15´ 2.12´ 1.83´
jpeg 2.55´ 2.33´ 3.08´ 2.87´

HPC(2) Canny 2.62´ 2.61´ 1.55´ 1.54´
jpeg 1.96´ 1.45´ 1.93´ 1.42´

(1) EMB: Embedded system; (2) High-performance
computing system

As shown in the table, compared to both the host
processors and the baseline systems, our systems designed
with framework achieve better performance in term of
execution time; in other words our systems outperform the
others in term of execution time. Our systems process the
applications up to 3.15´ faster than general-purpose
processors and up to 2.87´ faster than baseline systems.

EAI Endorsed Transactions on
Context-aware Systems and Applications

 11 2019 - 05 2020 | Volume 7 | Issue 20 | e5

5

Table 2. Hardwar resources usage for the systems

Platform Applications Type Baseline Ours Energy saved

Embedded
Canny LUT 9,296 15,227 49.7% Reg 12,707 18,865

jpeg LUT 11,755 20,837 66.5% Reg 11,910 20,900

High-performance
computing

Canny LUT 74,965 90,789 54.3% Reg 48,994 54,849

jpeg LUT 86,125 101,980 51.8% Reg 64,716 71,527

Resources usage & energy consumption analysis
We use synthesis reports from the Xilinx tools and XPower
analyzer also from Xilinx to extract hardware resources
usage and power consumption of the systems. We compare
our systems with the baseline systems in terms of resources
utilization and energy consumption saved when using our
systems instead of the baseline ones.

Table 2 presents the hardware resources utilization for
one FPGA device in different systems with the two
applications. We report the two most important values of
resources including Look-up Tables (LUT) and Registers
(Reg). Please note that, we only show resources directly
used for the processing of our applications, i.e., we do not
take resources used for managing the systems into account
although they exist in the systems like debugger module or
I/O handling modules. According to the table, our systems
in both platforms need more resources than the baseline
ones for all the experiments. The main reason for this issue
is the hybrid interconnect used.

The table also presents energy reduction that our systems
offer when compared to the baseline systems. Please note
that the energy consumption is estimated by power
consumption (reported by Xilinx XPower analyzer) and
execution time. According to the table, although we need
more resources than the baseline systems due to the hybrid
interconnect; our systems use less energy than the baseline
ones by up to 66.5%.

5. Conclusions

In this paper, we summarize the automatic FPGA-based
hardware accelerator design framework proposed in our
previous work. We then present in detail the accelerator
systems for two applications belonging the image processing
domain. The case study proves that the framework can help
designers reduce the NRE cost and efforts in developing
FPGA-based systems. Moreover, with the support of the
framework, we achieve better overall performance
compared to both the host processors only and the baseline
systems. We also manage to save up to 66.5% of energy
consumption when compared to the baseline systems.
Although more resources are needed by our systems, more
energy can be saved. Saving energy is one of the most
critical issues for green computing in this era.

Acknowledgements.
This research is funded by Ho Chi Minh City University of
Technology - VNU-HCM under grant number To-KHMT-
2018-03.

References
[1] C. Pham-Quoc, “Design Framework for FPGA-based

Hardware Accelerator with Hybrid Interconnect,” in
proceedings of 2019 6th NAFOSTED Conference on
Information and Computer Science (NICS), December 2019,
Hanoi, Vietnams

[2] C. Pham-Quoc, B. Kieu-Do, and T. Ngoc Thinh, “An fpga-
based seed extension ip core for bwa-mem dna alignment,” in
2018 International Conference on Advanced Computing and
Applications (ACOMP), Nov 2018, pp. 1–6.

[3] C. Pham-Quoc, B. Tran-Thanh, and T. N. Thinh, “A scalable
fpga-based floating-point gaussian filtering architecture,” in
2017 International Conference on Advanced Computing and
Applications (ACOMP), Nov 2017, pp. 111–116.

[4] L. Song, J. Mao, Y. Zhuo, X. Qian, H. Li, and Y. Chen,
“Hypar: Towards hybrid parallelism for deep learning
accelerator array,” in 2019 IEEE International Symposium on
High Performance Computer Architecture (HPCA), Feb
2019, pp. 56–68.

[5] M. Torabzadehkashi, S. Rezaei, A. Heydarigorji, H.
Bobarshad, V. Alves, and N. Bagherzadeh, “Catalina: In-
storage processing acceleration for scalable big data
analytics,” in 2019 27th Euromicro International Conference
on Parallel, Distributed and Network-Based Processing
(PDP), Feb 2019, pp. 430–437.

[6] C. Pham-Quoc, B. Nguyen, and T. N. Thinh, “Fpga-based
multicore architecture for integrating multiple ddos defense
mechanisms,” SIGARCH Comput. Archit. News, vol. 44, no.
4, pp. 14–19, Jan. 2017.

[7] D. Pnevmatikatos, K. Papadimitriou, T. Becker, P. Baehm, A.
Brokalakis, K. Bruneel, C. Ciobanu, T. Davidson, G.
Gaydadjiev, K. Heyse, W. Luk, X. Niu, I. Papaefstathiou, D.
Pau, O. Pell, C. Pilato, M. Santambrogio, D. Sciuto, D.
Stroobandt, T. Todman, and E. Vansteenkiste, “Faster:
Facilitating analysis and synthesis technologies for effective
reconfiguration,” Microprocessors and Microsystems, vol. 39,
no. 4, pp. 321 – 338, 2015.

[8] D. Glick, J. Grigg, B. Nelson, and M. Wirthlin, “Maverick: A
standalone cad flow for xilinx 7-series fpgas,” in Proceedings
of the 2019 ACM/SIGDA International Symposium on Field-

Automatic FPGA-based Hardware Accelerator Design: A Case Study with Image Processing Applications

EAI Endorsed Transactions on
Context-aware Systems and Applications

 11 2019 - 05 2020 | Volume 7 | Issue 20 | e5

Cuong Pham-Quoc

6

Programmable Gate Arrays, ser. FPGA ’19. New York, NY,
USA: ACM, 2019, pp. 306–307.

[9] D. Sanchez, G. Michelogiannakis, and C. Kozyrakis, “An
analysis of on-chip interconnection networks for large-scale
chip multiprocessors,” ACM Trans. Archit. Code Optim., vol.
7, no. 1, pp. 4:1–4:28, May 2010.

[10] C. Pham-Quoc, Z. Al-Ars, and K. Bertels, “Heterogeneous
hardware accelerators interconnect: An overview,” in 2013
NASA/ESA Conference on Adaptive Hardware and Systems
(AHS-2013), June 2013, pp. 189–197.

[11] J. Canny, “A computational approach to edge detection,”
Pattern Analysis and Machine Intelligence, pp. 679 –698,
1986.

[12] J. Scott, L. H. Lee, J. Arends, and B. Moyer, “Designing the
lowpower M_CORE architecture,” in IEEE Power Driven
Microarchitecture Workshop, 1998.

[13] Xilinx, “Ml510 reference design,” 2009
[14] Micron, “Hybrid core computer,” 2012

EAI Endorsed Transactions on
Context-aware Systems and Applications

 11 2019 - 05 2020 | Volume 7 | Issue 20 | e5

