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Abstract 

We present a case study of automatic FPGA-based hardware accelerator design using our proposed framework with the 
image processing domain. With the framework, the ultimate systems are optimized in both performance and energy 
consumption. Moreover, using the framework, designers can implement FPGA platforms without manually describing any 
hardware cores or the interconnect. The systems offer accelerations in execution time compared to traditional general 
purpose processors and accelerator systems designed manually. We use two applications in the image processing domain 
as experiments to report our work. Those are Canny edge detection and jpeg converter. The experiments are conducted in 
both embedded and high-performance computing platforms. Results show that we achieve overall speed-ups by up to 
3.15´ and 2.87´ when compared to baseline systems in embedded and high-performance platforms, respectively. Our 
systems consume less energy than other FPGA-based systems by up to 66.5%. 
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1. Introduction

In reccent years, FPGAs (Field programmable gate arrays) 
have been considering as a promising approach to overcome 
many obstacles in SoC designs such as time-to-market, 
power consumption as well as flexibility. However, FPGA 
designs still suffer from higher NRE (non-recurring 
engineering) cost than general pupose procesosrs or require 
knowledge of both hardware and software. These issues 
usally prevent the use of FPGA in real application domains 
such as image processing, voice recognization, artificial 
intelligent, or machine learning. Although a number of 
toochains have been proposed to pursuade designers to 
exploit FPGAs advantages like high-level synthesis tools, 
designers still need hardware knowledge and skills. 

Our previous work presented in [1] proposed an 
automatic framework for designing and implementing 

FPGA-based hardware accelerator systems with an 
optimized hybrid interconnect to reduce data 
communication overhead. When using the framework, 
designers are helped to build FPGA accelerator systems 
without much hardware knowledge and skills. The proposed 
framework already solved a number of issues from which 
other similar toolchains suffer. For example, they could be 
used for only a dedicated application domain [2][3][4][5][6] 
or used for different applications without an interconnect 
optimized [7][8]. One of the most important contribution of 
our framework is to optimize the interconnect of hardware 
cores because data communication is one of the two main 
sources of overhead in multicore systems [9]. Each 
interconnection type, such as crossbar, bus or network-on-
chip, offers different advantages while suffering various 
disadvantages [10]. Therefore, a hybrid interconnect 
consisting of multiple interconnect architectures is an 
appropriate approach for keeping performance of an FPGA-
based hardware accelerator improved further. 
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In this paper, we report a case study for the image 
processing domain. We use the design framework to 
implement two different applications, the Canny edge 
detection and the jpeg image converter. We discuss design 
steps and conduct experiments with the systems in both 
embedded and high-performance computing platforms. We 
analyze experimental results of both the systems in terms of 
execution time and energy consumption. We then compare 
our system with general purpose processors and traditional 
FPGA-based accelerators. 

The main contributions of this paper are summarized into 
two folds. 

• We first briefly introduce a case study of the image
processing domain with two applications when using
our proposed framework;

• We analyze and compare results of the systems
designed by the framework and other systems.

The rest of the paper is organized as follows. Section 2 
quickly presents the framework designed and reported in our 
previous work. Section 3 discusses steps in developing two 
applications in the image processing domain with our 
framework. We present our experimental results with two 
computing platforms in Section 4. Finally, the paper 
contributions are concluded in Section 5. 

2. The automatic design framework

In our previous work [1], we already proposed an automatic 
framework for designing an FPGA-based hardware 
accelerator with a hybrid interconnect. The framework 
allows designers to develop a hardware accelerator system 
for a particular application without much knowledge and 
working effort at the hardware level. Figure 1 depicts the 
design flow of the proposed framework. Although the 
design flow includes five automatic processing steps, 
designers are also able to interfere to manually make further 
improvements. 

Figure 1. The proposed framework proposed in [1] 

In this framework, a target application (developed in high 
level programming language) is profiled in Step 1 to collect 
execution time of functions in the application. This profiling 
step also creates a communication graph to represent data 
communication of functions inside the application. Based on 
this data communication graph, a hybrid interconnect for 
hardware kernels as well as between the hardware device 
and the host processor can be defined appropriately. 

The application is then partitioned into hardware and 
software parts in Step 2. Computationally intensive 
functions should be candidates for accelerating with 
hardware kernels in FPGA. Moreover, based on the data 
communication graph, non-intensive functions may also be 
implemented in FPGA for reducing off-chip data 
communication. 

As stated above, the data communication graph is used to 
define the most suitable hybrid interconnect for hardware 
kernels in Step 3. The hybrid interconnect may comprise 
bus, crossbar, network-on-chip, or shared buffer depended 
on the communication patterns of the kernels. The main 
purpose of this step is to reduce data communication 
overhead while keeping hardware resources usage for the 
interconnect minimized. That, in turn, will save energy 
consumption of the system since the less resources are used, 
the more energy is saved. 

The selected functions are then synthesized by high-level 
synthesis (HLS) toolchains (in this case we use the Vivado 
HLS from Xilinx) to create hardware kernels described by 
hardware description languages (in our work, we prefer 
Verilog-HDL). With the support of HLS tools, functions 
written in high level programming languages can be 
compiled to Verilog-HDL automatically. This solves one of 
the most difficult issues that designers usually have. 

Finally, the entire system is developed, synthesized and 
mapped to hardware platforms by tools provided by FPGA 
manufacturers (in our case, we use Xilinx Vivado since 
Xilinx platforms are targeted). Based on the resources 
availability of the target platforms, computationally 
intensive kernels can be replicated to further improve overall 
performance. 

As summarized above, designers do not need to interfere 
with the framework much because all steps can process 
automatically. However, in case designers would involve 
themselves to modify some kernels or the interconnect, they 
are still able to do. 

3. Case study

In this section, we introduce our hardware accelerator 
systems developed for the two applications, Canny edge 
detection [11] and jpeg image converter [12] using the 
framework. 

3.1. The Canny edge detection 

The main purpose of this application is to detect edges of 
images by applying a number of operators like Gaussian 
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filter, gradient calculation, non-maximize suppression, and 
finally hysteresis thresholding. The application was first 
introduced in 1986 and coded by ANSI C. The profiling 
results indicate that three operators Gaussian filter, gradient 
calculation and non-maximize suppression are the most 
computationally intensive. The framework also generates 
the data communication graph shown in Figure 2. 

Figure 2. Data communication graph of the Canny 
edge detection application 

According to the profiling results, three aforementioned 
operators (implemented as functions gaussian_smooth, 
magnitude_x_y, non_max_supp) are good candidates to be 
accelerated by hardware kernels. However, as illustrated in 
the data communication graph, the derivative_x_y function 
should also be accelerated by hardware kernels because 
there is a huge amount of data transferred between this 
function and other candidates. Therefore, all the four 
functions are implemented as accelerators. Other procedures 
of the application are kept processing on the general-purpose 
processor. 

During the hybrid interconnect generation step, the most 
suitable interconnect is designed for data communication 
among the four hardware kernels above. Please note that, the 
communication infrastructure for transferring data between 
the processor and kernels is already defined by the target 
platform used for building the system. In this application, a 
shared buffer is used for the interconnect of the 
gaussian_smooth and derivative_x_y accelerators while a 
network-on-chip (NoC) is used for transferring data among 
the derivative_x_y and the rest two kernels. 

As discussed above, in this work we target Xilinx 
platforms for implementing our systems; we therefore use 
Xilinx Vivado HLS to generate Verilog-HDL description 

modules for our hardware kernels. Figure 3 shows a part of 
the Verilog-HDL description generated by Xilinx Vivado 
HLS for the gaussian_smooth function. 

Figure 3. Part of the gaussian kernel generated by 
Vivado HLS 

In this work, we implement applications on both 
embedded system with the Xilinx ML510 board [13] and 
high-performance computing system with Micron HC-2ex 
[14]. Therefore, the final step needs to be performed for two 
different target platforms. For the embedded platform, 
because there exists only one FPGA device, we are able to 
build the system with 5 kernels. Hence, only the 
gaussian_smooth kernel is duplicated. Meanwhile, the high-
performance computing platform consists of 4 modern 
FPGA devices that can host more kernels. Consequently, we 
replicate the kernels up to 64 accelerators in total. 

The system finally is synthesized and mapped to FPGA 
devices by the Xilinx Vivado toolchain. This final step is 
technology dependent. Resources usage and other 
parameters are reported in detail in Section 4. 

3.2. The jpeg image converter 

The jpeg image converter is the second application used as 
our case study. The main purpose of this application is to 
encode bitmap images to the jpeg format. The application 
was implemented in ANSI C and reported in the benchmark 
in [12]. The main part of the application includes four 
computationally intensive functions. Those are huff_dc_dec, 
huff_ac_dec, dquantz_lum, and j_rev_dct. 

Figure 4. Data communication graph of the jpeg 
image converter application 

input_functions

gaussian_smooth

1287880 Bytes
13360 UnMAs
13360 UnDVs

derrivative_x_y

8 Bytes
8 UnMAs
8 UnDVs

magnitude_x_y

8 Bytes
8 UnMAs
8 UnDVs

non_max_supp

8 Bytes
8 UnMAs
8 UnDVs

689420 Bytes
53316 UnMAs
163444 UnDVs

106400 Bytes
26600 UnMAs
 26600UnDVs

1120 Bytes
60 UnMAs
 64UnDVs

53200 Bytes
53200 UnMAs
53200 UnDVs

65266 Bytes
53200 UnMAs
53200 UnDVs

248 Bytes
64 UnMAs
860 UnDVs

128380 Bytes
26600 UnMAs
26600 UnDVs

output_functions

35282 Bytes
26600 UnMAs
26600 UnDVs

283937 Bytes
607 UnMAs

61130 UnDVs

13348 Bytes
13300 UnMAs
13300 UnDVs
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Figure 4 illustrates the data communication graph mainly 
focusing on the four mentioned functions. All those 
functions are accelerated by hardware kernels. Similar to the 
Canny edge detection application, a NoC should be used for 
data communication of the three first kernels while a shared 
local buffer involves in transferring data between the 
dquantz_lum and j_rev_dct accelerators. Similar to the 
systems for the Canny edge detection application, Vivado 
HLS is also used for generating Verilog-HDL descriptions 
for these functions from the C code. 

This application is also implemented in both the above 
embedded and high-performance computing systems. With 
the embedded system, the huff_ac_dec kernel is duplicated 
only while there are 64 kernels built in the high-performance 
computing system. Figure 5 illustrates the architecture of the 
jpeg application when implemented on the embedded 
platform. 

Figure 5. The architecture for jpeg application in the 
embedded platform 

4. Experiments

In this section, we present our experiments to verify the 
FPGA-based accelerator systems reported above. Kernels 
performance as well as overall system performance are 
presented. Energy consumption compared to baseline 
systems is shown also. 

4.1 Experimental setup 

As presented above, the embedded and high-performance 
computing systems used as our target platforms are ML510 
and Micro HC-2ex, respectively. The ML510 board consists 
of only one Xilinx xc5vfx130t FPGA device. Inside the 
FPGA device, there exist two embedded hardwired 
PowerPC processors that are used as host processors to 
process the software part of applications. Hardware 
accelerators are mapped into the reconfigurable area of the 
device. In this paper, we configure the processors 
functioning at 400 MHz while hardware kernels can work at 
100 MHz only due to huge amount of reconfigurable logic 
resources used. To compare performance, the applications at 

first are executed on the host processor. They then are 
processed by the entire accelerator systems, i.e., hardware 
kernels process computationally intensive functions while 
software part still is kept executing on the host. 

For the high-performance computing system, Micron 
HC-2ex (formerly Convey) is used as our experiment 
platform. The system includes of four Virtex-6 xc6vlx760 
FPGA devices and one Intel Xeon X5670 processor. While 
the host processor can function at 2.93 GHz, the accelerators 
are set to work at 200 MHz. Similar to the embedded 
system, we first execute the applications on the host 
processor with full parallelization, i.e., the whole 12 cores of 
the processor are used to process the applications. They then 
are processed by the entire accelerator systems to compare 
execution time. 

4.2 Experimental results 

In this section, we discuss our experimental results with the 
two aforementioned systems when processing the two 
applications. Performance of kernels and entire systems as 
well as energy consumption and resources usage are 
analyzed. 

Performance analysis 
Table 1 depicts the kernels and the overall accelerator 
systems speed-ups when compared to their host processors 
(PowerPC for the embedded system and Intel Xeon for the 
high-performance computing system) in the third and the 
fourth columns, respectively. The table also presents speed-
ups compared to baseline systems (the baseline systems are 
the traditional accelerator systems without helps of our 
framework for optimizing data communication but including 
replicated kernels for a fair comparison) in the fifth and the 
sixth columns, respectively. 

Table 1. Speed-ups comparison between our systems 
and others 

Platform App. 
w.r.t host

processors
w.r.t baseline

systems
kernels overall kernels overall 

EMB(1) Canny 3.88´ 3.15´ 2.12´ 1.83´ 
jpeg 2.55´ 2.33´ 3.08´ 2.87´ 

HPC(2) Canny 2.62´ 2.61´ 1.55´ 1.54´ 
jpeg 1.96´ 1.45´ 1.93´ 1.42´ 

(1) EMB: Embedded system; (2) High-performance
computing system

As shown in the table, compared to both the host 
processors and the baseline systems, our systems designed 
with framework achieve better performance in term of 
execution time; in other words our systems outperform the 
others in term of execution time. Our systems process the 
applications up to 3.15´ faster than general-purpose 
processors and up to 2.87´ faster than baseline systems. 
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Table 2. Hardwar resources usage for the systems 

Platform Applications Type Baseline Ours Energy saved 

Embedded 
Canny LUT 9,296 15,227 49.7% Reg 12,707 18,865 

jpeg LUT 11,755 20,837 66.5% Reg 11,910 20,900

High-performance 
computing 

Canny LUT 74,965 90,789 54.3% Reg 48,994 54,849

jpeg LUT 86,125 101,980 51.8% Reg 64,716 71,527

Resources usage & energy consumption analysis 
We use synthesis reports from the Xilinx tools and XPower 
analyzer also from Xilinx to extract hardware resources 
usage and power consumption of the systems. We compare 
our systems with the baseline systems in terms of resources 
utilization and energy consumption saved when using our 
systems instead of the baseline ones.  

Table 2 presents the hardware resources utilization for 
one FPGA device in different systems with the two 
applications. We report the two most important values of 
resources including Look-up Tables (LUT) and Registers 
(Reg). Please note that, we only show resources directly 
used for the processing of our applications, i.e., we do not 
take resources used for managing the systems into account 
although they exist in the systems like debugger module or 
I/O handling modules. According to the table, our systems 
in both platforms need more resources than the baseline 
ones for all the experiments. The main reason for this issue 
is the hybrid interconnect used. 

The table also presents energy reduction that our systems 
offer when compared to the baseline systems. Please note 
that the energy consumption is estimated by power 
consumption (reported by Xilinx XPower analyzer) and 
execution time. According to the table, although we need 
more resources than the baseline systems due to the hybrid 
interconnect; our systems use less energy than the baseline 
ones by up to 66.5%. 

5. Conclusions

In this paper, we summarize the automatic FPGA-based 
hardware accelerator design framework proposed in our 
previous work. We then present in detail the accelerator 
systems for two applications belonging the image processing 
domain. The case study proves that the framework can help 
designers reduce the NRE cost and efforts in developing 
FPGA-based systems. Moreover, with the support of the 
framework, we achieve better overall performance 
compared to both the host processors only and the baseline 
systems. We also manage to save up to 66.5% of energy 
consumption when compared to the baseline systems. 
Although more resources are needed by our systems, more 
energy can be saved. Saving energy is one of the most 
critical issues for green computing in this era. 
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