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Abstract 

The availability of diverse and powerful sensors embedded in modern Smartphones
opportunities for developing context-aware appli
human activity data with such devices, data pre
required to operate while meeting hardware resource constraints, par
present a comparison study for HAR exploiting feature selection approaches to reduce the computation and training time
needed for the discrimination of targeted activities
publicly available dataset. Results show that Recursive Feature Elimination method combined with Radial Basis Function
Support Vector Machine classifier offered the best tradeoff between training time/recognition
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1. Introduction

Researchers are developing many new challenging
application scenarios based on mobile phone sensors in
various aspects related to the Smart City concept such as in
healthcare (e.g., fitness, diabetes, elderly and obesity
assisted surveillance), in smart homes (e.g., context aware
indoor air quality and thermal comfort control) and in smart
transportation (e.g., traffic congestion). 
necessary elements to make the link between the physical
world and the virtual world while the intelligent system
performs analysis in the virtual world. It turns out that
modern smartphones/mobile devices can play a key role in
the recognition of complex states of the user and its
environment, particularly the inference of her physical
activity thanks to the multitude of embedded sensors and
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aware applications. Although there is good capacity for collecting and classifying

human activity data with such devices, data pre-processing and model building techniques that achieve this goal are
required to operate while meeting hardware resource constraints, particularly for real-time applications. In this paper, we
present a comparison study for HAR exploiting feature selection approaches to reduce the computation and training time
needed for the discrimination of targeted activities while maintaining significant accuracy. We validated our approach on a
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Support Vector Machine classifier offered the best tradeoff between training time/recognition 
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Researchers are developing many new challenging 
application scenarios based on mobile phone sensors in 

concept such as in 
healthcare (e.g., fitness, diabetes, elderly and obesity 
assisted surveillance), in smart homes (e.g., context aware 

comfort control) and in smart 
transportation (e.g., traffic congestion). Sensors are the 
necessary elements to make the link between the physical 
world and the virtual world while the intelligent system 
performs analysis in the virtual world. It turns out that 
modern smartphones/mobile devices can play a key role in 

states of the user and its 
environment, particularly the inference of her physical 

embedded sensors and 

Machine Learning techniques (ML).
Recognition (HAR) using Smartphones has been widely
studied during recent years mainly because Smartphones are
not intrusive, widely used in everyday life
wearable. In addition, modern Smartphones devices
integrate powerful processors, multiple communication
technologies, multimedia capability and memory storage.
Today’s smartphones can also
power of the cloud that allows them to offload expensive
computation. Moreover, the variety of available wireless
access and communication technologies implemented
provide means of long-distance communication to
user’s body wearable sensors.
present the smartphone internal
study, then overview the current trends
related to activity recognition pr
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Although there is good capacity for collecting and classifying 

processing and model building techniques that achieve this goal are 
time applications. In this paper, we 

present a comparison study for HAR exploiting feature selection approaches to reduce the computation and training time 
. We validated our approach on a 

Results show that Recursive Feature Elimination method combined with Radial Basis Function 
Support Vector Machine classifier offered the best tradeoff between training time/recognition performance. 
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recent years mainly because Smartphones are 
widely used in everyday life, and also 

odern Smartphones devices 
integrate powerful processors, multiple communication 

apability and memory storage. 
also benefit from the growing 

power of the cloud that allows them to offload expensive 
the variety of available wireless 

access and communication technologies implemented 
distance communication to the other 

user’s body wearable sensors. In the following, we will 
internal sensors used for HAR in our 
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1.1 Sensors 

Accelerometer 

Accelerometer has been initially integrated into smartphones
in order to automatically determine the orientation in which
the user is holding the phone and to adjust the screen to
proper viewing when user changes the orientation from
landscape/horizontal to portrait/vertical and vice
Accelerometer readings reflect accelerations, i.e.
velocity (as the acceleration is the first time derivative of the
velocity) and changes in position (by integrating the signal).
The accelerometer, however, measures all the accelerations
that affect the device, which are the sum of the gravity
acceleration and the actual linear acceleration that are
associated with the movement of the device
physical axis: x (lateral), y (vertical) and z (longitudinal)
relative to the screen of the phone as described in Fi
(leftside) . The raw data stream from the accelerometer is
the acceleration of each axis measured in SI (International
System) units, m/s2. A time stamp can also be returned
together with the three axes readings. However, some
activities are usually indistinguishable using only
accelerometer information. Thus, multiple
required.  

Gyroscope 

Gyroscope is used to help determine mobile orientation by
use of earth‘s gravity. It also adds an additional dimension
to the information supplied by the accelerometer by tracking
rotation or twist and it is primarily used for navigation and
measurement of the angular rotational velocity.
measures the phone‘s rotational velocity along the roll,
pitch, and yaw axes. The axes directions are s
Figure 1 (rightside). The raw data from a gyroscope is in
rad/s (radian per second). Modern mobile devices refined
the gravity measurement by creating a virtual sensor that is
implemented as a sensor-fusion of several basic physical
sensors, the accelerometer, the gyroscope, and the magnetic
sensor instead of the previous low-pass filter which induced
an inherent delay. The new technique resulted in much more
accurate and fast responding gravity and tilt measurements.

1.2 Activities 

Activities recognized by smartphones can be classified in
terms of complexity, from simple locomotion such as
moving or stationary, walking or running, etc, t
complexe activities such as cooking, dining, brushing teeth,
etc. Some applications, use either smartphone
sensors or a combination of environmental
smartphone sensors for collecting information
infer context-aware activities.  Moreover, s
physical and behavioral characteristics are unique to an
individual, smartphone-based personal biometric signature
may provide a wide range of possible solutions, which could
be used either for the purpose of controlling smart home
appliances (e.g., TVs, stereos, dishwashers, heating and
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Accelerometer has been initially integrated into smartphones 
in order to automatically determine the orientation in which 
the user is holding the phone and to adjust the screen to 
proper viewing when user changes the orientation from 
landscape/horizontal to portrait/vertical and vice-versa. 

eflect accelerations, i.e. changes in 
(as the acceleration is the first time derivative of the 

(by integrating the signal). 
The accelerometer, however, measures all the accelerations 

are the sum of the gravity 
acceleration and the actual linear acceleration that are 
associated with the movement of the device on all three 
physical axis: x (lateral), y (vertical) and z (longitudinal) 
relative to the screen of the phone as described in Figure 1 

. The raw data stream from the accelerometer is 
the acceleration of each axis measured in SI (International 
System) units, m/s2. A time stamp can also be returned 
together with the three axes readings. However, some 

indistinguishable using only 
multiple sensors may be 

Gyroscope is used to help determine mobile orientation by 
use of earth‘s gravity. It also adds an additional dimension 

by the accelerometer by tracking 
rotation or twist and it is primarily used for navigation and 
measurement of the angular rotational velocity. Gyroscope 
measures the phone‘s rotational velocity along the roll, 
pitch, and yaw axes. The axes directions are shown in 

data from a gyroscope is in 
Modern mobile devices refined 

the gravity measurement by creating a virtual sensor that is 
fusion of several basic physical 

celerometer, the gyroscope, and the magnetic 
pass filter which induced 

an inherent delay. The new technique resulted in much more 
accurate and fast responding gravity and tilt measurements. 

nized by smartphones can be classified in 
terms of complexity, from simple locomotion such as 
moving or stationary, walking or running, etc, to more 

dining, brushing teeth, 
use either smartphone embedded 

environmental sensors and 
sors for collecting information, in order to 

Moreover, since many 
physical and behavioral characteristics are unique to an 

based personal biometric signature 
range of possible solutions, which could 

be used either for the purpose of controlling smart home 
appliances (e.g., TVs, stereos, dishwashers, heating and 

light), or to authenticate users and thus to p
level of security and theft prevention.

Figure 1: Accelerometer and Gyroscope a
Smartphones [

For example, in [28], Accelerometer
Gesture Recognition, called uWave
based on physical manipulation of the device with low cost
and high efficiency. It is particularly suitable for
implementation on resource-constrained devices, such as
mobile phones and TV remotes.
A major goal of the current rese
to develop new technologies and applications for elderly
care. Those applications could help prevent harms,
detecting dangerous situations. For example, it is possible to
recognize trends or daily habits
can be easy to early detect any 
to be recognized play an important role in the design
decisions of an HAR system, because it can help
appropriate choices regarding sensor
extraction and classification methods

1.3 HAR Process 

Typical HAR can simply be defined as the process of
interpreting raw sensor data to classify a set of human
activities. ML techniques are used to infer information about
the activities from the raw sensor reading
consists of the following sequences
(1) Sensing (or data acquisition): In this step, sensor data are
collected at a specific sampling rate from one or more
sensors. 
(2) Preprocessing: In this step, 
For example, noise is removed
and data are segmented. 
(3) Feature extraction: In this
generated. These features are used
during recognition phase. 
(4) Classification: In this step, the trained classi
to recognize targeted activities. 

light), or to authenticate users and thus to provide an extra 
level of security and theft prevention. 

and Gyroscope axes on 
Smartphones [29, 30] 

], Accelerometer-based Personalized 
uWave, enables authentication 

based on physical manipulation of the device with low cost 
and high efficiency. It is particularly suitable for 

constrained devices, such as 
mobile phones and TV remotes.  
A major goal of the current researches in HAR monitoring is 
to develop new technologies and applications for elderly 
care. Those applications could help prevent harms, by 

dangerous situations. For example, it is possible to 
recognize trends or daily habits of an elderly user, so that it 

detect any anomaly. The set of activities 
recognized play an important role in the design 

ystem, because it can help make the 
regarding sensor selection, feature 

cation methods [1].  

Typical HAR can simply be defined as the process of 
interpreting raw sensor data to classify a set of human 
activities. ML techniques are used to infer information about 
the activities from the raw sensor readings; the process 
consists of the following sequences.  
(1) Sensing (or data acquisition): In this step, sensor data are 

fic sampling rate from one or more 

(2) Preprocessing: In this step, collected data are processed. 
example, noise is removed by applying specific filters 

In this step, various features are 
. These features are used as inputs to the classifier 

, the trained classifiers are used 
activities. 
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Before the classification step can be performed for the first 
time, a model need to be trained. In supervised ML, the 
training phase requires labeled data to learn the model 
parameters. The classification phase uses the parameters of 
the trained model to classify new detected activities. 
Training can either be offline on a desktop machine or 
online on the phone itself. In the offline approach, labeled 
data are first collected and stored. These data are used later 
for obtaining the model parameters. If training is performed 
online, the labeled data are directly processed for training 
and the obtained model parameters are stored for later use in 
the actual online activity recognition.  

1.4 Resource constraints 

Although the research on activity recognition is beneficial 
from the availability and flexibility of smartphone’s 
embedded sensors, it also faces many challenges. Actually, 
modern Smartphone devices have great capacity for 
collecting and classifying large amounts of multiple sensor 
readings. However, energy consumption is of a great a 
concern, especially for continuous monitoring applications 
which might deliver critical information. Consequently, in 
most applications, extending the battery life is a desirable 
feature. HAR energy consumption is mainly due to sensing, 
processing, communication, and user interface tasks. By 
processing, we mean data pre-processing, features 
extraction, training and classification. Communicating 
sensor data is generally more energy consuming than 
processing data locally, therefore, one way of improving 
battery life of any mobile device is to minimize the amount 
of transmitted data [31]. Nonetheless, if communicating data 
is necessary in some applications, short range wireless 
networks should be preferred over long range networks as 
the former require lower power. Minimizing communication 
means more local processing on the device, which means 
additional computations that may affect the battery life as 
well. Thus, every step of the HAR process must consider the 
trade-off between battery life and effectiveness. In the 
present work, our goal is to create a simple classification 
model for HAR, by selection of few relevant features 
without scarifying the performance. This model is intended 
to be run in online HAR system; therefore, an accelerated 
implementation is also studied to reduce training time. This 
is the first step towards energy consumption analysis which 
will follow in a second phase.  
The remainder of this paper is organized as follows. In 
Section 2 we will present a state of the art of works linked to 
our goals. Material and methods used in the present study 
are presented in Section 3. Experimental results are 
discussed in Section 4. Section 5 presents the conclusions 
and future work.  

2. Related Work

In the literature, many approaches may be used in order to 
save energy and improve response time during the 
processing steps, such as adaptive/dynamic sensor selection 

[8, 9] and adaptive sampling rate [10, 11]. Another 
important point is whether the classification or training steps 
should be done online on the device or offline in the server 
or the cloud. Actually, offline scheme provides more 
powerful resources capabilities allowing the use of complex 
approaches for better results, especially if intended for 
applications that do not require real-time feedback or where 
online recognition is not necessary because it may introduce 
additional time to classify activities due to the high 
computational demands. On the opposite, online scheme 
should substantially reduce the energy drained from the 
battery as collected data would not have to be continuously 
sent to a server or cloud for processing and/or classification. 
Although it is still a challenging task, online approach 
would not have been feasible if modern smartphones were 
not equipped with higher computing and storage resources, 
even though battery capacities are still scaling more slowly. 
If online HAR system is implemented fully on-device it 
offers other advantages such as robustness and 
responsiveness, thanks to its independence from unreliable 
wireless communication links or Internet connection that are 
needed for sending sensor data for further processing to a 
server or a cloud. Moreover, it avoids transmission of 
sensitive user information, such as location, activities and 
user’s health. Authors in [1] have reviewed research studies 
in this domain and stated that only few of them focused on 
online training in which classifiers can be trained in real 
time on mobile phones [2-7]. In addition, classifiers could 
play a key role in HAR process regarding energy 
consumption depending on their simplicity or complexity. 
Nonetheless, some of them have proven their suitability for 
Smartphone implementation, such as K-nearest neighbours 
(KNN), Support Vector Machine (SVM) and Decision Tree 
(DT) [1]. Moreover, in the pre-processing phase, various 
features (or variables) are extracted from sensor readings. 
They are used later during training or recognition phases. 
Two main types of features are generally used: time and 
frequency domain features. It has been shown in [12] that 
the former are cheaper than the latter in terms of 
computation and storage costs. However, frequency-domain 
features may improve classification accuracy. Similarly, 
large feature sets may significantly slow down the learning 
process in practice, although extracting more features may 
improve accuracy [13]. In fact, the “dimensionality curse” 
phenomenon states that the number of needed training data 
grows exponentially with the number of dimensions used 
[14]. Subsequently, the training phase requires further 
intensive computation if locally undergone on Smartphones 
[15]. Here come Feature Selection (FS) approaches into play 
in order to select optimal subsets of variables in the pre-
processing step. The main benefits are reducing the 
computation cost and storage requirements as well as 
training time [13]. In the following, we review studies done 
so far that implement online activity recognition systems, 
especially works that combine the following desirable 
features: 
• They implement online activity recognition locally on the

phone.
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• They only employ the internal mobile phone sensors,
excluding any work that may combine external and
internal smartphone sensors.

• Their systems are able to recognize some
activities.

• Their systems are able to achieve high overall recognition
rates

• They should evaluate their systems regarding at least one
of the mobile phone resources such as CPU usage/
memory / power consumption.

In particular, we will present the impact of
on mobile phone resources like sensor selection,
rate, features set, classification methods and

2.1 Sensor selection impact 

Each specific activity may need one or a combination of
different sensors for its accurate recognition. However, for a
set of various targeted activities, it is possible that some
sensors are useful only sometimes during continuous online
monitoring for their targeted activities, but still turned on all
the time draining power subsequently. Methods such as
dynamic and adaptive sensor selection have been used by
some researchers in order to improve battery life. This
means that unused sensors are turned off 
adaptive way after detection of the mobile status and user’s
activities. In [8], an adaptive GPS strategy allows the phone
to save power by intelligently disabling the GPS as soon as a
user enters a building. In [9], authors demonstrated
hierarchical sensor management strategy significantly
improved battery life of the device by selectively turning on
the minimum set of sensors and triggering new set of
sensors if necessary to achieve state transition detection. It
has been shown in the same work that energy consumed by
different sensors varies greatly. To further
drain from sensors, some works investigated activity
classification using a single accelerometer
approach produces data set that can be smaller than that of a
multiple sensor approach, saving power in classification.

2.2 Sampling rate impact 

The sampling frequency (SF) has a direct impact on the
system’s resources. Increasing the sampling
more samples and therefore more pre-processing operations
and memory usage of the system. In [37], sampling rate of 1
Hz could achieve high performance for detecting
activities (sitting, standing, walking, and running) in an
offline HAR system. Evaluation of the power consumption
of the online system with different sampling rates
that data processing is the most consuming part, followed by
data collection part and then the proposed recognition
algorithm part. In their survey, authors in 
50, 32 and 20 Hz were the most SF used
observe a range from 2 Hz to 125 Hz with reasonable
reported accuracies. They also reported that m
used a fixed SF except two, where adaptive sampling for
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They only employ the internal mobile phone sensors,
excluding any work that may combine external and

Their systems are able to recognize somephysical 

Their systems are able to achieve high overall recognition

They should evaluate their systems regarding at least one
of the mobile phone resources such as CPU usage/

the impact of some parameters 
ensor selection, sampling 

and online training. 

Each specific activity may need one or a combination of 
different sensors for its accurate recognition. However, for a 
set of various targeted activities, it is possible that some 
sensors are useful only sometimes during continuous online 

eir targeted activities, but still turned on all 
the time draining power subsequently. Methods such as 
dynamic and adaptive sensor selection have been used by 
some researchers in order to improve battery life. This 
means that unused sensors are turned off in real time in an 

detection of the mobile status and user’s 
an adaptive GPS strategy allows the phone 

the GPS as soon as a 
demonstrated that a 

hierarchical sensor management strategy significantly 
improved battery life of the device by selectively turning on 
the minimum set of sensors and triggering new set of 
sensors if necessary to achieve state transition detection. It 

n the same work that energy consumed by 
further minimize power 

investigated activity 
ccelerometer [33-36]. This 

smaller than that of a 
ensor approach, saving power in classification. 

has a direct impact on the 
the sampling rate means 

processing operations 
], sampling rate of 1 

Hz could achieve high performance for detecting simple 
activities (sitting, standing, walking, and running) in an 

power consumption 
with different sampling rates has shown 
is the most consuming part, followed by 

part and then the proposed recognition 
in [1] found out that 

SF used. Overall, they 
observe a range from 2 Hz to 125 Hz with reasonable 

They also reported that most studies 
daptive sampling for 

energy efficiency has been used
authors used an accelerometer and GPS, where GPS is
sampled in an adaptive way. In
use an activity-sensitive strategy for continuous activity
recognition which adaptively makes the choices on bot
sampling frequency and classification features in real time.
Recently, in [38], authors propose
dynamically controls the activity recognition dura
investigated the impact of varying the
size (WS) by starting with a high SF and small WS to
quickly identify changing activities. If the same dynamic
activity is maintained for a long time,
same activity will continue and adopt a method
SF and increase the WS. The experimental resu
that their approach reduced energy consumption compared
to conventional HAR without 
in [32], an adaptive sampling scheme adjusts the sampling
rate of the sensors dynamically based on the context of the
user in terms of events observed (i.e., the sensors are
sampled at a high rate when interesting events are detected
and vice versa) and thus achieves an improved accuracy
without considerably compromising on the energy
consumption. In [39], authors proposed an
saving strategy by selecting an appropriate combination of
flexible frequency and classification feature for each
activity. They achieved an overall 28% of energy saving in
activity recognition on mobile phone.

2.3 Feature set impact 

The longest is the feature vector the better the
information it contains for the accurate performance of
classification algorithm. However, it takes longer time to
collect large data samples for long feature
authors propose a hierarchical method
based on a single accelerometer
reduces the usage of frequency
the WS to improve accuracy.
domain features, authors in [
consumption by about 6.7% compared to a conventional
approach adopting SVM and fast Fourier transform (FFT).
They also plot power consumption against different numbers
of FFT coefficients. It showed
dimensionality. Recently, in 
effect of FS techniques on accuracy and ANNs model
building time. Obviously this step simplified the model and
reduced its time requirement but the recognition rate slightly
decreased. For example, with the original feature set
network reached 97% accuracy within 1327s
and 619 s with the selected feature set.
combined the effects of more than one parameter. For
example, in [42], authors adopt the best sampling rates and
extract feature sets in accordance with the different
activities, alongside with an improved structure of multi
class SVM combined with the probability of activity
occurrence. Experiments show that
with 51.0% of energy saving. 

een used. In the first one [10], 
authors used an accelerometer and GPS, where GPS is 

In the other one [11], authors 
sensitive strategy for continuous activity 

recognition which adaptively makes the choices on both 
sampling frequency and classification features in real time. 

proposed an approach that 
controls the activity recognition duration. They 

investigated the impact of varying the SF and the window 
with a high SF and small WS to 

quickly identify changing activities. If the same dynamic 
activity is maintained for a long time, they assume that the 
same activity will continue and adopt a method to lower the 

The experimental results showed 
approach reduced energy consumption compared 

to conventional HAR without sacrificing accuracy. Finally, 
n [32], an adaptive sampling scheme adjusts the sampling 
rate of the sensors dynamically based on the context of the 

terms of events observed (i.e., the sensors are 
sampled at a high rate when interesting events are detected 
and vice versa) and thus achieves an improved accuracy 
without considerably compromising on the energy 

proposed an adaptive energy-
saving strategy by selecting an appropriate combination of 
flexible frequency and classification feature for each 

They achieved an overall 28% of energy saving in 
activity recognition on mobile phone.  

the feature vector the better the discerning 
for the accurate performance of 

classification algorithm. However, it takes longer time to 
collect large data samples for long feature sets. In [40], 

hierarchical method to recognize activities 
based on a single accelerometer. The proposed method 

equency-domain features and adjusts 
o improve accuracy. By using SVM and time-

ors in [38] reduced the power
consumption by about 6.7% compared to a conventional 
approach adopting SVM and fast Fourier transform (FFT). 

power consumption against different numbers 
showed quadratic increase with the 

 [41], authors examined the 
on accuracy and ANNs model 

Obviously this step simplified the model and 
reduced its time requirement but the recognition rate slightly 
decreased. For example, with the original feature set the 
network reached 97% accuracy within 1327s while 95.8% 

s with the selected feature set. Some studies 
combined the effects of more than one parameter. For 

], authors adopt the best sampling rates and 
extract feature sets in accordance with the different 
activities, alongside with an improved structure of multi-
class SVM combined with the probability of activity 

Experiments show that accuracy is up to 90.6% 
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2.4 Classification methods impact 

Since supervised classification algorithms need intensive 
computation to generate models from training data, still only 
few models can be suitable for smartphone implementation. 
Authors, in [2], introduced “hardware friendly” adaptation 
for multiclass classification. The proposed approach adapts 
the standard Support Vector Machine (SVM) and exploits 
fixed-point arithmetic for computational cost and battery 
consumption reduction. They highlighted the proportional 
relationship between the number of bits used and resource 
consumption. For instance, the 32-bits integer model 
outperforms in speed and battery life the 32-bit float model. 
In [43], authors use DT for training all the data which do not 
spend too much CPU processing and memory, and then they 
use the SVM to analyze the hard portion only. This way 
they got the best tradeoff between accuracy and energy 
consumption. Deep learning approaches are being explored 
to make them suitable for mobile devices. By extracting 
features directly from the input data, learning methods can 
be more generalized instead of hand-crafting appropriate 
features for each type of activities. However, this is typically 
achieved by introducing additional layers and nodes for 
classification, which increases computational complexity. In 
[44], authors use the Hexagon DSP of the Qualcomm 
Snapdragon SoC available in some smartphones. This chip 
is particularly suitable for continuous sensing tasks since it 
allows the power-hungry CPU to often remain in low-
energy sleep mode. They observed on average an 8× to 14× 
in energy savings when DNNs run on the DSP instead of the 
CPU. Although, DSP presents several limitations due to its 
small program and memory space; DNN use is feasible on 
the DSP and has a low energy and runtime overhead 
allowing real-time requirements while preserving accuracy. 
Runtime values of about 16ms are reported for processing 4 
seconds of accelerometer data using 24 feature set.  

 2.5 Online Training impact 

In most of the current studies, training is performed offline 
using ML tools. In fact, the training algorithm which is 
trained on a large data set of many users have long 
calculation times, since the training data set increases with 
every user added to it. In [45] DT, �-NN, and NN have been 
trained. The faster was �-NN with only 0.1 s. The DT was 
also fast, with 2.88 s. The training process of the NN was 
much slower, as it needed 967.16 s. Both the DT and the NN 
produced a model of ≈1 MB size, �-NN gives a model of 
≈10 MB. In [6], authors considered using limited training 
data which can be collected only in a few minutes 
considering the limited memory available on the phones. 
However, there are limitations that can result from using this 
type of learning process:  
• The obtained model is static: once a model is generated it
does not adapt to the user's activity profile changes and is 
not subject specific.  
• Computational costs: training batch algorithms usually
requires cross-validation techniques in order to avoid 

overfitting, and that the entire dataset is allocated into main 
memory.  
Subsequently, there is a need towards implementing training 
models on the mobile devices in an online manner, since 
online training can help developing fast user dependent 
applications such as for fitness or healthcare monitoring. In 
[7], authors demonstrate the Mobile Activity Recognition 
System (MARS) where for the first time the model is built 
and continuously updated on-board the mobile device itself 
using data stream mining. The benefit of data stream mining 
is that the training samples do not need to be stored on the 
phone. However, the system will require initial training data 
for model generation and more data for adaptation. 
Evaluations of the resource consumption (i.e memory 
utilization and CPU usage) of the training phase vary 
proportionally with the data set sizes. Finally, in [46], 
authors propose a framework for activity recognition called 
mobile online activity recognition system (MOARS), which 
integrates data collection, training and inference. The 
framework dynamically takes into account real-time user 
feedbacks to increase prediction accuracy, at the cost of 
additional time. Nonetheless, some activities are recognized 
from 2 to 4 seconds, depending on the choice of the 
classifier. It should be noted that no information is provided 
regarding resource consumption or online training times. 

3. Materials and Methods

In this section, we present a comparison study for HAR 
exploiting feature selection approaches to reduce the 
computation and training time while maintaining significant 
performance. Training simulations were also run using 
parallel resampling of cross-validation over 2 CPU cores.   

3.1 Data Assumptions 

We use a publicly available dataset from UCI repository 
[16], which has been used by the authors to conduct 
experiments using Support Vector Machine (SVM) 
classifier [17]. The latest update (15-Feb-2015) includes 
labeled data collected from 30 subjects, within an age 
bracket of 19-48 years, who engaged in six different 
activities (standing, sitting, laying down, walking, walking 
downstairs and walking upstairs), while wearing a 
Smartphone on the waist. According to the dataset text files 
in [16], the features selected for this database come from the 
accelerometer and gyroscope 3-axial raw signals. These time 
domain signals were captured at a constant rate of 50 Hz. 
Then they were filtered using a median filter and a 3rd order 
low pass Butterworth filter with a corner frequency of 20 Hz 
to remove noise. Similarly, the acceleration signal was then 
separated into body and gravity acceleration signals using 
another low pass Butterworth filter with a corner frequency 
of 0.3 Hz. Subsequently, the body linear acceleration and 
angular velocity were derived in time to obtain Jerk signals. 
Also the magnitude of these three-dimensional signals was 
calculated using the Euclidean norm. Finally FFT was 
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applied to some of these signals. From each window, a
vector of 17 signals is then obtained. A set of different
statistical variables were estimated from these signals so as
each activity window (2,56 seconds) is finally composed of
561-feature vector. The list of all the measures applied to the
time and frequency domain signals are also available in
[16]. All features were normalized and bounded within [
1]. We observed that the instances in the data set are fairly
evenly distributed across the six activity classes. Therefore,
the overall accuracy can be representative of th
performance of a classifier. The dataset employed came
from a controlled experiment, where subjects did a single
activity in a given time frame and the activities were
separated with a pause of a few seconds. 
results therefore can be attributed solely to the dataset
features vector with certainty. Finally, 'subject ID' was not
included as a covariate. This is because we do not consider
the subject dependency in this dataset. The number and class
proportions of observations in each subset are shown in
Table 1. 

Table 1. Number and class proportions
used for training, validation and test.

Dataset Observations Class proportions

TRAINING 4694 0.19 : 0.17
0.13 : 0.15

VALIDATION 2858 0.18 : 0.17
0.13 : 0.14

TEST 2947 0.18 : 0.17
0.14 : 0.16

3.2. Feature Selection 

In practice, little knowledge is available about features that
might capture relevant information to various targeted
classes. Therefore, many candidate features are excessively
constructed. Given the large feature set, it is expected that
many features are irrelevant for any given activity. Actually,
these features will represent just noise to the classifier. FS
methods aim to select a small subset of features that
minimize redundancy and maximize relevance to the target.
For example, a feature Fi is said to be relevant to a class
if Fi and Cj are highly correlated [18]. For the supervised
classification problem, The HAR system operates in two
modes: learning (training) from a given set of examples and
predicting or (testing). In the training phase, s
may find suitable features that best describes the input
patterns guided by the label information. In the classi
phase, the system makes automatic decision about unknown
input patterns. In literature, there are three main approaches
for FS: i) Filter methods for measuring the “relevance”
the features independently of the classifier
Wrapper methods for measuring the “usefulness” of the
features guided by a classifier performance
Embedded methods that are implemented by alg

and C. N. Auth

6 

From each window, a 
s is then obtained. A set of different 

statistical variables were estimated from these signals so as 
ach activity window (2,56 seconds) is finally composed of 

The list of all the measures applied to the 
s are also available in 

ll features were normalized and bounded within [-1, 
e observed that the instances in the data set are fairly 

evenly distributed across the six activity classes. Therefore, 
the overall accuracy can be representative of the true 

he dataset employed came 
from a controlled experiment, where subjects did a single 
activity in a given time frame and the activities were 
separated with a pause of a few seconds. The experimental 

e attributed solely to the dataset 
features vector with certainty. Finally, 'subject ID' was not 
included as a covariate. This is because we do not consider 
the subject dependency in this dataset. The number and class 

bset are shown in 

Table 1. Number and class proportions of observations 
used for training, validation and test. 

Class proportions 

: 0.17 : 0.19 : 0.17 : 
: 0.15 
: 0.17 : 0.17 : 0.15 : 
: 0.14 
: 0.17 : 0.18 : 0.17 : 
: 0.16 

In practice, little knowledge is available about features that 
might capture relevant information to various targeted 
classes. Therefore, many candidate features are excessively 
constructed. Given the large feature set, it is expected that 

e irrelevant for any given activity. Actually, 
these features will represent just noise to the classifier.  FS 

a small subset of features that 
minimize redundancy and maximize relevance to the target. 

to be relevant to a class Cj 
are highly correlated [18]. For the supervised 
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phase, the system makes automatic decision about unknown 
. In literature, there are three main approaches 

the “relevance” of 
the features independently of the classifier ii) 

measuring the “usefulness” of the 
features guided by a classifier performance, and iii) 
Embedded methods that are implemented by algorithms 

having their own built-in FS methods for performing
variable selection implicitly while
trained. The major advantage of the
they are independent of the learning algorithm so that its
bias does not interact with the bias of FS algorithm. Indeed,
they typically make use of various statistical means to
evaluate the relevance of features based on measures of the
general characteristics of the training data such as distance,
consistency, dependency and 
the features can be assigned a weight and they can be
ranked. On the other hand, the major advantage of the
wrapper models is that they may repeatedly utilize the
performance of a learning algorithm to evaluate the
usefulness of subsets of selected features. Nonetheless, this
method is computationally expensive for data with a large
number of features and they have a risk of overfitting to the
model. Due to these limitations, the embedded models offer
a compromise between filter and wrapper
major advantage is that they perform FS and model fitting
simultaneously. In the current study, we examined one
method from each category: i) a filter method called
Consistency-Based Filter (CBF)
Recursive Feature Elimination (RFE)
method called Mean Decrease in Accuracy (MDA) built in
Random Forest algorithm. The three FS algorithms were run
in RStudio [19] using the FSelector package [20] and the
Caret package [21, 22] respectively.
CBF algorithm is that it includes the effect of interaction
among features into evaluation of relevance [23].
Consistency measures, in this regard, evaluate the collective
relevance of a set of features and can be considered as a
metric to measure a distance of
consistent state [24]. A feature set {F
consistent, when  

Pr(C = c | F1 = f1,..., Fn = fn) = 0
where C is a target class , c is a given class value and f
feature value. 
The main drawback of a filter method is that it totally
ignores the effect of the selected feature subset on the
performance of the learning model [25].
approaches, a subset of features is selected and a model is
fitted using them. The decision to remove (or add)
iteratively features from the subset is taken based on the
performance estimation until getting a
highest performance value. The
backward greedy search strategy which
particularly computationally advantageous and robust
against overfitting [18]. The algorithm fits the mod
features. Each feature is ranked using its importance to the
model. Let S be a sequence of ordered numbers which are
candidate values for the number of features to retain
(S1 > S2, …). At each iteration of feature selection,
the Si top ranked features are retained, the model is refit
and performance is assessed. The value of
performance is determined and the top
to fit the final model [21]. In our experiments, we tried two
learning models with RFE: Random Forest and Linear
SVM. Finally, the MDA method
algorithm embedded in the Random Forest model. The

in FS methods for performing 
variable selection implicitly while the model is being 
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general idea consists of randomly permuting the values of 
each feature and measuring how much the permutation 
decreases the accuracy of the model [26]. If a feature is not 
useful for predicting a target, then, permuting its values will 
not result in a significant decrease in a model’s performance. 
The greater the increase in percentage error the greater is the 
importance of the variable.  

3.3. Evaluation 

To evaluate whether the feature subsets were more effective 
for classification than the entire feature set regarding 
accuracy, training time and computation cost, four common 
classifiers were run using all features and then using the 
feature subsets: Linear Discriminative Analysis (LDA), 
Radial Basis Function Support Vector Machine (RBF 
SVM), K-nearest neighbors (KNN), and Random Forest 
(RF). In order to discriminate test data into labeled classes, 
classifiers have been trained first. The training data have 
been further automatically divided into 10 smaller datasets 
for the purpose of 10-fold cross-validation during learning 
phases. The parameters of the best final models were 
preserved for testing on holdout data. This classification 
procedure evaluated the FS results and provided outcome 
measures to determine which classifier is best suited to 
online HAR implementation. In general, feature subsets with 
similar classifier performance to the full feature set should 
reduce computational burden, thus facilitating on-device 
implementation. 

4. Experimental Results

After running calculations, we obtained 7 features in the 
subset selected by the CBF algorithm and 20 features in the 
subset selected by the MDA.  The RFE method was tested 
with 2 wrapper algorithms: RF and Linear SVM. 
Simulations showed that the highest accuracy estimation 
was obtained with a 50 feature subset for the former, while 
it was obtained with a 280 feature subset for the latter. The 
latter is however not relevant to our comparative study 
because it showed almost the same accuracy levels as the 
former in the model generation phase but with longer 
runtimes. Thus, we excluded the RFE-Linear SVM feature 
subset in the rest of this paper for the sake of concision. 
After checking the names and descriptions of the selected 
features, we noticed that some variables are common 
between the three subsets and that the CBF subset contains 
only 2 frequency domain features, while the MDA subset 
contains 5 and the RFE subset contains 10. This reduction in 
the number of frequency domain features is beneficial in 
terms of computation cost, because the original feature set 
contains many frequency domain features based on FFT, 
which demands extra computation. Then, we constructed 
three new datasets with the selected subsets and conducted a 
comparison study in order to the feature subset that works 
the best regarding recognition performance and training 
time. We evaluated our classifiers before and after feature 

selection, using 10-fold cross validation technique. The 
parameters of the best final models were preserved for 
testing on hold-out data.  
Because balanced class proportions assumption is verified in 
our data sets, good performance of each classifier can be 
measured by accuracy metric only, and good performance of 
each activity is obtained if that activity can be classified 
with high precision (PR), recall (RC), and F-measure (F1) 
metrics. 
In Table 2, summary results of the best final models run on 
the Test data, in terms of time taken to build the model and 
Accuracy (Acc.). Activities averaged metrics such as, 
Macro-precision (m-PR), Macro-recall (m-RC) and Macro-
F1-measure (m-F1) are also shown. Overall, LDA and SVM 
offered the highest performance values for the original 
feature set. It can be seen that the RFE subset offers the best 
tradeoff performance/training time with the SVM model. 
For all the other subsets, prediction accuracy is between 
87% and 90%. The shortest training time is in favour to 
KNN. Therefore, recognition phase shows the best stability 
and performance in favour of SVM for all the subsets. With 
all subsets, the training time is however far better than with 
the original feature set.  
Because time domain features help preserve battery life by 
virtue of being less computationally intensive, we discarded 
all the frequency domain features from the best subset (i.e 
RFE subset) and the new subset (40 features) was studied 
using the same procedure as the previous experiments. 
There was a slight decrease in performance (2~3%) 
compared to the RFE subset (see Table 2). 

TABLE 2: Comparative results: Time/Performance 

Sub Cl. Total 
CPU 
Training 
time (s) 

Acc. m-
PR 

m-
RC 

m- 
F1 

561 SVM 50,71 0.95 0.95 0.95 0.95 
LDA 25,52 0.96 0.96 0.96 0.96 

7 SVM 8,6 0.87 0.87 0.86 0.86 
50 SVM 7,92 0.92 0.92 0.92 0.92 
20 SVM 10,03 0.89 0.89 0.88 0.88 

KNN 2,25 0.87 0.88 0.87 0.87 
40 SVM 10,53 0.9 0.89 0.89 0.89 

KNN 2.29 0.89 0.89 0.89 0.89 

We also show the F1-measure that for each activity. It can 
be seen from Table 3, that in all experiments, the “Laying” 
activity was perfectly classified, followed by Walking”, then 
“Walking Downstairs”, then “Walking Upstairs”, then 
“Standing” and finally “Sitting”. The confusion matrix 
shown in Table 4 contains information about ground truth 
versus predicted activities of the best SVM final model run 
on Test data. It can be seen that there is a perfect 
classification between “moving” and “non-moving” 
activities.   
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However, the classifier sometimes confuses a
misclassifies one activity from another when there are inter
class similarities. Actually, it confuses little bit between all
types of walking activities, but little more between “Sitting”
and “Standing”. On the contrary, the “Laying” activity is
again perfectly classified. Furthermore, in order to figure out
how well they perform over different sized versions of the
training set, we have simulated the learning curves of the
final SVM models obtained before and after feature
selection (see Figure 2). For this purpose, the original
Training data (7352 instances) was partitioned into Training
set (75%) and Test set (25%), and 10-fold cross validation
was used for resampling. As expected, reducing the feature
space helped reducing the amount of training data
reach the same classification performance. For example, in
order to reach 90% of accuracy, approximately 5000
instances were needed before feature selection (Figure
Left side), while only 3500 instances were needed after
feature selection (Figure 2, Right side). The evaluation of
the RFE subset with SVM classifier showed improvements
in training time and a slight decrease in activity recognition
accuracy compared to the entire feature set. This indicates
that the features eliminated in the feature selection process
were redundant and did not significantly contribute to
classifier accuracy. Thus, with appropriate pre
procedure, it is possible to obtain equivalent classifier
performance with a smaller feature set, effectively reducing
computation burden on the HAR process. It’s worth noting
that more than half of the RFE subset (i.e. 27 features) is
based on gravity acceleration signals, and 13 features are
based on body acceleration signals, while 3 features are
based on angles between the XYZ axes and the
Mean signal (see [16] text files for features identification).
Hence, for our study, the RFE algorithm found the gravity
signals to be more relevant followed by body acceleration
signals. The remaining 7 features are based on angular
velocity extracted from gyroscope. Statistic estimates such
as interquartile range, skewness and kurtosis of the
frequency domain signals were not useful. Additional
vectors obtained by averaging the signals in a signal window
sample used on the angle variable were not useful as well.
Finally, in Table 5, we compare approximations of
sequential execution times versus parallel execution times
over 2 CPU cores. The values presented are for comparison
only. They may vary depending on hardware platforms, the
written code, the libraries and the programming languages
used. For the sequential part, we notice that total CPU time
is close to elapsed time. This means that the codes are CPU
bound. For the parallel part, it is clear that it helps reducing
CPU time many orders of magnitude. However, still the
elapsed time is large in this case. This means that the codes
are Memory bound. In other words, more time is
requesting data than processing it. The reason is that
number of workers increases, the memory required also
increases. For example, using two cores would keep a total
of three versions of the data in memory. If the data are
large or the computational model is demanding,
performance can be affected if the amount of required
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Figure. 2. Learning Curves of the SVM final models
obtained: Before feature selection (Left side) and after

feature selection (Right side).

TABLE 4: Confusion Matrix of SVM on Test data

Predicted 
Activities 

Ground

Lay. Sit. 

Lay. 537 0 

Sit. 0 397 

St. 0 94 497

W. 0 0 

W- Dn 0 0 

W- Up 0 0 

TABLE 5: Comparative results: Sequential vs Parallel
runtimes (in seconds)

Sub Cl. Sequential 
Total 
CPU 
time 

Elapsed
time

561 SVM 1387 1432
LDA 229.2 270

7 SVM 139.1 140
20 SVM 115.3 122

KNN 7.58 7.65
40 SVM 146.5 147.9

KNN 14.76 15.73
 50 SVM 184.6 197

memory exceeds the physical amount available. In 
addition, all cores share a single memory bus linking to 
RAM. Memory Bound would be slower than CPU Bound. 

our ongoing research involves performing 
specific framework so that they 

can be distributed across multiple smartphone devices 
. This may help alleviate the CPU 

computation burden for calculations that can be run in 
more energy as well. 

2. Learning Curves of the SVM final models 
obtained: Before feature selection (Left side) and after 

feature selection (Right side). 

TABLE 4: Confusion Matrix of SVM on Test data 

Ground-truth activities 

St. W. W-Dn W-Up 

0 0 0 0 

35 0 0 0 

497 0 0 0 

0 488 12 37 

0 6 370 10 

0 2 38 424 

: Comparative results: Sequential vs Parallel 
(in seconds) 

Parallel 
Elapsed 
time 

Total 
CPU 
time 

Elapsed 
time 

1432.5 50.71 944.23 
270.88 25.52 153.11 
140.08 8.6 123.24 
122.15 10.03 121.12 

.65 2.25 7.68 
147.9 10.53 136.57 
15.73 2.29 14.8 
197.12 7.92 103.6 
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TABLE 3: Comparative results: F1-measure for each activity

Ac 
F1-measure for each activity 

561 7 50 20 40 
SVM LDA SVM SVM SVM KNN SVM KNN 

Laying 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 

Sitting 0.92 0.92 0.80 0.86 0.79 0.79 0.82 0.80 

Standing 0.93 0.93 0.83 0.88 0.82 0.81 0.86 0.85 

Walking 0.96 0.98 0.90 0.94 0.93 0.87 0.91 0.92 

Walking-
downstairs 

0.95 0.96 0.86 0.92 0.91 0.90 0.89 0.88 

Walking-
upstairs 

0.95 0.95 0.81 0.90 0.86 0.84 0.86 0.87 

4. Conclusion and Perspectives

In this paper, we have conducted a comparison study using 
Smartphone accelerometer and gyroscope sensors data 
obtained from a publicly available HAR dataset. As the 
dimensionality of the original feature set is very high, we 
used feature selection approaches in order to reduce the 
feature space before classifying activities. We implemented 
them in three different experiments in order to evaluate their 
performance at selecting features in comparison with the 
first experiment where we used the entire feature set. After 
analyzing the results, the RFE subset, with only around 9% 
of the original feature set, showed the best tradeoff between 
classification accuracy, model building time, and confusion 
matrix using the SVM classifier. In another experiment, we 
discarded frequency domain features from the RFE subset to 
measure their impact. There was a slight little decrease in 
performance. In general, the SVM classifier offered the best 
compromise in terms of stability, training time, and 
performance metrics. This comparison study is our starting 
point towards finding energy efficient techniques for real 
time HAR based on Smartphone sensors. Further ongoing 
research involves an accelerated implementation of the 
proposed model, which might take advantage of specific 
hardware computation facilities. Moreover, HAR over 
smartphones is under development for diabetic control and 
prediction of hypoglycaemia [27]. 
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