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Abstract

The availability of diverse and powezrful sensors embedded in modern Smar/mobile device has created exciti
opportunities for developing conteaware appcations.Although there is good capaciy for collecting and classi
human activity data with such devces, data-processing and model building techniques that achieve this go
required to operate while meeting rardware resource constrairticularly for realtime applications. In this paper,

present a comparison study for HAR exploiting feature selection approaches to reduce the computation and tra
needed for the discrimination of tarceted activiiwhile maintaining significant accuracWe validated our approach o
publicly available dataseResults show that Recursive Feature Elimination method ccmbined with Radial Basis H

Support Vector Machine classifier offered the best tradeoff between training time/recoperformance.
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1. Introduction

Researchers are developing many new challen
application scenarios based on mobile phone sensa
various aspects related to the Smart €apcept such as
healthcare (e.g., fitness, diabetes, elderly and ob
assisted surveillance), in smart homes (e.g., context &
indoor air quality and thermalomfort control) and in sma
transportation (e.g., traffic congesticnSensors are the
necessary elements to make the link between the phy
world and the virtual world while th2 intelligent syste
performs analysis in the virtual word. It turns out t
modern smartphones/mobile devices can play a key rc
the recognition of complexstates of the user and
environment, particularly the inference of her phys
activity thanks to the multitude afmbedded sensors a
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Machine Learning techniques (ML). Human Activity
Recognition (HAR) using Smartphones has been wi
studied duringecent years mainly because Smartphone:
not intrusive, widely used in everyday li, and also
wearable. In addition, odern Smartphones devic
integrate powerful processors, multiple communica
technologies, multimediaapability and memory storag
Today’s smartphones caalso benefit from the growing
power of the cloud that allows them to offload expen:
computation. Moreoverthe variety of available wireles
access and communication technologies impleme
provide means of londistance communication the other
user's body wearable sensollin the following, we will
present the smartphoirerna sensors used for HAR in our
study, then overview the current trencand constraints
related to activity recognitioprocess.
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1.1 Sensors light), or to authenticate users and thus rovide an extra
level of security and theft preventic

Accelerometer

Accelerometer has been initially integrated into smartpt

in order to automatically determine the orientation in wr

the user is holding the phone and t¢ adjust the scret
proper viewing when user changes the orientation 1 -X
landscape/horizontal to portrait/vertical and ‘-versa.
Accelerometer readinggftect accelerations, i changes in
velocity (as the acceleration is the firsttime derivative of
velocity) and changes in positidby integrating the signal 'y
The accelerometer, however, measures all the acceler. L
that affect the device, whichre the sum of the gravi
acceleration and the actual linear acceleration that
associated with the movement of the devon all three
physical axis: x (lateral), y (vertical) and z (longitudin

relative to the screen of the phone as described gure 1
(leftside) . The raw data stream from the acceleromete

the accelera_\tion of each axis measurzd in Sl (Internat Figure 1: Accelerometer and Gyroscope axes on
System) units, m/s2. A time stamp can also be retu Smartphones [29, 30]

together with the three axes readings. However, <

activities are usually indistinguishable using onl

acce_lerometer information. Thusjultiple sensors may be gq, example, in [2B Acceleromete-based Personalized
required. Gesture Recognition, calleaWave, enables authentication
Gyroscope based on phys?cgl manipula_tion of the device With low
and high efficiency. It is particularly suitable f
Gyroscope is used to help determine mobile orientatio implementation on resouramnstrained devices, such
use of earth's gravity. It also adds anadditional dimen  mobile phones and TV remcte
to the information supplietly the accelerometer by tracki A major goal of the current rzarches in HAR monitoring is
rotation or twist and it is primarily used for navigation ¢ to develop new technologies and applications for elc
measurement of the angular rotational velo Gyroscope care. Those applications could help prevent harby
measures the phone's rotational veocity along the  detectingdangerous situations. For example, it is possib
pitch, and yaw axes. The axes directions ahown in  recognize trends or daily hat of an elderly user, so that it
Figure 1 (rightside). The radata from a gyroscope is  can be easy to eartietect anyanomaly.The set of activities
rad/s (radian per secondylodern mobile devices refine to be recognized play an important role in the des
the gravity measurement by creating a virtual sensor tt  decisions of an HARystem, because it can h make the
implemented as a senssion of several basic physic appropriate choicesegarding sens selection, feature
sensors, the aelerometer, the gyroscope, and the magr  extraction and classifation method[1].
sensor instead of the previous Ipass filter which induce
an inherent delay. The new technique resulted in much
accurate and fast responding gravity aad tilt measuren 1.3 HAR Process

o Typical HAR can simply be defined as the process

1.2 Activities interpreting raw sensor data to classify a set of hu

o _ - activities. ML techniques are used to infer information at
Activities recogiized by smartphones can be classifiec  the activities from the raw sensor reacs; the process
terms of complexity, from simple lbcomotion such consists of the following sequent.
moving or stationary, walking or running, etco more (1) Sensing (or data acquisiiion): In this step, sensor dai
complexe activities such as cookirdining, brushing teett  collected at a speii sampling rate from one or mo
etc. Some applicationgjse either smartpho embedded sensors.
sensors or a combination @mnvironmentalsensors and (2) Preprocessing: In this stecollected data are processed.
smartphone seors for collecting informatic, in order to  For example, noise is remov by applying specific filters
infer context-aware activities. Moreover, ince many and data are segmented.
physical and behavioral characteristics are unique t (3) Feature extractiontn this step, various features are
individual, smartphonésased personal biometric signal  generatedThese features are usas inputs to the classifier
may provide a wideange of possible solutions, which cot  during recognition phase.
be used either for the purpose of cntrolling smart h (4) Classification: In this steghe trained clasfiers are used
appliances (e.g., TVs, stereos, dishwashers, heating to recognize targeteattivities.
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Before the classification step can be performed for the fird8, 9] and adaptive sampling rate [10, 11]. Another
time, a model need to be traindd. supervised ML, the important point is whether the classification or training steps
training phase requires labeled data to learn the modshould be done online on the device or offline in the server
parameters. The classification phase uses the parametersoofthe cloud. Actually, offline scheme provides more
the trained model to classify new detected activitiespowerful resources capabilities allowing the use of complex
Training can either be offine on a desktop machine oapproaches for better results, especially if intended for
online on the phone itself. In the offline approach, labeledpplications that do not require real-time feedback or where
data are first collected and stored. These data are used latetine recognition is not necessary because it may introduce
for obtaining the model parameters. If training is performeddditional time to classify activities due to the high
online, the labeled data are directly processed for trainingpmputational demands. On the opposite, online scheme
and the obtained model parameters are stored for later usesimould substantially reduce the energy drained from the
the actual online activity recognition. battery as collected data would not have to be continuously
sent to a server or cloud for processing and/or classification.
Although it is still a challenging task, online approach
would not have been feasible if modern smartphones were
. o .. not equipped with higher computing and storage resources,
Although the research on activity recognition is beneﬁga[even though battery capacities are still scaling more slowly.
from the ava|lab|llty and flexibility of smartphone’s |t gnjine HAR system is implemented fully on-device it
embedded sensors, it also _faces many challenges. Actualgﬁers other advantages such as robustness and
modern Smartphone devices have great capacity fQpgponsiveness, thanks to its independence from unreliable
collecting and classifying large amounts of multiple sensqy;irejess communication links or Internet connection that are

readings. However, energy consumption is of a great geeded for sending sensor data for further processing to a
concern, especially for continuous monitoring application§arver or a cloud. Moreover, it avoids transmission of

which might deliver critical information. Consequently, in gensitive user information, such as location, activities and

most applications, extending the battery life is a desirablgsers health. Authors in [1] have reviewed research studies
feature. HAR energy consumption is mainly due to sensing, his domain and stated that only few of them focused on
processing, communication, and user interface tasks. Byine training in which classifiers can be trained in real
processing, we mean data pre-processing, fealurgge on mobile phones [2-7]. In addition, classifiers could
extraction, training and classification. Communlca'ungpmy a key role in HAR process regarding energy
sensor data is generally more energy consuming thafynsumption depending on their simplicity or complexity.
processing data locally, therefore, one way of improvingyonetheless, some of them have proven their suitability for
battery life of any mobile device is to minimize the amounigmartnhone implementation, such as K-nearest neighbours
pf transmitted (_jata [31]. Nongthe_less, if communlcatlng dat("kNN), Support Vector Machine (SVM) and Decision Tree
is necessary in some applications, short range wirele$s) [1]. Moreover, in the pre-processing phase, various
networks should be preferred over long range networks §§atres (or variables) are extracted from sensor readings.
the former require lower power. Minimizing communication ey are used later during training or recognition phases.
means more local processing on the device, which meaRg,q main types of features are generally used: time and
additional computations that may affect the batterylllfe afrequency domain features. It has been shown in [12] that
well. Thus, every step of the _HAR process must consider thRe  former are cheaper than the latter in terms of
trade-off between battery life and effectiveness. In theqomnytation and storage costs. However, frequency-domain
present work, our goal is to create a simple classificatiopatyres may improve classification accuracy. Similarly,
model for HAR, by selection of few relevant featuresiyge feature sets may significantly slow down the learning
without scarifying the performance. This model is intendedhocess in practice, although extracting more features may
to be run in online HAR system; therefore, an :';1cceleratqg1hprove accuracy [13]. In fact, the “dimensionality curse”

implementation is also studied to reduce training time. Thiﬁhenomenon states that the number of needed training data

is_the first_step towards energy consumption analysis Whicérows exponentially with the number of dimensions used
will follow in a second phase.

) _ _ _ [14]. Subsequently, the training phase requires further
The remainder of this paper is organized as follows. lihiensive computation if locally undergone on Smartphones
Secton 2 we will present a state of the art of works linked t 15]. Here come Feature Selection (FS) approaches into play
our goals. Material and methods used in the present StUgly grger to select optimal subsets of variables in the pre-
are presented in Section 3. Experimental results aig,cessing step. The main benefits are reducing the
discussed in Section 4. Section 5 presents the CO”C|US'°&§mputation cost and storage requirements as well as
and future work. training time [13]. In the following, we review studies done
so far that implement online activity recognition systems,
2. Related Work ;esptecially works that combine the following desirable
eatures:

In the literature, many approaches may be used in order 1ol hey implement online activity recognition locally on the
save energy and improve response time during the Phone.
processing steps, such as adaptive/dynamic sensor selection

1.4 Resource constraints
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» They only employ the internal mcbile phone sens
excluding any work that may combine external
internal smartphone sensors.

e Their systems are able to recognize sophysical
activities.

 Their systems are able to achieve high overall recogn
rates

» They should evaluate their systems regarding at leas
of the mobile phone resources such as CPU us
memory / power consumption.

In particular, we will presenthe impact oisome parameters

on mobile phone resources likensor selectionsampling

rate, features set, classification methadsonline training.

2.1 Sensor selection impact

Each specific activity may need one or a combinatiot
different sensors for its accurate recocnition. However, 1
set of various targeted activities, it is possible that s
sensors are useful only sometimes during continuous o
monitoring for tleir targeted activities, but still turned on

the time draining power subsequently. Methods sucl
dynamic and adaptive sensor selection have been us
some researchers in order to improve battery life.
means that unused sensors are turnedn real time in an
adaptive way aftedetection of the motile status and ust
activities. In [8],an adaptive GPS strategy allows the ph
to save power by intelligently disabliige GPS as soon a:
user enters a building. In [9], authatemonstrate that a
hierarchical sensor management strategy significe
improved battery life of the device by selectively turning
the minimum set of sensors and tiggering new se
sensors if necessary to achieve state transition detecti
has been showmithe same work that 2nergy consumec
different sensors varies greatly. Tiother minimize power
drain from sensors, some workigivestigated activit
classification using a singleceelerometer[33-36]. This
approach produces data set that casrballer than that of

multiple £nsor approach, saving power in classifica

2.2 Sampling rate impact

The sampling frequency (SHjas a direct impact on ti
system’s resources. Increasitije samplingrate means
more samples and therefore more preeessing operatior
and memory usage of the system. In][3ampling rate of .
Hz could achieve high performance for detec simple
activities (sitting, standing, walking, and running) in

offine HAR system. Evaluation of theower consumptio
of the online systerwith different sampling ratt has shown
that data processirig the most consuming part, followed

data collectionpart and then the proposed recognit
algorithm part. In their survey, authdrs[1] found out that
50, 32 and 20 Hz were the mdSE use. Overall, they
observe a range from 2 Hz to 125 Hz with reason
reported accuraciesThey also reported that ost studies
used a fixed SF except two, whemaptive sampling fo

2 EAI ‘

energy efficiency haseen use. In the first one [10],
authors used an accelerometer and GPS, where G
sampled in an adaptive waln the other one [11], authors
use an activitysensitive strategy for continuous activ
recognition which adaptively makes the choices orh
sampling frequency and classification features in real t
Recently, in [38], authorsproposd an approach that
dynamicallycontrols the activity recognition dition. They
investigated the impact of varying ttISF and the window
size (WS) by startingvith a high SF and small WS
quickly identify changing activities. If the same dynar
activity is maintained for a long tim¢hey assume that the
same activity will continue and adopt a mettto lower the
SF and increase the WShe experimental relts showed
that theirapproach reduced energy consumption com;
to conventional HAR withousacrificing accuracy. Finally,
in [32], an adaptive sampling scheme adjusts the sam
rate of the sensors dynamically based on the context ¢
user interms of events observed (i.e., the sensors
sampled at a high rate when interesting events are del
and vice versa) and thus achieves an improved acci
without considerably compromising on the ene
consumption. In [39], authoproposed aiadaptive energy-
saving strategy by selecting an appropriate combinatic
flexible frequency and classification feature for e
activity. They achieved an cverall 28% of energy savin
activity recognition on mobile phor

2.3 Feature set impact

The longest ighe feature vector the better tidiscerning
information it containsfor the accurate performance
classification algorithm. However, it takes longer time
collect large data samples for long featisets. In [40],
authors propose lderarchical methc to recognize activities
based on a single accelerom. The proposed method
reduces the usage okfjuenc-domain features and adjusts
the WS b improve accuracyBy using SVM and time-
domain features, auths in |38] reduced the power
consumption by about 6.7% compared to a conventi
approach adopting SVM and fast Fourier transform (F|
They also plopower consumption against different numkt
of FFT coefficients. Itshowedquadratic increase with the
dimensionality. Recently, if41], authors examined the
effect of FS techniquesn accuracy and ANNs mod
building time.Obviously this step simplified the model a
reduced its time requirement but the recognition rate slig
decreased. For example, with the original featurethe
network reached 97% accuracy within 132while 95.8%
and 61% with the selected feature seSome studies
combined the effects of more than one parameter
example, in [4] authors adopt the best sampling rates
extract feature sets in &ccordance with the diffe
activities, alongside with an improved structure of n-
class SVM combined with the probability of activ
occurrenceExperiments show theaaccuracy is up to 90.6%
with 51.0% of energy saving.
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2.4 Classification methods impact overfitting, and that the entire dataset is allocated into main
memory.

Since supervised classification algorithms need intensiveubsequently, there is a need towards implementing training
computation to generate models from training data, still onhymodels on the mobile devices in an online manner, since
few models can be suitable for smartphone implementatioonline training can help developing fast user dependent
Authors, in [2], introduced “hardware friendly” adajpsat ~applications such as for fitness or healthcare monitoring. In
for multiclass classification. The proposed approach adapkél, authors demonstrate the Mobile Activity Recognition
the standard Support Vector Machine (SVM) and exploitSystem (MARS) where for the first time the model is built
fixed-point arithmetic for computational cost and batteryand continuously updated on-board the mobile device itself
consumption reduction. They highlighted the proportionaHsing data stream mining. The benefit of data stream mining
relationship between the number of bits used and resourtfethat the training samples do not need to be stored on the
consumption. For instance, the 32-bits integer modd?hone. However, the system will require initial tragidata
outperforms in speed and battery life the 32-bit float modefor model generation and more data for adaptation.
In [43], authors use DT for training all the data which do noEvaluations of the resource consumption (i.e memory
spend too much CPU processing and memory, and then thefflization and CPU usage) of the training phase vary
use the SVM to analyze the hard portion only. This wayproportionally with the data set sizes. Finally, in [46],
they got the best tradeoff between accuracy and energythors propose a framework for activity recognition called
consumption. Deep learning approaches are being explor&tpbile online activity recognition system (MOARS), which
to make them suitable for mobile devices. By extractindntegrates data collection, training and inference. The
features directly from the input data, learning methods cali@mework dynamically takes into account real-time user
be more generalized instead of hand-crafting appropriaféedbacks to increase prediction accuracy, at the cost of
features for each type of activities. However, this is typicall@dditional time. Nonetheless, some activities are recognized
achieved by introducing additional layers and nodes folfom 2 to 4 seconds, depending on the choice of the
classification, which increases computational complexity. I¢lassifier. It should be noted that no information is provided
[44]' authors use the Hexagon DSP of the Quak:omrfﬁgardlng resource ConSUmptlon or online tralnlng times.
Snapdragon SoC available in some smartphones. This chip

is particularly suitable for continuous sensing tasks since 5 .

allows the power-hungry CPU to often remain in low-3- Materials and Methods

energy sleep mode. They observed on average an 8x to 14x , ,

in energy savings when DNNs run on the DSP instead of t//n" thiS section, we present a comparison study for HAR

CPU. Although, DSP presents several limitations due to i €XPIOiting feature selection approaches to reduce the
small program and memory space; DNN use is feasible (computation and training time while maintaining significant

the DSP and has a low energy and runtime overhe;Performance. Training simulations were also run using

allowing real-time requirements while preserving accur:’;tc;,'?"]‘ra"eI resampling of cross-validation over 2 CPU cores.
Runtime values of about 16ms are reported for processing 4
seconds of accelerometer data using 24 feature set. 3.1 Data Assumptions

i TR We use a publicly available dataset from UCI repository
2.5 Online Training impact [16], which has been used by the authors to conduct
experiments using Support Vector Machine (SVM)
classifier [17]. The latest update (15-Feb-2015) includes
trained on a large data set of many users have |O|Iabeled data collected from 30 subjects, within an age

calculation times, since the training data set increases wDracket of 19-48 years, who engaged in six different

every user added to it. In [45] DE;NN, and NN have been activities_ (standing, sitti_ng, laying _down, walking, W?""ing
trained. The faster walsNN with only 0.1 s. The DT was downstairs and walking upstairs), while wearing a

also fast, with 2.88 s. The training process of the NN WE.Smartphone on the waist. According to the dataset text files

much slower. as it needed 967.16 s. Both the DT and the M [16], the features selected for this database come from the
produced a |’”nodel ofl MB siz.e k—NN gives a model of accelerometer and gyroscope 3-axial raw signals. These time
~10 MB. In [6], authors considered using limited trainingdoma'n signals were capt_ured at a constant rate of 50 Hz.
data which can be collected only in a few minute:Then they were flltereq using a median filter and a 3rd order
considering the limited memory available on the phone:IOW pass Buttgrwort.h f||ter with a corner f_requt_ancy of 20 Hz

However, there are limitations that can result from using th to remove noise. Similarly, the_ acceleratlon S|gn_al was th_en
type of learning process: separated into body and gravity acceleration signals using
« The obtained model is. static: once a model is generatecanOther low pass Butterworth filter with a corner frequency

does not adapt to the user's activity profile changes and of 0.3 Hz. Sgbsequently,_ the_bo_dy linear af:celeran(_)n and
not subject specific. angular velocity were derived in time to obtain Jerk signals.

- Computational costs: training batch algorithms usuaIIjAISO the magnitude of these three-dimensional signals was

requires cross-validation techniques in order to avoiﬂ.:":‘lcu'"’ltecj using the Euclidean norm. Finally FFT was

In most of the current studies, training is performed offline
using ML tools. In fact, the training algorithm which is
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applied to some of these signalsrom each window,
vector of 17 signal is then obtained. A set of differe
statistical variables were estimated from these signals
each activity window (2,56 seconds) is finally composec
561-feature vectoiThe list of all the measures applied to-
time and frequency domain sigaaare also available |
[16]. All features were normalized and bounded witt-1,
1]. We observed that the instances inthe data set are
evenly distributed across the six activty classes. There
the overall accuracy can be representative ce true
performance of a classifier.h& dataset employed cai
from a controlled experiment, where subjects did a si
activity in a given time frame and the activities wi
separated with a pause of a few seccaThe experimental
results therefore canebattributed solely to the data:
features vector with certainty. Finally, 'subject ID' was
included as a covariate. This is becaise we do not cor
the subject dependency in this dataset The number and
proportions of observations in eachbset are shown i
Table 1.

Table 1. Number and class proportions of observations
used for training, validation and test.

Dataset Observations  Class proportions

TRAINING 4694 0.19:0.17:0.19:0.17 :
0.13:0.15

VALIDATION 2858 0.18:0.17:0.17:0.15:
0.13:0.14

TEST 2947 0.18:0.17:0.18:0.17 :
0.14:0.16

3.2. Feature Selection

In practice, little knowledge is availabe about features

might capture relevant information to various targe
classes. Therefore, many candidate features are exces
constructed. Given the large feature set, it is expectec
many features arirrelevant for any given activity. Actuall
these features will represent just noise to the classifier.
methods aim to selech small subset of features tt
minimize redundancy and maximize relevance to the ta
For example, a featurfg is saidto be relevant to a cla:C;

if Fi andC; are highly correlated [18]. For the supervis
classification problemThe HAR system operates in tv
modes: learning (training) from a given set of examples
predicting or (testing). In the training ohaswupervised FS
may find suitable features that best describes the i
patterns guided by the label informatidm the clasfication

phase, the system makes automatic decision about unk
input patternsin literature, there are three main approac
for FS: i) Filter methods for measurithe “relevance of

the features independently of the class i)

Wrapper methods fomeasuring the ‘usefulness” of t
features guided by a classifier performa, and iii)

Embedded methods that are implemented byorithms

2 EAI

having their own builin FS methods for performir
variable selection implicitly whilethe model is being
trained The major advantage of tHilter methods is that
they are independent of thz learning algorithm so the
bias does not interactithr the bias of FS algorithm. Indee
they typically make use cf various statistical means
evaluate the relevance of features based on measures
general characteristics of the training data such as dist
consistency, dependency ainformation [18]. Therefore,
the features can be assigned a weight and they ce
ranked. On the other hand, the major advantage of
wrapper models ighat they may repeatedly utilize t
performance of a learning algorithm to evaluate
usefulness of subset$ selected features. Nonetheless,
method is computationally expensive for data with a li
number of features and they have a risk of overfitting tc
model. Due to these limitations, the embedded models
a compromise betweefilter and wrappe models. Their
major advantage is that they perform FS and model fi
simultaneously. In the current study, we examined
method from each category: i) a filter method ca
ConsistencyBased Filter (CBF ii) a wrapper method called
Recursive FeaturElimination (RFE)and iii) an embedded
method called Mean Decrease in Accuracy (MDA) buil
Random Forest algorithm. The three FS algorithms wert
in RStudio [19] using the FSelector package [20] anc
Caret package [21, 22] respectivi The advantage of the
CBF algorithm is that it includes the effect of interact
among features into evaluation of relevance |
Consistency measures, in this regard, evaluate the colle
relevance of a set of features and can be considerec
metric to measure a distance a feature subset from the
consistent state [24RA feature set {l;,..., K}is said to be
consistent, when
PrC=c|k=f,.. R=f)=C ()
where C isa target class , cis a given class value g is a
feature value.
The main drawback of a filter method is that it tote
ignores the fect of the selected feature subset on
performance of the learning model [25In wrapper
approaches, a subset of features is selected and a mc
fitted using them. Thedecision to remove (or ad
iteratively features from the subset is taken based o1
performance estimation until gettin¢ feature set with the
highest performance value. TRFE algorithm consists of a
backward greedy search strategy whiseems to be
particularly computationally advantageous and ro
against overfitting [18]. fie algorithm fits the mcel to all
features. Each feature is ranked using its importance t
model. LetShe a sequence of ordered numbers which
candidate values for th@umber of features to reta
(8>S, ...). At each iteration of feature selectic
the S top ranked features are retained, the model is
andperformance is assessed. The valuS with the best
performance is determined and the S features are used
to fit the final model [21]. Inour experiments, we tried t'
learning models with RFE: Random Forest and Lir
SVM. Finally, the MDA methodis a variable importance
algorithm embedded in the Random Forest model.
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general idea consists of randomly permuting the values dfelection, using 10-fold cross validation technique. The
each feature and measuring how much the permutatigparameters of the best final models were preserved for
decreases the accuracy of the model [26]. If a feature is nisting on hold-out data.

useful for predicting a target, then, permuting its values wilBecause balanced class proportions assumption is verified in
not result in a significant decrease in a model’s performanceur data sets, good performance of each classifier can be
The greater the increase in percentage error the greater is theasured by accuracy metric only, and good performance of

importance of the variable. each activity is obtained if that activity can be classified
with high precision (PR), recall (RC), and F-measure (F1)
metrics.

3.3. Evaluation In Table 2, summary results of the best final models run on

the Test data, in terms of time taken to build the model and
To evaluate whether the feature subsets were more eﬁec“)&%curacy (Acc.). Activities averaged metrics such as,
for classification than the entire feature set regardi”g/lacro-precision (m-PR), Macro-recall (m-RC) and Macro-
accuracy, training time and computation cost, four cOmmoR1 _measure (m-F1) are also shown. Overall, LDA and SVM
classifiers were run using all features and then using &tereq the highest performance values for the original
feature subsets: Linear Discriminative Analysis (LDA) featyre set. It can be seen that the RFE subset offers the best

Radial Basis Function Support Vector Machine (RBFyadeoff performanceftraining time with the SVM model.
SVM), K-nearest neighbors (KNN), and Random Foresgq, )i the other subsets, prediction accuracy is between

(RF)._I.n order to discrimin_ate te_st data into _Ia_beled classegyo, and 90%. The shortest training time is in favour to
classifiers have been trained first. The training data hayeyN. Therefore, recognition phase shows the best stability
been further automatically divided into 10 smaller datasetg,q performance in favour of SVM for all the subsets. With
for the purpose of 10-fold cross-validation during learning,)| gupsets, the training time is however far better than with
phases. The parameters of the best final models wefg, original feature set.

preserved for testing on holdout data. This <_:Ia53|f|cat|ogecause time domain features help preserve battery life by
procedure evaluated the FS results and provided OUiCOM)gye of being less computationally intensive, we discarded
measures to determine which classifier is best suited g the frequency domain features from the best subset (i.e
olnlllne HAR |_rr_1plementat|on. In general, feature subsets witk g subset) and the new subset (40 features) was studied
similar classifier performance to the full feature set shoult,jjsing the same procedure as the previous experiments.
reduce computational burden, thus facilitating on-devic§pnere was a slight decrease in performance (2~3%)

implementation. compared to the RFE subset (see Table 2).

4. Experimental Results TABLE 2: Comparative results: Time/Performance

After running calculations, we obtained 7 features in the
subset selected by the CBF algorithm and 20 features in the
subset selected by the MDA. The RFE method was tested

with 2 wrapper algorithms: RF and Linear SVM. Sub Cl. (T:%tsl Acc. QF; rFT;C E]l
Simulations showed that the highest accuracy estimation Training

was obtained with a 50 feature subset for the former, while time (s)

it was obtained with a 280 feature subset for the latter. The SUM_ 5071 095 095 095 095
latter is however not relevant to our comparative study LDA 25:52 096 096 096 0096
because it showed almost the same accuracy levels as the, SVM 86 087 087 086 086
former in the model generation phase but with longer 59 gym 792 092 092 092 092
runtimes. Thus, we excluded the RFE-Linear SVM feature ,q SVM 10,03 089 089 088 0.8
subset in the rest of this paper for the sake of concision. KNN 2,25 087 088 087 087
After checking the names and descriptions of the selected 4 SVM 10,53 0.9 089 089 089
features, we noticed that some variables are common KNN  2.29 089 089 089 0.89

between the three subsets and that the CBF subset contains

only 2 frequency domain features, while the MDA subse{ye g50 show the F1-measure that for each activity. It can
contains 5 and the RFE subset contains 10. This reductionja seen from Table 3. that in all experiments, the “Laying”
the number of frequency domain features is beneficial ity was perfectly classified, followed by Walking”, then
terms of computation cost, because the original feature S&lalking Downstairs”, then “Walking Upstairs”, then
contains many frequency domain features based on FFIStanding” and finally “Sitting”. The confusion matrix

which demands extra computation. Then, we constructeghon in Table 4 contains information about ground truth
three new datasets with the selected subsets and conducté,ersys predicted activities of the best SVM final model run

comparison study in order to the feature subset that works, Test data. It can be seen that there is a perfect

the best regarding recognition performance and trainingassification between “moving’” and “non-moving’
time. We evaluated our classifiers before and after featutg.iities.
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However, the classifier sometimes confusesnd
misclassifies one activity from another when there are -
class similarities. Actually, it confuses little bit between
types of walking activities, but little mare between “Sittir
and “Standing”. On the contrary, the “Laying” activity
againperfectly classified. Furthermore, in order to figure
how well they perform over different sized versions of
training set, we have simulated the Izarning curves of
final SVM models obtained before and after feat
selection (see Figure 2). Fdhis purpose, the origini
Training data (7352 instances) was peértitioned into Trail
set (75%) and Test set (25%), andfal@ cross validatiol
was used for resampling. As expected, reducing the fe
space helped reducing the amount of raining needed to
reach the same classification performance. For examp
order to reach 90% of accuracy, approximately 5
instances were needed before featuie selection (Fi2,
Left side), while only 3500 instances were needed i
feature selection (Figure, Right side). The evaluation
the RFE subset with SVM classifier stowed improvem:
in training time and a slight decrease n activity recogni
accuracy compared to the entire feature set. This indi
that the features eliminated in the tiga selection proce:
were redundant and did not significantly contribute
classifier accuracy. Thus, with apprcpriate -processing
procedure, it is possible to obtaiequivalent classifie
performance with a smaller feature set, effectively redu
computation burden on the HAR process. It's worth no
that more than half of the RFE subset (i.e. 27 feature
based ongravity acceleration signals, and 13 features
based on body acceleration signals, while 3 features
based on angiebetween the XYZ axes and tlGravity
Mean signal (see [16] text files for features identificatic
Hence, for our study, the RFE algoritim found the gra
signals to be more relevant followed by body accelere
signals. The remaining 7 features dvased on angul:
velocity extracted from gyroscope. Statistic estimates
as interquartile range, skewness and kurtosis of
frequency domain signals were nct useful. Additic
vectors obtained by averaging the sigrals in a signal wir
sample used on the anglariable were not useful as wi
Finally, in Table 5, we compare approximations
sequential execution timegersus parallel execution tim
over 2 CPU cores. The values preserare for compariso
only. They may vary depending on hardware platforms,
written code, the libraries and the programming langui
used. For the sequential pante notice that total CPU tirr
is close to elapsed time. This mednat the codes are CF
bound. For the parallel pait is clear that it helps reducir
CPU time many orders of magnitude. However, still
elapsed time is large in this case. This means that the 1
are Memory bound. In other words, more time spent
requesting data than processingTihe reason is thaas the
number of workers increases, the memory required
increases. For example, using two cores would keep a
of three versions of the data in memory. If the data
large or the compational model is demandin
performance can be affected if the amount of requ

2 EAI

memory exceeds the physical amount availabln
addition, all cores share a single memory bus linking
RAM. Memory Bound wouldbe slower than CPU Bound.
Therefore, our ongoing researchinvolves performing
training computations usingpecificframework so that they
can be distributed across multiplsmartphone devices
(CPUs, GPUs or DSPsYhis may help alleviate the CF
computation burden for calculations thcan be run in
parallel and may savaore enrgy as well.

| earning Curve (561 F) Learning Curve (50 F)

Figure. 2. Learning Curves of the SVM final models
obtained: Before feature selection (Left side) and after
feature selection (Right side).

TABLE 4: Confusion Matrix of SVM on Test data

Ground-truth activities

Predicted

Activities Lay. Sit. St. W. W-Dn W-Up
Lay. 537 0 0 0 0 0
Sit. 0 397 35 0 0 0
St. 0 94 497 0 0 0
W. 0 0 0 488 12 37
W- Dn 0 0 0 6 370 10
W- Up 0 0 0 2 38 424

TABLE 5: Comparative results: Sequential vs Parallel
runtimes (in seconds)

Sub Cl. Sequential Parallel
Total Elapsed  Total Elapsed
CPU time CPU time
time time
561 SVM 1387 14325 50.71 944.23
LDA 229.2 270.88 25,52 153.11
7 SVM 139.1 140.08 8.6 123.24
20 SVM 1153 122.15 10.03 121.12
KNN 7.58 7.65 2.25 7.68
40 SVM 1465 1479 10.53 136.57
KNN 14.76 15.73 2.29 14.8
50 SVM 184.6 197.12 7.92 103.6
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TABLE 3: Comparative results: F1-measure for each activity

F1l-measure for each activity

Ac 561 7 50 20 40
SVM LDA SVM SVM SVM KNN SVM KNN
Laying 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00
Sitting 0.92 0.92 0.80 0.86 0.79 0.79 0.82 0.80
Standing 0.93 0.93 0.83 0.88 0.82 0.81 0.86 0.85
Walking 0.96 0.98 0.90 0.94 0.93 0.87 0.91 0.92
Walking- 0.95 0.96 0.86 0.92 0.91 0.90 0.89 0.88
downstairs
Walking- 0.95 0.95 0.81 0.90 0.86 0.84 0.86 0.87
upstairs

4. Conclusion and Perspectives 3]

In this paper, we have conducted a comparison study usir[;q
Smartphone accelerometer and gyroscope sensors data
obtained from a publicly available HAR dataset. As the
dimensionality of the original feature set is very high, we
used feature selection approaches in order to reduce tl%
feature space before classifying activities. We implemented
them in three different experiments in order to evaluate their
performance at selecting features in comparison with the
first experiment where we used the entire feature set. Aftf
analyzing the results, the RFE subset, with only around 9%
of the original feature set, showed the best tradeoff between
classification accuracy, model building time, and confusion
matrix using the SVM classifier. In another experiment, we
discarded frequency domain features from the RFE subset[i@
measure their impact. There was a slight little decrease in
performance. In general, the SVM classifier offered the best
compromise in terms of stability, training time, and
performance metrics. This comparison study is our starting
point towards finding energy efficient techniques for reats]
time HAR based on Smartphone sensors. Further ongoing
research involves an accelerated implementation of the
proposed model, which might take advantage of specific
hardware computation facilities. Moreover, HAR over
smartphones is under development for diabetic control and
prediction of hypoglycaemia [27]. (9l
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