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Abstract

This paper focuses on solving a challenging speech enhancement problem: improving the desired speech from a single-
channel audio signal containing high-level unspecified noise (possibly environmental noise, music, other sounds, etc.).
Using source separation technique, we investigate a solution combining nonnegative matrix factorization (NMF) with
mixed group sparsity constraint that allows exploiting generic noise spectral model to guide the separation process. The
experiment performed on a set of benchmarked audio signals with different types of real-world noise shows that the
proposed algorithm yields better quantitative results in term of the signal-to-distortion ratio than the previously published
algorithms.
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1. Introduction

Speech enhancement is a process of removing unexpected
audio signals (noise) from their mixture with a desired
speech signal. This subject has been widely studied for
decades as it brings huge impact in many different domains
such as communication, speech-based control systems,
medical surveillance, audio post-processing in movies and
entertainments, etc., [1]. Recent scientific research [2–4] has
shown that the performance of speech recognition systems
in practical noisy and reverberant environments degraded
dramatically. This situation demonstrates the need for
improving speech quality in such noisy recordings. Popular
approaches for speech enhancement includes beamforming
[5, 6], spectral subtraction [7], and source separation [8–10].

Considering speech and noise as two independent sources
to be separated, audio source separation technique can be
used to isolate the desired speech from high level noise.

∗Corresponding author. Email: duongthihienthanh@humg.edu.vn

Some recent work has developed methods for single-channel
speech enhancement based on e.g., NMF [11, 12], Gaussian
mixture model (GMM) [13], or deep neural network [14, 15].
The two former methods first learn the characteristics of
speech and noise signals, then such learned models were used
to guide the signal separation process. The deep learning
based approaches can learn the separation mask or the
separation model by end-to-end training and gain a significant
impact. However deep learning based systems require a lot of
training data and processing power. For cases with only few
training examples available, the work of Sun and Mysore [16]
proposed the use of NMF [17] to establish the general spectral
model for speech signals from some other voices. Studies of
El Badawy et al. [18–20] employed the similar NMF-based
spectral models learned from source examples obtained by a
search engine to guide the separation algorithm.

In this paper, we focus on a slightly different setting
compared to the existing works [16–18], where the speaker is
assumed to be known but the noise signal is non deterministic.
This speaker-dependent situation is very popular in practice.
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For instance, when speech is used to control robots or
devices, the operator/speaker is often known so that his/her
voice can be collected in advance for training the system.
Concerning noise, it is highly non-stationary and if the
operating environment is changed (different moments or
different locations), it will vary accordingly. Therefore,
noise should not be well-identified in the training process.
From this intuition, we propose a novel approach that first
constructs the general spectral noise model from some noise
examples in advance. Such noise examples can beeasily
pre-collected in some environments. Then the general noise
model is used to guide the separation process. Within
the considered NMF based approach, we investigate the
combination of the existing block sparsity proposed in [16]
and component sparsity proposed in [18] in order to improve
the source separation performance. Developing further from
our preliminary studies [21, 22], this paper presents more
detail about the algorithm and extends the experiments
using large test database containing various types of noise
signals to confirm the effectiveness of the proposed approach.
Furthermore, we report the investigation of the algorithm’s
convergence and stability.

The paper is organized into five sections. We first
summarize the baseline audio source separation algorithm
using the NMF model in Section 2. We then present
the proposed approach in Section 3. Section 4 discusses
experiment settings, algorithm analysis, and speech
enhancement results. Finally, we conclude in Section
5.

2. Baseline Supervised NMF-based
Speech Separation Method

To extract the desired speech signal from the single-channel
noisy signal (referred to as mixture), we consider the mixture
as a signal which created by mixing two audio sources: the
desired speech and the noise. Noise can be environmental
noise and any other unwanted sounds.
In general, the source separation processing is done in the
time-frequency domain after the short-time Fourier transform
(STFT) so that the 1D waveform is represented by the
2D spectrogram. Then this 2D spectrogram is modeled by
the NMF, which is a widely used model in audio signal
processing in general and in audio separation in particular
[23–25].

Let X ∈ CF×M , Y ∈ CF×M , and Z ∈ CF×M are the
complex-valued matrices of the short-time Fourier transform
(STFT) coefficients of the observed mixture signal, the speech
signal, and the noise signal, respectively, where F is the
number of frequency bins, M is the number of time frames,
then the mixing model writes:

X = Y + Z. (1)

Denoting by V = |X|.2 the power spectral matrix of the
mixture signal, where X.n is the matrix whose elements are
[X]nil , NMF decomposes V ∈ CF×M+ into two nonnegative
matrices as

V ≈ B ∗A, (2)

where ∗ is the normal matrix multiplication, B ∈ RF×K+ is
the spectral basis matrix whose column vectors are spectral
characteristics appearing in V, A ∈ RK×M+ is the activation
matrix whose row vectors are times of appearance of spectral
components in B, K is the number of spectral components to
be synthesized. Depending on the applications and properties
of input data, K is usually chosen such that B is able to
represent most spectral characteristics of the input signal [26].
To estimate the latent matrices, B and A are initialized with
random non-negative values and are updated in an iterative
process such that the cost function (3) representing the
divergence between V and B ∗A is minimized:

D(V‖B ∗A) =
F∑
f =1

M∑
m=1

dIS (Vf m‖[B ∗A]f m), (3)

where f and m denote frequency bin index and time frame
index, respectively, and

dIS (x‖y) =
x
y
− log(x

y
) − 1 (4)

is the Itakura-Saito divergence. This divergence is commonly
used in ausio source separation as it offers the scale-invariant
property. In each iteration steps, B and A are updated via the
well-known multiplicative update (MU) rules [26] as

B← B �

(
(B ∗A).−2 �V

)
AT

(B ∗A).−1AT
(5)

A← A �
BT

(
(B ∗A).−2 �V

)
BT (B ∗A).−1

(6)

in which CT is the transposition of matrix C, � denotes the
element-wise Hadamard product, the power and the division
is also element-wise.

Suppose that BY and BZ are spectral basis matrices of
speech and noise, respectively. In training process of the
supervised approach, they are learned from the corresponding
training examples by optimizing similar criterion as (11), then
the spectral model for two sources B is obtained by

B = [BY ,BZ ]. (7)

In the speech enhancement process, this spectral model B is
fixed, and the time activation matrix A is estimated via the
MU rule by iterating (5) and (6). Note that A also consists of
two blocks as AY and AZ , which are block characterizing the
time activations for speech and noise, respectively, as

A = [ATY ,A
T
Z ]
T . (8)
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After the parameters B and A are obtained, the speech
STFT coefficients are determined by Wiener filtering as the
following

Ŷ =
BY ∗AY
B ∗A

� X. (9)

Finally, the estimated speech signal in time domain is
obtained via the inverse STFT.

3. Proposed Method
In the unspecified noise scenario, clean speech example from
a desired speaker is assumed to be available a priori for
training but exact noise example is not available. However,
some general noise examples could be collected easily from
different noisy environments for training also. For example, in
order to separate speech and environmental noise, we collect
some environmental sounds such as wind sound, street noise,
cafeteria, etc., for noise training. The global workflow of the
proposed approach for speech separation is shown in Fig.
1. In the following, we first present the training for both
speech spectral model BY and generic spectral noise model
B̃Z in Section 3.1. We then describe the model fitting with
the proposed mixed group sparsity constraint for the source
separation process in Section 3.2

3.1. Training Spectral Models for Speech and
Noise

(i) Speech spectral model
Let VY = |Y|.2 is the spectrogram of a clean speech
example obtained by the STFT transform. Speech
spectral model BY is learned given VY by optimizing
the divegence between VY and BY ∗AY as

min
BY≥0,AY≥0

D(VY ‖BY ∗AY ), (10)

where AY is the time activation matrix.

(ii) Generic noise spectral model
Let P is the number of collected noise examples for
training, VpZ = |Zp |.2, 1 ≤ p ≤ P is the spectrogram of
p − th noise example. Firstly, VpZ is used to learn the
NMF spectral model, denoting by BpZ , by minimizing
the criterion:

min
BpZ≥0,A

p
Z≥0

D(VpZ‖B
p
Z ∗A

P
Z ), (11)

where ApZ is the time activation matrix.
After all spectral model BpZ , p = 1, . . . , P , are learned
from noise examples, the generic noise spectral model,
denoted by B̃Z , is constructed as the following

B̃Z = [B1
Z , . . . ,B

P
Z ]. (12)

(iii) Spectral model for all sources
The spectral model for all speech and noise is computed
by

B̃ = [BY , B̃Z ]. (13)

In the speech enhancement phase, this spectral model
B̃ is fixed, and the time activation matrix Ã is estimated
via the MU rule. Matrix Ã includes the speech
activation matrix AY and noise activation matrix ÃZ
as

Ã = [ATY , Ã
T
Z ]. (14)

3.2. Proposed Mixed Group Sparsity-inducing
penalty for Noise model fitting

The generic spectral model for noise B̃Z become a larger
matrix when the number of noise examples P increases.
Moreover, it is actually redundant when different examples
share the similar spectral patterns [27–29]. Thus, in the NMF
model fitting for the signal separation, sparsity constraint is
naturally needed so as to fit only a subset of the large matrix
B̃Z to the actual noise representing in the mixture [28]. In
other words, the mixture spectrogram V is decomposed by
solving the following optimization problem

min
A≥0

D(V‖B̃ ∗ Ã) + λΩ(ÃZ ) (15)

where Ω(ÃZ ) denotes a penalty function imposing sparsity
on the activation matrix ÃZ , λ is a trade-off parameter
determining the contribution of the penalty.
Recent work in audio source separation has considered two
penalty functions. The first one is block sparsity-inducing
penalty [16] formulated as the following

Ω1(ÃZ ) =
P∑
p=1

log(ε + ‖Ã(p)
Z ‖1), (16)

where ε is a non-zero constant, Ã(p)
Z is a subset of ÃZ

representing the activation coefficients for p − th block, ‖.‖1
is `1-norm operator, and P denotes the total number of blocks.
In this case, a block represents one training example and P
is the total number of noise examples. This penalty enforces
the activation for relevant examples only while omitting the
poorly fitting examples since their corresponding activation
block will likely converge to zero.
The second one is named component sparsity-inducing
penalty [18] formulated as

Ω2(ÃZ ) =
K∑
k=1

log(ε + ‖̃a(k)Z ‖1), (17)

where ã(k)Z denotes k − th row of ÃZ . This penalty is
motivated by the fact that only a part of the spectral model
learned from an example may fit well with the targeted
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Figure 1. General workflow of the proposed speech enhancement approach.

source in the mixture, while the remaining components in the
model do not. Thus instead of activating the whole block,
this penalty allows selecting only the more likely relevant
spectral components from B̃Z .

However, the component sparsity-inducing penalty also
quite slowly removes unsuitable parts, because it carefully
considers each row in the large matrix. Inspired by the
advantage of these two state-of-the-art penalty functions, in
our recent works [21, 22], we proposed to combine them in a
more general form as

Ω(ÃZ ) = α
P∑
p=1

log(ε + ‖Ã(p)
Z ‖1) + (1 − α)

K∑
k=1

log(ε + ‖̃a(k)Z ‖1),

(18)
where the first term on the right hand side of the equation
presents the block sparsity-inducing penalty, the second
term presents the component sparsity-inducing penalty, and
α ∈ [0, 1] weights the contribution of each term. Proposed
penalty function (18) can be seen as the generalization of
(16) and (17) in the sense that when α = 1, (18) is equivalent
to (16) and when α = 0, (18) is equivalent to (17).
In order to derive the parameter estimation algorithm
optimizing (15) with the proposed penalty function (18), one
can rely on MU rules and the majorization-minimization
algorithm. The proposed algorithm is summarized in
Algorithm 1, where E(p) is a uniform matrix of the same size

as Ã(p)
Z , and g(k) a uniform row vector of the same size as ã(k)Z .

4. Experiment
We start by describing the data set and parameter settings in
Section 4.1. We then describe evaluation metrics in Section
4.2. The performance of the proposed speech enhancement
algorithm and its sensitivity with respect to the choice of the
hyper parameters are presented in Section 4.3.

4.1. Dataset and parameter settings

To validate the performance of the proposed approach, we
select noise examples from DEMAND1 dataset for training
the generic noise spectral model, and perform the test on the
benchmarked dataset from SISEC campaign2. These datasets
were carefully designed by researchers in the audio source
separation community and widely used.

Training speech example is five-second long and is spoken
by the same person with speech in the tested mixtures.
We use five types of environmental noise: kitchen sound,
waterfall, metro, field sound, cafeteria to train the generic

1http://parole.loria.fr/DEMAND/
2http://sisec.wiki.irisa.fr.
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Algorithm 1 Proposed NMF with mixed group sparsity
constraint algorithm

Require: V, B̃, λ, α
Ensure: Ã

Initialize Ã randomly with nonnegative values
V̂ = B̃ ∗ Ã
repeat

// Taking into account block sparsity-inducing penalty
for p = 1, ..., P do
E(p) ← 1

ε+‖Ã(p)
Z ‖1

end for
E = [ET(1), . . . ,E

T
(P )]

T

// Taking into account component sparsity-inducing
penalty
for k = 1, ..., K do
gk ← 1

ε+‖̃a(k)Z ‖
end for
G = [gT1 , . . . , g

T
K ]
T

// Updating activation matrices

AY ← AY �
BTY ∗(V̂

.−2�V)
BTY ∗(V̂.−1)

ÃZ ← ÃZ �
(

B̃TZ ∗(V̂
.−2�V)

B̃TZ ∗(V̂.−1)+λ(αE+(1−α)G)

). 12
//Updating V̂
V̂ = B̃ ∗ Ã

until convergence

noise spectral model (see Section 3.1). They are extracted
from DEMAND with duration varying from 5 to 15 seconds.

The performance of the proposed algorithm was evaluated
over a test set containing 15 single-channel mixtures of two
sources artificially mixed at 0 dB signal to noise ratio (SNR).
Note that with this 15 mixtures with various types of noise
could be sufficient to access the performance of the proposed
algorithm. During the mixing process, we made sure that in
all mixtures both sources appear all the time. The mixtures
were sampled at 16000 Hz and their duration varies between
5 and 10 seconds. The speech samples include female speech
and male speech in English, they were obtained from SiSEC
data set. The noise samples were obtained from DEMAND
from one channel out of the 16 channels. Some of them were
mixed two noises, e.g., traffic + wind sound, ocean waves
+ birdsong, restaurant + guitar, forest birds + car, square +
music, ect.,.

The parameters were set as follow. The STFT was
calculated using a sliding window with a frame length of
1024, 50% overlap. The number of NMF components were
set to 32 and 16 for speech and noise, respectively. The
number of iterations for MU updates was 100 for the training
step and was tested with values from 1 to 100 in the testing
in order to investigate the convergence of the algorithm.

To consider the sensitivity of the proposed algorithm to
the trade-off parameter λ determining the contribution
of the sparsity-inducing penalty and the contribution
weighting of each penalty term α, we varied the values of
these parameters as λ = {1, 10, 25, 50, 100, 200, 500}, α =
{0, 0.2, 0.4, 0.6, 0.8, 1}.

4.2. Evaluation method
We compare the separation performance obtained by
proposed algorithm with several state-of-the-art algorithms as
follows:

• Baseline NMF - without training: The NMF-based
algorithm was described in Section 2. This test did not
use training data, instead, the spectral models for both
speech and noise were initialized with random non-
negative values and were iteratively updated via (5) and
(6).

• Baseline NMF - speech training: The algorithm based
on NMF was described in Section 2. In this experiment,
the spectral model for speech signal was learned by
speech examples that were five-second long and were
made by the same person with the speech in the tested
mixtures. The spectral model for noise was initialized
with random non-negative values and was iteratively
updated via (5) and (6).

• NMF non-sparsity: The algorithm based on NMF was
described in Section 2. The spectral model for speech
was also learned by five-second long that was spoken
by the same person with the speech in the tested
mixtures. The noise spectral model was learned by one
noisy file which was made by pairing five noise samples
in the noise training set described in Section 4.1.

• NMF - Block sparsity: Proposed framework, combin-
ing NMF with block sparsity constraint by (16) [16].

• NMF - Component sparsity: Proposed framework,
combining NMF with component sparsity constraint by
(17) [18].

Separated speech results were evaluated using the source-to-
distortion ratio (SDR) measuring overall distortion as well
as the source-to-interference ratio (SIR) and the source-to-
artifacts ratio (SAR). They were measured in dB and averaged
over all sources where the higher is the better. These criteria,
known as BSS-EVAL metrics, have been mostly used in the
source separation community [30].

4.3. Results and Discussion
The results are averaged over all 15 testing mixtures for six
different algorithms and indicated in Table 1. Figure 2 shows
the convergence of the proposed algorithm as a function of
the number of MU iterations. Performance of the algorithm
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Algorithms SDR (dB) SIR (dB) SAR (dB)
Baseline NMF - without training -0.5 2.4 6.4
Baseline NMF - speech training 5.8 9.6 10.4

NMF non-sparsity 3.5 4.5 10.1
NMF - Block sparsity [16] (λ = 1, α = 1) 7.9 12.7 11.4

NMF - Component sparsity [18] (λ = 1, α = 0) 8.0 13.1 11.4
Proposed NMF - Mixed sparsity (λ = 1, α = 0.2) 8.3 13.3 11.5
Table 1. Average performance of speech enhancement obtained on the test set.

Figure 2. Speech enhancement performance of the proposed method as a function of MU iterations.

Figure 3. Average speech enhancement performance of the proposed method as a function of λ and α.

as a function of the parameters λ and α is shown in Figure 3.

It is interesting to see in Table 1 that the results obtained
by the "NMF non-sparsity" method even were lower than
the results of "Baseline NMF - speech training" method.
It reveals that the generic noise spectral model itself is
redundant and contains some irrelevant spectral patterns with
the actual noise in the mixture. Thus the importance of such
sparsity penalty is explicitly confirmed by the fact that the
results obtained by three algorithms based on the NMF with
group sparsity-inducing penalties were far more better than
the remaining three algorithms. It is also not surprising to
see that the baseline NMF method yielded quite good results
when using training data for speech signal (i.e. "Baseline

NMF - speech training" method gained 5.8 dB SDR), but
without training data, the result is very low (i.e. "Baseline
NMF - without training" method gained -0.5 dB SDR).
Finally, the "Proposed NMF - Mixed sparsity" algorithm
offers the best speech enhancement performance in terms of
all SDR, SIR, and SAR compared to the five existing ones.
More specifically, compared to two algorithms based on the
NMF with group sparsity-inducing penalties, the proposed
NMF - Mixed sparsity method gained 0.4 dB and 0.3 dB
SDR higher than those of the "NMF - Block sparsity" method
and the "NMF - Component sparsity" method, respectively.
The proposed method’s results were also far better than
results of three first methods. This proves the effectiveness
of the successful combination of two state-of-the-art group
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sparsity-inducing penalties we have proposed.

Investigating the convergence of proposed method, Figure
2 shows that all measure SDR, SIR, and SAR increases with
more number of MU iterations. This confirms that the derived
algorithm converges correctly and saturates after about 20
MU iterations.

The average speech separation performance over all
mixtures in the test set, as a function of λ and α, is shown
in Figure 3. As can be seen, the proposed algorithm is less
sensitive to the choice of α and more sensitive to the choice
of λ. It is quite stable with the small value of λ, and the
result is best with 1 ≤ λ ≤ 25 and 0 ≤ α ≤ 0.4. Overall the
proposed algorithm is not very sensitive to the choice of such
hyper-parameters and thus in the practical implementation
one can set them quite easily.

5. Conclusions
In this paper, we have presented a speaker-dependent
single-channel speech separation method based on the
matrix factorization framework. Our method employed some
different noise signal files to build the general spectral model
for noise. For the estimation of the speech and noise signal
from their mixture, we proposed the combination of NMF
with two types of sparsity constraints. Experimental results
showed the effectiveness of the proposed algorithm. Our
further investigation showed the algorithm’s convergence
and its robustness to the choice of hyper-parameters λ and
α. These properties are very useful for setting parameter in
practical installation of the algorithm.
Future work could be devoted to extend the work to
multi-channel case where the spatial model, such as the
one considered in [31], for audio sources is incorporated.
Additionally, validating the effectiveness of the proposed
denoising approach for automatic speech recognition (ASR)
would be a particular interest.
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