
EAI Endorsed Transactions on
Context-aware Systems and Applications

10 -11 2015 | Volume 2 | Issue 6 | e2

EAI Endorsed Transactions
on Context-aware Systems and Applications Research Article

1

Mobility Patterns Mining Algorithms with Fast Speed

Giang Minh Duc
1,*, Le Manh

2 and Do Hong Tuan
3

1
 HCM City University of Technology , HCM City, Vietnam

2
 Van Hien University, HCM City, Vietnam

3
 HCM City University of Technology , HCM City, Vietnam

Abstract

In recent years, mobile networks and its applications are developing rapidly.
Therefore, the issue to ensure quality of service (QoS) is a key issue for the service
providers. The movement prediction of Mobile Users (MUs) is an important problem in
cellular communication networks. The movement prediction applications of MUs
include automatic bandwidth adjustment, smart handover, location-based services,…
In this work, we propose two new algorithms named the Find_UMP_1 algorithm and
the Find_UMP_2 algorithm for mining the next movements of the mobile users. In the
Find_UMP_1 algorithm, we make to reduce the complexity of the traditional
UMPMining algorithm. In the Find_UMP_2 algorithm, we perform to reduce the
number of transactions of the User Actual Paths (UAPs) database. The results of our
experiments show that our proposed algorithms outperform the traditional
UMPMining algorithm in terms of the execution time. In addition, we also propose the
UMP_Online algorithm in order to reduce the execution time as adding new data. The
benefit of applying the UMP_Online algorithm is that the system can run online in real
time. Therefore, we can perform the applications effectively.

Keywords: mobility patterns, mobility rules, cellular communication networks, data mining, mobility prediction.

Received on 14 August 2015, accepted on 27 September 2015, published on 05 November 2015

Copyright © 2015 Giang Minh Duc et al., licensed to EAI. This is an open access article distributed under the terms of the Creative

Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and

reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/eai.5-11-2015.150603

Corresponding author. Email: ducgm.bdg@vnpt.vn

1. Introduction

Currently, due to the rapid development of mobile
communication networks, many people use personal mobile
devices to search for information on the Internet. Almost
everyone has a mobile device as cell phone, personal digital
assistant (PDA) or notebook. In addition, many people
search for information while traveling all over the world. At
about 6.8 billion mobile phones are used around the world in
2013 at the rate of 96, 97% of the world population [1].

Therefore, the propose problem is how to ensure quality of

mobile services.

In cellular communication networks [2], a mobile user
can move from one location to another which neighboring

cell in the network. When MUs move like that, the location
of mobile users will be constantly updated to Visitor

Location Register (VLR) ([3], [4], [5]) of the system. VLR
is an intermediate database in order to store temporary

information about mobile users in the service area of Mobile
Switching Center (MSC). The location information of MUs

then is transferred to home location register (HLR). The

http://creativecommons.org/licenses/by/3.0/
mailto:ducgm.bdg@vnpt.vn

EAI Endorsed Transactions on
Context-aware Systems and Applications

10 -11 2015 | Volume 2 | Issue 6 | e2

Giang Minh Duc et al.

2

HLR is a database which long-term storage of information
of MUs. The movement history of MUs is extracted from

the log files and it is stored in the HLR of the MSC. The
historical data is used to predict the mobility of MUs.

Due to the properties of the cellular communication
networks are mobility, disconnection, long time delay, hand-

off, bandwidth continuously changing... so there were some

recent researches, which applied the traditional User
Mobility Pattern (UMP) Mining algorithm ([7], [8], [9],

[10]) to overcome these problems. However, the UMP
Mining algorithm has a long execution time, running offline.

Therefore, the above applications are reduced effectiveness.

In particular, our main contributions can be summarized as

follows:

 Our proposed algorithms make increased running speed

of the traditional UMP Mining algorithm in two ways.

(1) We perform to reduce the complexity of the

traditional UMP mining algorithm. (2) We reduce a

number of transactions when movements mining of

MUs.

 We propose UMP_online algorithm to avoid scanning

of full database again. This algorithm executes to mine

the new dataset (new transactions are added to the

database). Therefore, the mobile service providers

(MSPs) can supply their applications more efficiently.

 The results of our experiments show that:

- Execution time of the first improvement (Find_UMP_1
algorithm) reduces more than 25% compared with the

traditional UMPMining algorithm.
- Execution time of the second improvement

(Find_UMP_2 algorithm) reduces more than 75%
compared with the traditional UMPMining algorithm.

- The third improvement (UMP_Online algorithm) has an

execution time down about 57.94% compared with the
Find_UMP_2 algorithm.

The rest of our paper is organized as follows. In section 2,

we present related work. In section 3, our proposed scheme

is explained. Finally, we present the experimental results in

Section 4 and conclude our work in section 5.

2. Related work

Problem mining sequential patterns mentioned in [6],

[7], [8], [9]. The algorithm in [6] applied Apriori algorithm

in grid computing and does not take into the topology of the
network while creating the candidate patterns. In [14], Mira

H. Gohil and S. V. Patel compared different methods of the
next location prediction.

The UMPMining algorithm in [7] predicts the next location

of mobile users using data mining techniques . In [7], Yavas

et al presented an AprioriAll based sequential pattern

mining algorithm to find the frequent sequences and to

predict the next location of the user. They compared their

algorithm’s results with Mobility Prediction based on

Transition Matrix (TM). In [10], Byungjin Jeong applied the

UMPMining algorithm to perform the decision smart

handover for the purpose of reducing the number of

unnecessary handover in architecture Macro / Femto-cell

networks.
In [11] and [12], the authors also applied the

UMPMining algorithm for location-based services (LBSs)

in the cellular communication networks. In [11], Abo-

Zahhad et al. presented LBSs as emergency, safety, traffic
management, and public information applications. In [12],

Lu et al., presented to find segmenting time intervals where
similar mobile characteristics exist.

The above works apply the traditional UMPMining

algorithm to enhance quality of services. Our algorithms

improve the traditional UMP algorithm to further enhance

the quality of services.

3. Proposed scheme

Before giving our proposed algorithms, we present the

traditional UMP Mining algorithm in [7] and calculate its

complexity in subsection A as follows.

3.1 The traditional UMPMining algorithm:

Suppose that User Actual Paths (UAPs) have a form as
follows: C = {c1, c2... cn}. Each ck denotes the ID number of

the cell kth in coverage area.

For example, we have the coverage map simulated as

follows:

Figure 1. The simulation of the cellular network and
graph G

The data of UAPs as follows:

Table 1. Paths of mobile users

UAP ID UAPs

1 {5,6,0,4}

2 {3,4,5,0}

3 {1,2,3,4,0,5}

4 {3,2,0}

C4

C8

C7

C5

C6

C1

C2

C0

C3

2

3

8

7

0

5

6

1

4

EAI Endorsed Transactions on
Context-aware Systems and Applications

10 -11 2015 | Volume 2 | Issue 6 | e2

Mobility Patterns Mining Algorithms with Fast Speed

3

G is called a directed graph corresponds to cells in the
mobile coverage area. Each cell of the G is a node as Fig. 1.

If there are two cells that called A, B neighboring each other
(a common border) in the mobile coverage area, they have a

directed and unweighted edge from A to B and from B to A.

Definition 1:
Suppose that there are two UAPs, A = {a1, a2,... an} and

B = {b1, b2... bm}. B is a substring of A, if exist: 1 ≤ i1 <... <

im ≤ n, bk = aik, k, and 1 ≤ k ≤ m.

In addition, B is a substring of A, if all cells of B exist in

A (not need sequent in A).

For example, in Figure 1, suppose that A = {c4, c0, c6, c7,
c8, c5) and B = {c6, c8} is the length-2 sequence of A. In

addition, The UAP B is contained by the UAP A.

The UMPMining algorithm is a sequence pattern mining
algorithm which applied in the movement predict of the

cellular networks ([7], [8], [9], [10], [11], [12]).

UMPMining algorithm

Input: UAPs of database D, min_supp, graph G

Output: L (UMPs)

1. C1  the length-1 patterns

2. k = 1

3. L =  // initially the set is empty

4. while Ck  

5. for each (UAP a  D) do

6. S = {s  s  Ck and s is subsequence of a}

7. for each s  S do

8. s.count = s.count + s.suppInc

9. endfor

10. endfor

11. Lk = {s  s  Ck, s.count  min_supp }

12. L = L  Lk

13. Ck+1  Cand_Gen (Lk, G), c  Ck+1,, c.count = 0

14. k = k + 1

15. endwhile

16. return L

At line 13, the Cand_Gen() function is written as follows:

Cand_Gen algorithm

Input: Lk; G

Output: Candidates (Ck+1)

1. Candidates =  //initially the candidates set is empty

2. for each L = (l1, l2, …, lk), L  Lk do

3. N
+

= {v lk  v }

4. for each v  N
+

 (lk) do

5. C’ = (l1, l2, …, lk, v)

6. Candidates  Candidates  C’

7. endfor

8. endfor

9. return Candidates

For UMPMining algorithm, from line 5 to line 10 (finding

support of Cn) is rewritten as follows:

Find_support_UMP(Sk)

Input: database D

Output: SP(Sk) (support of Sk)

1. for each (UAP a  D) do //scan all database D

2. for (i = 1; i  |a|; i++) do //|a|: length of sequence a

3. Find position (s1, s2, …, sk)  Sk in sequence a

4. Find Sk.count

5. endfor

6. endfor

7. return SP(Sk)

The complexity of the Find_support_UMP function:

 For the loop at line 1: the complexity is O(m), where m

= |D|

 For the second loop (line 2): the complexity is O(n),

where n = | a |: the average length of string a  D.

 Thus, the complexity of this algorithm is: O(mn).

In order to reduce the complexity of the UMP Mining

algorithm we perform steps as follows:

EAI Endorsed Transactions on
Context-aware Systems and Applications

10 -11 2015 | Volume 2 | Issue 6 | e2

Giang Minh Duc et al.

4

3.2. Find_UMP_1 algorithm

We map the UAPs database (D) to the Mdd Mobility

Matrix (definition 6).

Steps as follows:

Definition 2: Data Mining Context

Let O be a non-empty limited set of transactions (UAP

ID) and I be a non-empty limited set of cells, R be a two

subject relation between O and I such that o  O and i  I,

(o,i)  R  transaction o contains cell ith. The data mining

context is the triple (O, I, R).

Definition 3: Data Mining Context Matrix

Give a mobile user’s paths table includes two properties
that are UAP_ID (code of a transaction) and UAP (path of a

mobile user through the cells of the mobile coverage map).
Call O is a set of transactions. I is a set of cells and R is a

two subject relation between O and I, R  OI, where (o, i)

 R if and only if transaction o is contained cell ith.

Definition 4: Galois Connection

Give a data mining context (O, I, R), where two

functions  and , they are defined as follows:  P(I) 

P(O) and  P(O)  P(I):

Give S  I, (S) = {o  O  i  S, (o,i)  R}

Give X  O, (X) = {i  I  o  X, (o,i)  R}

Where P(X) is a set of subsets of X. A pair of function

(,) is defined in such that is called Galois Connection.

(S) value denotes a set of transactions that have

common all cells in S. (X) The value denotes a set of cells
that have in all transactions of X.

Property 1: a pair of function (, ) has properties as

follows:

1.1 Where S1, S2  P(I), S1  S2  (S2)  (S1)

1.2 Where X1, X2  P(O), X1  X2  (X2)  (X1)

1.3 S  ((S)) and X  ((X))

1.4 (((X))) = (X) and (((S))) = (S)

Definition 5: the frequent set

Give a data mining context (O, I, R), and S  I, the
frequency level of S is defined as the ratio of the number of

transactions to all of the transactions . The frequent of S is

called the support of S (SP(S)) and it is computed as
follows:

Where .  is the length of the set.

Give S  I and min_supp is a minimum support

threshold, S is a support set by the min_supp threshold if

and only if SP(S)  min_supp.

FS (O, I, R, min_supp): is the set of the support subsets
satisfy the min_supp threshold or FS (O, I, R, min_supp) =

{S  P (I)  SP(S)  min_supp}

Clause 1:

Give S  FS(O, I, R, min_supp), if T  S, then T 
FS(O, I, R, min_supp)

Demonstration: due to T  S, according to property (1.1) of

the Galois Connection of a pair of function (, ), we have

(S)  (T), therefore min_supp  SP(S)  SP(T)  T 
FS(O,I,R,min_supp).

Clause 2:

Give T  FS(O, I, R, min_supp), if T  S, then S 

FS(O, I, R, min_supp).

Demonstration: due to T  S, according to property (1.1) of

the Galois Connection of a pair of function (, ), we have

(S)  (T), therefore SP(S) ≤ SP(T) < min_supp  S 

FS(O,I,R,min_supp).

Definition 6: Mdd mobility Matrix

The Mdd mobility matrix is similar to the binary matrix
as definition 3, but it is added as follows: each M [Om, in] is

a location of a mobile user traveling in mobile network
(Table 2).

Column in: code of a cell in mobile network.

Row om: the actual paths of a mobile user.

We exchange data from the table 1 to table 2 as follows:

Table 2. Mobility matrix of mobile users

i0 i1 i2 i3 i4 i5 i6 i7

o1 3 0 0 0 4 1 2 0

o2 4 0 0 1 2 3 0 0

o3 5 1 2 3 4 6 0 0

o4 3 0 2 1 0 0 0 0

For example, in table 2, mobile user 2 (UAP ID = 2) moves

between the cells as follows:

Figure 2. Mobility of UAP ID = 2

Therefore, the path o2 performs the following: o2 = (4, 0, 0,

1, 2, 3, 0, 0)

The following is a new algorithm to find UMPs from the
mobility matrix Mdd:

3 4 5 0

EAI Endorsed Transactions on
Context-aware Systems and Applications

10 -11 2015 | Volume 2 | Issue 6 | e2

Mobility Patterns Mining Algorithms with Fast Speed

5

Find_UMP_1 algorithm

Input: min_supp, Mdd, G

Output: L

1. L =  // initially the large patterns set is empty

2. L1 ← Find_L1 //generate L1 from Find_L1 function

3. for (k=2; Lk-1  ; k++) do

4. Lk ← Find_Lk(Lk-1) //generate Lk from Lk-1

5. L = L  Lk

6. endfor

7. return L

At line 2, we have Find_L1() function as follows:

Find_L1 algorithm

Input: (O, I, R), min_supp, Mdd, G

Output: L1.

1. L1 = 

2. for each (i  I and j  field of Mdd) //i: cell ID and it

is also a column of Mdd

3. S={s | s  Mdd and s ij  0}

4. for each s  S

5. s.count = s.count + 1

6. endfor

7. endfor

8. L = {s | s  C1, s.count ≥ min_supp}

9. L1 = L1  L

10. return L1

At line 4 of Find_UMP_1 algorithm, we have a function

finds Lk from Lk-1 as follows:

Find_Lk(Lk-1) algorithm

Input: Lk-1, G, Mdd

Output: Lk

1. Lk = 

2. for (each X  Lk-1) do

3. for (each Y  Lk-1 and X  Y) do

4. S = X  Y

5. S = {s1,s2,…,sk-1,sk} //sk: a set of cells be linked
to sk-1 of G

6. if (|S| = k and SP(S) ≥ min_supp) then

7. Lk = Lk  {S}

8. endif

9. endfor

10. endfor

11. return Lk

At line 6 of Find_Lk(), we have a function finds the support

of Sk as follows:

Find_support(Sk) algorithm

Input: Sk, Mdd

Output: SP(Sk)

1. for each o  Mdd do //scan all Mdd

2. Find location (s1,s2,…,sk)  Sk of o  Mdd

3. Find Sk.count

4. endfor

5. return SP(Sk)

 The complexity of the Find_support() algorithm:

- For the loop at line 1: the complexity is O(m), where m

= |O|: the total number of records of Mdd

- Thus, the complexity of the algorithm is: O(m).

The complexity of the Find_support algorithm is reduced n
times (reduce of one loop) compared to UMPMining

algorithm.

3.3. Find_UMP_2 algorithm
The Find_UMP_2 algorithm is similar to the
Find_UMP_1 algorithm, they differ from the function

to find the support, as follows:

 Decreasing the number of transactions:

According to the clause 2, we have:

T  FS(O, I, R, min_supp), if T  S, then S  FS(O, I,
R, min_supp).

Find_Supp_2(Sk) algorithm

Input: Mdd, Sk, min_supp, G

Output: SP(Sk)

1. Dem_dong = 1

2. if Sk = 2 then

//scan all rows of Mdd (on  Mdd)

3. for (i = 1; i ≤ O; i++) do

4. if (Sk  O and (s1,s2,…,sk) have in order of O) then

5. Store_Array ← save variable i

6. Store_Array ← count the number of rows

7. endif

8. endfor

9. else //Sk > 2

10. Sk-1 ← Sk

11. |OR| ← Store_Array //|OR|: the number of rows

contains Sk-1

12. for (i = 1; i ≤ |OR|; i++) //|OR| < O

13. if (Sk  OR and (s1,s2,…,sk) have in order of OR)

then

14. Store_Array ← save variable i

15. Store_Array ← count the number of rows

16. endif

17. endfor

18. endif

19. SP(Sk) ← Find support

20. if SP(Sk) ≥ min_supp then

21. Store_Array ← Temp_Array

22. endif

23. return SP(Sk)

EAI Endorsed Transactions on
Context-aware Systems and Applications

10 -11 2015 | Volume 2 | Issue 6 | e2

Giang Minh Duc et al.

6

Remarks:

 When |Sk| = 1, the method calculating the support of the
Find_support (Sk) and the Find_support_2 (Sk)

algorithm is the same, so the execution time of the two
algorithms are equal (as shown table 6).

 When |Sk| = 2, the method calculating the support of the

Find_support_2 (Sk) algorithm is added line 4  7, 20 
22 with the following meanings:

- If SP(Sk) ≥ min_supp, we save these rows to the
Store_Array including the number of satisfied rows and

Sk.supp.
Our purpose reduces the number of the loop time as

finding Sk+1. According to clause 2, we show that: if Sk

 FS(O, I, R, min_supp) and Sk  Sk+1, then Sk+1 

FS(O, I, R, min_supp). For example, if Sk = {3, 2} and
SP(Sk) = 1 ≤ min_supp = 1.33, then Sk+1 = {3, 2, 1} ≤

min_supp.

- This algorithm was executed for an actual database as

follows:
Input data UAPs have the number of paths as : 56 198

(all rows of matrix Mdd: |O| = 56 198).
The number of BTSs is 351 (The number of fields of

matrix Mdd: | I | = 351).

 When |Sk| ≥ 2:

- At line 10  11: get the number of rows contained Sk-1

be OR to reduce the number of the loop.

- At line 12  17: instead of scanning of full database, we

just execute the OR loop times.

3.4. UMP_Online algorithm

In this section, we develop the incremental algorithms to

find the large sets from the mobile database. The proposed
algorithm is named UMP_Online. In order to avoid s canning

of full database again, this algorithm executes to mine the
new dataset (new transactions are added to the database).

The purpose of this algorithm is to reduce the execution
time of mining the MUs movements. Therefore, MSPs can

supply their applications more efficiently.

 Here is the UMP_Online algorithm:

UMP_Online algorithm

Input: New candidate sets have length-i: Cinew

 Old candidate sets have length-i: Ci

 Old large sets have length-i: Li; min_supp

Output: New large set: L

1. for each (c  Cinew)

2. if c  Ci then

3. supptotal = s.supp + c.supp //s  Ci và s = c

4. s.supp = supptotal

5. if supptotal >= min_supp then

6. if c  Li then

7. l.supp = supptotal //l  Li; l = c = s

8. else // c  Li

9. Li = Li  c

10. Find_Lk()

11. endif

12. else // c  Ci

13. Ci = Ci  c

14. if (c.supp >= min_supp) then

15. Li = Li  c

16. Find_Lk()

17. endif

18. endif

19. endif

20. endfor

21. return L

The old result table is the candidate sets Ci and the large

patterns Li (Ci, Li are found as running the Find_UMP_2
algorithm). This algorithm uses the previous results and

takes update to the mobility patterns as follows:

- Finding the candidate patterns (Cinew) from the new data
set.

- The support value is calculated for each sequence c 
Cinew, if the min_supp value is satisfied.

- Update the candidate patterns (if c.supp ≥ min_supp) to
the old candidate patterns (Ci, Li).

- Returning the new large set: L.

Due to the UMP_Online algorithm returns the result
which be set of the large sets L, we should prove that the set

EAI Endorsed Transactions on
Context-aware Systems and Applications

10 -11 2015 | Volume 2 | Issue 6 | e2

Mobility Patterns Mining Algorithms with Fast Speed

7

L finding enough all Li. When Li gives rise (line 9 and 15),
the algorithm calls the Find_Lk() function (line 10 and 16).

Theorem 1: the Find_Lk algorithm ensures to find
enough all keys.

Using the inductive method to prove the Find_Lk

algorithm that ensures to find all keys.

First, L1 is true because L1 = {SP(I) | SP(S) ≥ minsupp 
|S| = 1}

Suppose that Lk-1 is true, we should prove the Find_Lk
algorithm creates Lk true. That is Lk contained all large sets

S, so that | S | = k.

Indeed, due to set X  Fk-1 and Y  Fk-1, so |X| = |Y| = k-1.

In addition to wanting S = X  Y is a candidate, then |S| = k

(line 6 of the Find_Lk algorithm). According to clause 2, the

set S  Lk must be the large sets  Lk candidates should be

created from Lk-1 (line 2, line 3 of the Find_Lk function).

3.5. Finding the mobility rules

According to the results from the data mining phase
(UAPs  UMPs); the mobility patterns of mobile users

(UMPs) were founded. In this section, we will find the

mobility rules from UMPs.

Example: we have a form UMP is (3, 4, 5). The mobility

rules as follows:

(3)  (4, 5)

(3, 4)  (5)

Suppose that we have the UMP L = {i1, i2,… ik}, where

k > 1. All mobility rules are generated from the pattern as
follows:

{i1} -> {i2,…, ik}

{i1, i2} -> {i3,…, ik}

…

{ i1, i2,…, ik-1} -> { ik }

Give the mobility rule R is: (i1, i2,…, im-1)  (im, im+1,…,
ik), the confidence value is calculated as follows:

Confidence(R) =
count

m
iii

count

).
1

,...,
2

,
1

(

.)
k

i,,
2

i,
1

(i




 100

By using UMPs, all mobility rules are generated and the

confidence value is also calculated. Rules (if confidence 

min_conf) will be selected.

. Finding the mobility rules:

We have the rules generation algorithm as follows:

Gen_Rules algorithm

Input: Minimum confidence value: min_conf

 User mobility patterns: UMPs

Output: Set of mobility rules: R

1. for all L  UMPs, L = (i1, i2, . . . , ik), where k > 1 do

2. for all m from 1 to k - 1 do

3. //get all the mobility rules

4. head =(i1, i2, . . . , im-1)

5. tail =(im, im+1, . . . , ik)

6. rule = head → tail

7. //calculate the confidence value of the rule

8. rule.conf = (L.count/head.count) * 100

9. if rule.conf ≥ min_conf then

10. R = R  rule

11. end if

12. end for

13. end for

14. return R

At line 4, the head is the part of the rule before the arrow. At

line 5, the tail is the part of the rule after the arrow (rule =

head  tail).

After running the Gen_Rules algorithm, we have the results
table from actual data as follows (min_conf = 5%):

Table 3. The rules result

…………………………

………………………….

EAI Endorsed Transactions on
Context-aware Systems and Applications

10 -11 2015 | Volume 2 | Issue 6 | e2

Giang Minh Duc et al.

8

. The movement prediction of mobile users:

From the above rules results (set of mobility rules R), we
find out the set of predicted cells as follows:

Pre_Mov algorithm

Input: Current movement of the user: P = (c1, c2, …, ci)

 Set of mobility rules: R.

Output: Set of predicted cells: Pre_Cells.

1. Pre_Cells =  // assign set Pre_Cells = 

2. n = 1 // n: cardinal number of Rule_Array

3. for each r: (i1, i2,…, ij)(ij+1,…, ik) R do

4. if (i1, i2, …, ij)  P and ij = ci then

5. Pre_Rule ← r

6. Rule_Array[n] ← (Pre_Rule, confidence value)

7. n = n + 1

8. endif

9. endfor

10. Sort (Rule_Array) // in descending order with

11. // respect to confidence value.

12. for i = 1 to n do

13. Pre_Cells ← Right_cell //get the first cell that is

14. // on the right side of each rule in Rule_Array

15. n = n + 1

16. endfor

17. return Pre_Cells

In this part, the next movement of user is predicted. Suppose

that the movement of a user (up to now) is P = (64, 56, 63).
Current this user is being cell 63 of the coverage region. The

algorithm finds out the rules as follows: (56, 63)  (54) and
(56, 63)  (88) (line 925 and 926 of Table 3). The set of

predicted cells is {54, 88} (both cell 54 and cell 88 are

selected). The cell 54 is selected first because it has the
confidence value more than the confidence value of the cell

88 (64.6 and 50.2).

4. The experimental results

In this section, we investigate the performance of our

Find_UMP_1, Find_UMP_2, UMP_Online algorithms
and compare them with the performance of the

traditional UMPMining algorithm in terms of the
execution time.

Our experimental environments are given in Table 4.

Training data set and Testing data set used form [13].

Training data set: the number of UAPs. Training data
sets include three sets given in Table 5.

Table 4. Experimental environments

Name Parameter

Processor Intel Core i3-2330M,

2.20GHz

RAM 4 GB

Operating System 32-bit

Programming

language

Microsoft Visual Studio 2005

Database

management
system

SQL Server 2005

Table 5. Training data sets

Name Number of transactions of MUs

Data set 1 56198

Data set 2 68787

Data set 3 34895

These datasets are the actual database of MUs. The database

is transformed from the User ID to the integer n (n = 1, 2,

3,...) and they cannot be decoded to protect customer

information.

- The testing dataset is UAPs; it is used to evaluate the

accuracy of the users’ mobility prediction.

Testing data set contains 7207 transactions of MUs.

The number of BTS: 351.

4.1. Compare the execution time of the

algorithms: UMPMining, Find_UMP_1 and
Find_UMP_2

The data set is performed for comparison: data set 1.

In table 6, the execution time of the Find_UMP_1 algorithm

is 410 seconds and the execution time of the UMPMining

algorithm is 548 seconds (down 25.18%). While the

execution time of the Find_UMP_2 algorithm is only 136

seconds (down 75.18% as compared to the UMPMining and

66.82% as compared to the Find_UMP_1 algorithm).

EAI Endorsed Transactions on
Context-aware Systems and Applications

10 -11 2015 | Volume 2 | Issue 6 | e2

Mobility Patterns Mining Algorithms with Fast Speed

9

Table 6. The results of three algorithms

Figure 3. The execution time results of three
algorithms

Figure 4. The execution time total of three algorithms

4.2. The experimental results when running

the UMP_Online algorithm

 When not applying the algorithm UMP_Online:

Each update a new data set, we perform as follows:

- Database (total) = database (old) + database (new)

- Running the Find_UMP_2 algorithm for database

(total).

 When applying the algorithm UMP_Online:

We perform as follows:

- Get the old results (Cn, Ln).

- Running the UMP_Online algorithm for the new
database and update the result with the old results 

new results.

To compare the results of the two methods above, we

have the actual results as follows:

- Database (old): data set 1 (the number of records is 56

198).

- Database (new) data set 2 (the number of records is 68
787).

- Database (total): data set 1 + data set 2 (the number of
records is 124 985)

- The execution time is 214 seconds.

When running UMP_Online algorithm, the execution

time is 90 seconds (down 57.94%).

The same as above, we have:

- Database (old): data set 1 (DS1) + data set2 (DS2) (the

number of records is 124 985)
- Database (new): data set 3 (the number of records is 34

895)
- Database (total): data set 1 (DS1) + data set 2 (DS2) +

data set 3 (DS3) (the number of records is 159 880)
- The execution time of the Find_UMP_2 algorithm is

284 seconds.

The execution time of the UMP_Online algorithm is 95
seconds (down 66.54%).

Figure 5. The execution time of two algorithms

4.3. The accuracy of the prediction:

- Recall: the number of correctly predicted cells / the total

number of requests.

- Precision: the number of correctly predicted cells / the

total number of predictions made.
 Changing of the recall values according to the

min_supp values:

In Figure 6, if the min_supp value increases, then the
recall value decreases. The reason is the increasing

min_supp value will make the number of prediction rules

Cn

UMPMining Find_UMP_1 Find_UMP_2

quantity

Cn

Run

time

quantity

Cn

Run

time

quantity

Cn

Run

time

C1 351 32 351 1 351 1

C2 1488 167 1488 129 1488 129

C3 3340 341 3340 274 3340 5

C4 79 8 79 6 79 1

Total 5258 548 5258 410 5258 136

EAI Endorsed Transactions on
Context-aware Systems and Applications

10 -11 2015 | Volume 2 | Issue 6 | e2

Giang Minh Duc et al.

10

decreased. Therefore, the number of correctly predictions is
decreased.

Figure 6 compares the recall value changes of three data
sets.

When the size of the training set increases, the recall
values also increase (because the number of prediction rules

increases).

Figure 6. Changes of recall according to min_supp of

three data sets

 The precision of the prediction rules when changing the
min_conf value:

Testing data set: 7207 records.

When changing the minimum confidence value

(min_conf), the precision value changes as Figure 7.

In Figure 7, when the min_conf value increases, the
precision value also increases. Because of high min_conf

values, only the rules that have high confidence values are
used for prediction.

Figure 7. Precision of the prediction rules

5. CONCLUSION

The mobility prediction of Mobile Users is one of the
important issues in mobile computing sys tems. Applications

of the MUs mobility prediction are adjusting bandwidth of
the networks, the location-based services, smart handover, ...

However, these applications require the execution time of
the UMPMining algorithm as quickly as possible. In this

work, we proposed Find_UMP_1 algorithm and the

Find_UMP_2 algorithm to solve the time problem. The
results of our experiments shown that our proposed

algorithms outperform the traditional UMPMining algorithm
in terms of the execution time.

In addition, we also propose the UMP_Online algorithm in

order to reduce the execution time as adding new data. The

benefits of applying this algorithm are that the system can

run online in real time. Therefore, MSPs can perform the

above applications effectively.

References

[1] “List of Countries by Number of Mobile Phones in Use,”

Wikipedia, Gartner, 2010 .

[2] ETSI/GSM. Technical reports list.

http://webapp.etsi.org/key/key.asp? full list=y.
[3] ETSI/GSM. Home location register/visitor location register –

report 11.31–32.

[4] Alex Cabanes (IBM Systems & Technology Group): IBM

BladeCenter - Home Location Register (HLR). June 2007.

[5] HRL Look Up – Service Manual
(www.routomessaging.com).

[6] Cristian Aflori and Mitica Craus. “Grid implementation of

Apriori algorithm. Advances in engineering software”.

Volume 38, Issue 5, 295-300, 2007.

[7] Gokhan Yavas, dimitrios Katsaros. Ozgur Ulssoy and Yannis
manolopoulos. “A data mining approach for location

prediction in mobile environments”. Data and Knowledge

Engineering, 54, 121-146, 2005.

[8] Mr. Mohammad Waseem, Mrs. R.R.Shelke, Location Pattern

Mining of Users in Mobile Environment, International
Journal of Electronics, Communication & Soft Computing

Science and Engineering, 2013, ISSN: 2277-9477, Volume 2,

Issue 9

[9] V. Chandra Shekhar Rao and P. Sammulal. Article: Survey

on sequential pattern mining algorithms. International Journal
of Computer Applications, 76(12):24–31, August 2013.

Published by Foundation of Computer Science, New York,

USA.

[10] Byungjin Jeong, Seungjae Shin, Ingook Jang, Nak Woon

Sung, and Hyunsoo Yoon, “A Smart Handover Decision
Algorithm Using Location Prediction for Hierarchical

Macro/Femto-Cell Networks “ in Vehicular Conference

(VTC Fall), 2011 IEEE 74th, SanFrancisco, CA, Sept 2011,

pp. 1-5.

http://webapp.etsi.org/key/key.asp
http://www.routomessaging.com/

EAI Endorsed Transactions on
Context-aware Systems and Applications

10 -11 2015 | Volume 2 | Issue 6 | e2

Mobility Patterns Mining Algorithms with Fast Speed

11

[11] M. Abo-Zahhad, Sabah M. Ahmed, M. Mourad, “ Services
and Applications Based on Mobile User’s Location Detection

and Prediction”, Int. J. Communications, Network and

System Sciences, 2013, 6, 167-175.

[12] Lu, E. H.-C.; Tseng, V. S.; and Yu, P. S. 2011. “Mining

cluster-based temporal mobile sequential patterns in location-
based service environments”. IEEE Trans. Knowl. Data Eng.

23(6):914–927.

[13] http://msdn.microsoft.com/en-us/ library/ bb895173.aspx

(Training and Testing Data Sets – MSDN – Microsoft).

[14] Mira H. Gohil and S. V. Patel, “Mobile Location Prophecy:
An analytical review”. IRACST – International Journal of

Computer Networks and Wireless Communications

(IJCNWC), ISSN: 2250-3501 Vol.4, No5, October 2014

http://msdn.microsoft.com/en-us/%20library/%20bb895173.aspx

