Enabling Proactivity in Context-aware Middleware Systems
by means of a Planning Framework based on HTN
Planning

Preeti Bhargava, Ashok Agrawala
Department of Computer Science, University of Maryland, College Park

prbharga,agrawala@cs.umd.edu

ABSTRACT

Today’s context-aware systems tend to be reactive or ‘pull’ based
- the user requests or queries for some information and the system
responds with the requested information. However, none of the sys-
tems anticipate the user’s intent and behavior, or take into account
his current events and activities to pro-actively ‘push’ relevant in-
formation to the user. On the other hand, Proactive context-aware
systems can predict and anticipate user intent and behavior, and
act proactively on the users’ behalf without explicit requests from
them. Two fundamental capabilities of such systems are: predic-
tion and autonomy. In this paper, we address the second capability
required by a context-aware system to act proactively i.e. acting
autonomously without an explicit user request. To address it, we
present a new paradigm for enabling proactivity in context-aware
middleware systems by means of a Planning Framework based on
HTN planning. We present the design of a Planning Framework
within the infrastructure of our intelligent context-aware middle-
ware called Rover II. We also implement this framework and eval-
uvate its utility with several use cases. We also highlight the benefits
of using such a framework in dynamic ubiquitous systems.

Categories and Subject Descriptors

C.3.2 [[Special-Purpose and Application-based Systems]]: Real-
time and embedded systems, Ubiquitous computing

General Terms

Design, Experimentation, Human Factors, Performance

Keywords

Proactive computing, Context-aware computing and systems, Mo-
bile and Ubiquitous systems, HTN Planning

1. INTRODUCTION

Today’s context-aware systems tend to be ‘reactive’ or pull based
- the user requests or queries for some information and the system
responds with the requested information. These systems provide

personalized and relevant information by filtering the information
retrieved based on the user’s preferences or limited context such as
time, location, or web history. Such systems, once queried, could
return a list of restaurants ordered by food preferences and some-
times recent browsing history. However, none of the systems antic-
ipate the user’s intent and behavior, or take into account his current
events and activities to act ‘pro-actively’ and push relevant infor-
mation to the user.

The initial notion of proactive computing, as proposed by Ten-
nenhouse [14] and Want et al. [17], focused on human -supervised
operations where the user stays out of the loop as much as pos-
sible until he is required to provide guidance in critical decisions.
Tennenhouse [14] also stated that a fundamental goal of proactive
computing is to enable autonomy in ubiquitous systems. How-
ever, Want et al. [17] specified key differences between proactive
and autonomic computing and outlined several principles underly-
ing proactive computing. Some of these are anticipation, context-
awareness and statistical reasoning. Salovaara and Oulasvirta [11]
discussed the general concept of proactive computing and suggested
that a system can act proactively if it can hypothesize what its user’s
goals are.

Thus, for a ubiquitous or context-aware system to be effectively
proactive, it is crucial that it tracks and predicts user intent [12]
in order to take actions on the users’ behalf without explicit re-
quests from them. We term these systems as Proactive context-
aware systems. These systems continuously sense and anticipate
users’ behavior - they acquire data from multiple sources and sen-
sors, and then analyze the data in order to learn and predict users’
behavior. Once the user behavior has been predicted, the system
can pro-actively take actions on behalf of the users without an ex-
plicit request. These actions can include sending an email on the
user’s behalf, calling a phone number, changing the device mode
(say from silent to ringer) based on his situation, or even booking
movie tickets for the user. From this discussion, two fundamental
capabilities of proactive context-aware systems emerge: prediction
and autonomy.

In our previous work [1], we have addressed the first aforemen-
tioned capability of a proactive context-aware system - modeling
and predicting user behavior, as part of the Rover II context-aware
middleware [2,6]. In this paper, we address the second key capa-
bility required by a context-aware system to act proactively - acting
autonomously without an explicit user request. To address it, we
present a new paradigm for enabling proactivity in context-aware
middleware systems by means of a Planning Framework based on
HTN planning. This framework is based on a predicate model of
ubiquitous computing where the state of the context-aware system
is represented as a set of variable bindings. It receives information
about a task or activity that needs to be performed on the user’s

MOBIQUITOUS 2015, July 22-24, Coimbra, Portugal
Copyright © 2015 ICST
DOI 10.4108/eai.22-7-2015.2260304

behalf (which the user may have requested explicitly or implicitly)
and generates a plan to achieve it. It utilizes the current context of
the user, and internal and external information sources available to
the system in order to determine the sequence of actions that should
be performed in order to achieve the task.

The use of Al planning enables the system to decide, dynam-
ically, how best to achieve user goals. It relieves users from the
burden of having to know exactly what actions or tasks can or can-
not be performed by the system and how to perform those actions.
More importantly, since the system plans the sequence of actions
to achieve the user’s goals dynamically, it can adapt more easily to
changing context and availability of resources. This also allows the
system to handle faults that may occur while achieving the user’s
goals gracefully and with minimum user intervention.

Thus, our contributions in this paper are:

o We propose the paradigm of enabling proactivity in context-
aware middleware systems by means of HTN Planning.

e We present the design of a Planning Framework within the
infrastructure of our intelligent context-aware middleware
called Rover II.

e We implement this framework and evaluate its utility with
several use cases.

e We also highlight the benefits of using such a framework in
dynamic ubiquitous systems.

The rest of the paper is organized as follows: Section 2 describes a
scenario to motivate the need of enabling proactivity in a context-
aware system. Section 3 provides an overview of HTN Planning.
Section 4 describes the design of our planning framework and al-
gorithm while Section 5 describes the implementation details and
use cases. We discuss related work in Section 7 and conclude and
outline future work in Section 8.

2. MOTIVATING SCENARIOS

In order to motivate the proactivity paradigm, we describe a sim-
ple scenario.

A user is running late for a meeting with a colleague.
The context-aware system infers this delay from his
current location and from his meeting schedule (date,
time, location, agenda, participants) marked in his cal-
endar. It pro-actively communicates a message to the
colleague with whom the meeting is scheduled to take
place informing him/her of the delay.

There may be multiple ways of performing this task and some
ways may be better than others because of the user’s context or
availability of information sources. In addition, the best way of
achieving the goal may also change with time because of dynami-
cally changing context. Also, depending on the current state of the
system, different actions may need to be taken to achieve it. Hence,
it is not easy to statically specify how the task is to be performed.
Thus, new techniques are required that can dynamically perform
such tasks for users.

Our proposed planning framework helps address this complex-
ity and dynamism of context-aware systems. The framework an-
alyzes the different ways in which a task can be achieved based
on the available sources and user’s context. It then determines the
most feasible way of performing the task and generates a sequence
of actions required to achieve it. In the aforementioned scenario,
there are two possible ways of communicating with the user’s col-
league:by SMS or by email. SMS might be a faster way to reach

the colleague as he/she may be driving or walking and may not
check email soon. However, if the system doesn’t have access to
the phone number of the colleague then email is the only solution to
reach him/her. Hence, the planning framework has to take all these
factors into consideration and generate a sequence of actions that
will be executed in order to perform this task. From the scenario,
it is evident that an Al Planning technique such as HTN Planning
can be applied to facilitate proactivity.

3. HIERARCHICAL TASK NETWORK
PLANNING

Hierarchical Task Network (HTN) planning is an Artificial In-
telligence (AI) planning technique [5]. The objective of an HTN
planner is to produce a sequence of actions that perform some ac-
tivity or task. The description of a planning domain includes a set
of operators or primitive tasks and also a set of methods, each of
which is a prescription for how to decompose a compound or non-
primitive task into subtasks (smaller primitive tasks). Given a plan-
ning domain, the description of a planning problem will contain an
initial state and a partially ordered set of tasks to accomplish.

HTN Planning proceeds by using the methods to decompose
tasks recursively into smaller and smaller subtasks, until the plan-
ner reaches primitive tasks that can be performed directly using the
planning operators. Thus, for each non-primitive task, the planner
chooses an applicable method, instantiates it to decompose the task
into subtasks, and then chooses and instantiates methods to decom-
pose the subtasks even further if required. If the plan later turns out
to be infeasible, the planning system will need to backtrack and try
other methods.

HTN Planning requires well-conceived and well-structured do-
main knowledge. Such knowledge contains rich information and
guidance on how to solve a planning problem. This structured
and rich knowledge gives a primary advantage to HTN planners
in terms of speed and scalability when applied to real-world prob-
lems. Examples of HTN Planners include Nets Of Action Hierar-
chies (NOAH) [10], System for Interactive Planning and Execution
(SIPE) [18], Universal Method Composition Planner (UMCP) [4]
and Simple Hierarchical Ordered Planner (SHOP) [7].

4. PLANNING FRAMEWORK OF THE
ROVER II CONTEXT-AWARE
MIDDLEWARE

The Rover II context-aware middleware [2, 6] is a generic mid-
dleware, which serves as an integration platform for mobile and
desktop applications. It can store and retrieve contextual infor-
mation, as well as learn and store user behavior models. Figure
1 shows the architecture of Rover II context-aware middleware It
consists of several components including a main Controller module
(which controls the flow of information among the various compo-
nents), a Learning Engine (which learns patterns from user’s be-
havior in order to predict a user’s intent or goal), a Relevant In-
formation Discovery and Ranking Engine (which determines what
information will be relevant to the user’s current situation), an Ac-
tivity Store (which defines what activities the system can perform
on the user’s behalf) and a Planning algorithm (which generates
the sequence of activities that should be performed in order to ac-
complish a task). A complete description of this system and its
architecture is beyond the scope of this paper. Here, we focus on
the planning framework of Rover II. This framework (as shown in
Figure 1) consists of two components:

I Services —
I Ie

l
-

e e e e e o S S O M EEE BN BN S B EEE EEE EEE EEE BEE EEE BEE EEE EEE EEm e B Em

HTTP

Context | Rryle-Based :
Tier l

Planning Framework Y |

Planning :'

Web base

Figure 1: Architecture of the Rover II context-aware middleware

4.1 Planning Algorithm

We employ the Pyhop HTN planning algorithm', which is a
Python implementation of SHOP [7]. Pyhop is a HTN planner that
uses hierarchical decomposition of tasks for planning. It is widely
used in hundreds of projects worldwide with applications in indus-
try, academia and government labs. Like other HTN planners, Py-
hop is configurable i.e. its planning engine is domain-independent,
but the HTN methods may be domain-specific, and the planner can
be customized to work in different problem domains by giving it
different sets of HTN methods. As mentioned earlier, this ability to
use domain-specific problem-solving knowledge can dramatically
improve a planner’s performance, and sometimes make the differ-
ence between solving a problem in exponential time and solving it
in polynomial time.

In Pyhop, a task is a symbolic representation of an activity to be
performed in the real world, for instance, ‘Book a flight’. Instead of
spending time on each individual operator, Pyhop uses its in-built
hierarchical structure to avoid exponential explosion. Rather than
searching through the entire state-space to find the plan, it aims
at performing certain tasks that meets predefined conditions. As
commonly done in HTN Planning, Pyhop uses abstract tasks to start
a plan and then decomposes them into smaller sub tasks. A task
can be primitive or non-primitive. A primitive task corresponds

' https://bitbucket.org/dananau/pyhop

to a basic action that can be directly performed in the real world.
On the other hand, a non-primitive or compound task is composed
of other primitive tasks and cannot be performed directly to the
real world. It first needs to be decomposed into simpler tasks until
primitive tasks are found.

Algorithm 1 shows the pseudo code for the Pyhop HTN Planning
algorithm. It takes the following as input:

e An initial state - This is a description of the current situation.
e List of tasks - These describe the activities to perform

e Methods - These are parameterized descriptions of possible
ways to perform a compound task by performing a collection
of subtasks. There may be more than one method for the
same task.

e Operators - These are parameterized descriptions of what the
primitive actions can achieve.

The Pyhop algorithm makes use of backtracking. Backtrack-
ing is a general algorithm for finding all (or some) solutions to a
computational problem, that incrementally builds candidates to the
solutions, and abandons each partial candidate ¢ ("backtracks") as
soon as it determines that ¢ cannot possibly lead to a valid solution.

The algorithm recursively checks if it can find a plan for a given
set of goal tasks (the planning problem). First it checks if any tasks

https://bitbucket.org/dananau/pyhop

Input: Initial state So, list of tasks T, methods M and operators O
Output: Plan P
Initialize tasklist T to contain the toplevel task in the hierarchy;
Initialize plan P = (;
Initialize state S = Sq;
procedure SEEKPLAN(state S, tasklist T, plan P)
if T = () then
‘ return plan;
else
Task ¢ <first task from tasklist;
if 1 € O then
if S satisfies the pre conditions of t then
S’ < t applied to S;
T+ T-{t};
P+ P+ {t};
SeekPlan(S’, T, P);
return P (if found);
else
‘ return failure;
else if 1 € M then
foreach relevant method do
T < subtasks of 7;
SeekPlan(S, 7+ T - {t}, P) ;
return P (if found);
end
else
\ return failure;

return Plan;

Algorithm 1: HTN Planning algorithm

are left. It is done when no tasks are left, but needs to continue plan-
ning if any tasks remain. It then selects the next task and checks if
an operator matches the task. If no operator matches the task, the
planner looks at the methods. There can be multiple HTN methods
to accomplish the same task. If the planner found either an operator
or method for a given task, and they did not fail (e.g. when precon-
ditions are not met), the search method is called again for the next
task (and thus it is recursive) until a full plan is either found or not.
If no plan is found, failure is returned.

4.2 Activity Store containing Domain Descrip-
tion

As mentioned in Section 3, HTN Planning requires domain knowl-
edge. This domain knowledge is specified in our Planning Frame-
work in the form of a domain description consisting of tasks, meth-
ods, and operators. The tasks are specified in the form of activi-
ties that needs to be performed on the user’s behalf such as ‘Book
Movie’.

The simplest version of a method has three parts: the task for
which the method is to be used, the precondition that the current
state must satisfy in order for the method to be applicable, and
the subtasks that need to be accomplished in order to accomplish
that task. For instance, one method to accomplish the task ‘Book
Movie’ for a user is ‘Book movie via smartphone app’. This in-
volves sub tasks such as ‘searching for the desired movie’, ‘check-
ing availability of desired date and time’, ‘checking availability of
the required number of seats’, ‘booking the seats’ and ‘paying for
the tickets’.

Each operator indicates how a primitive task can be performed.
Each operator description includes the operator’s name and a list

of parameters, a precondition expression indicating what should be
true in the current state in order for the operator to be applicable and
the effects of the operator on the current state if it is applied. For
the above mentioned example, the primitive task for ‘checking for
seats availability’ would involve checking if the number of avail-
able seats for the desired movie is > the number of seats required
by the user.

S. IMPLEMENTATION AND USE CASES

In this section, we present the implementation of our Planning
Framework (developed as part of the Rover II context-aware mid-
dleware) and its components using specific technologies. The Py-
hop planning algorithm is implemented in Python. We have im-
plemented the Activity Store containing domain knowledge as a
python module which contains different methods and operators to
achieve tasks on the user’s behalf. This framework has been in-
tegrated with the Rover II middleware using Jython?, which is an
implementation of Python seamlessly integrated with the Java plat-
form.

Some sample use cases that we have implemented are:

5.1 Communicating with a user’s contact

Recall the scenario mentioned in Section 2. The system can com-
municate with the colleague of the user via two possible media:
SMS and Email. This use case is implemented as follows:

5.1.1 Task

The high-level task that needs to be achieved in this use case is
‘Communicate’.

2 http://www.jython.org/

http://www.jython.org/

search_phone
num

set_sms_

subject

Figure 2: Plan generated by the Planning framework for communicating with the user’s colleague

5.1.2 Methods

There are two methods to achieve this task:by SMS or by email.

def communicate _by _sms (state, sender, recipient, subject, text, status):
if ((sender in state.contacts) and (recipient in state.contacts)):
return [("create _sms’, sender, recipient), ("search_phonenum’, sender, recipi-
ent), ("set _sms _subject’, subject), "set _sms _text’,text), ("send _sms’, status)]
return False

def communicate _by _email (state,sender,recipient,subject,text,status):
if ((sender not in state.contacts) or (recipient not in state.contacts)) and ((sender
in state.emaillist) and recipient in state.emaillist)):
return [(’create _email’, sender, recipient), ("search _emailadd’, sender, recipi-
ent), (set _email _subject’, subject), ("set _email _text’, text), (’send _email’, status)]
return False

As shown, if the phone number of both the sender i.e. the user
and the recipient i.e. his colleague are in the contacts list, the sys-
tem would send an SMS to the colleague. Otherwise, it would send
an email.

5.1.3 Operators

The method to send an SMS (communicate _by _sms) can be
decomposed into the following primitive sub tasks or operators:

def create _sms(state, sender, recipient):
if not sender or not recipient:
return False
else:
state.sms[’sendername’]=sender
state.sms| ‘recipientname’] = recipient
return state

def search _phonenum(state, sender, recipient):
state.sms[’senderphone’ |=state.contacts[sender]
state.sms| ‘recipientphone’] = state.contacts[recipient]
return state

def set _sms _subject(state, subject):
if not subject:
return False
else:
state.sms[’subject’] = subject
return state

def set _sms _text(state, text):
if not text:
return False
else:
state.sms[’text’] = text
return state

def send _sms(state, status):
state.sms|[’status’] = status

return state

Similarly, the method to send an email (communicate _by _email)
can be decomposed into the following primitive sub tasks such as:

def create _email(state, sender, recipient):
if not sender or not recipient:
return False
else:
state.email[’sendername’]=sender
state.email[recipientname’] = recipient
return state

def search _emailadd(state, sender, recipient):
state.email[’senderphone’]=state.emaillist[sender]
state.email[recipientphone’] = state.emaillist[recipient]
return state

def set _email _subject(state, subject):
if not subject:
return False
else:
state.email[’subject’] = subject
return state

def set _email _text(state, text):
if not text:
return False
else:
state.email[text’] = text
return state

def send _email(state, status):
state.email[’status’] = status

return state

These primitive subtasks involve creating the SMS or email, search-
ing for both the sender’s and recipient’s phone numbers or email
addresses, setting the SMS or email subject and text and finally,
sending it to the recipient.

5.1.4 Initial state

The initial state to the Planning algorithm includes the contacts
and the email list of the user, as well as the subject and text of the
message.

5.1.5 Generated plan

The planning algorithm uses the defined domain knowledge (con-
sisting of methods and operators) and current context to generate
the appropriate and feasible sequence of actions that need to to be
executed in order to accomplish this task. Figure 2 shows a sample
generated plan in the case where the phone numbers of both the
sender and recipient are present in the contacts list of the user. For
legibility, the parameters to these operators have not been shown.

5.2 Booking a movie

We now consider another scenario where the context-aware sys-
tem needs to book movie tickets for the user. The system may de-
tect from a user’s calendar that he/she desires to watch a particular
movie on a certain day and after a certain time, say Friday evening.
It then proceeds to perform the task of booking the movie proac-
tively. It could also be the case that the user explicitly requests the
system to book the movie tickets for a particular date and time.

5.2.1 Task

The high-level task that needs to be achieved in this use case is
‘Book a movie’.

5.2.2 Methods

There can be two ways of achieving this task: booking the movie
via an app or via a website. The methods representing these two
ways are:

search_movie check_datetime
- —> . 1
via_app availabili

check_seat
availabili

Figure 3: Plan generated by the Planning framework for booking a movie for the user

def book _movie _through _app(state,a,movie,dateandtime, seats):
if CFandango’ in state.apps):
return [(’search _movie _via _app’, a, movie),(’check _datetimeavailability’,
movie, dateandtime),(’check _seatavailability’, movie, seats),(’book _seats’, a, movie,
seats),("pay _for _tickets’, a, movie)]
return False

def book _movie _through _website(state,a,movie,dateandtime, seats):
if CFandango’ not in state.apps):
return [("search _movie _via _browser’, a, movie),(’check _datetimeavailabil-
ity’, movie, dateandtime),(’check _seatavailability’, movie, seats),(’book _seats’, a,
movie, seats),("pay _for _tickets’, a, movie)]
return False

5.2.3 Operators

These methods can be decomposed into the following primitive
sub tasks or operators:

def movie _tickets _cost(state,movie,seats):
return state.ticket{movie]*seats

def search _movie _via _app(state,a,movie):

if (movie not in state.movies[Fandango’] or state.ticket[movie]>state.money|[a]):

return False
else:
return state

def search _movie _via _browser(state,a,movie):
if (movie not in state.theater[”AMC’] or state.ticket[movie]>state.money[a]):
return False
else:
return state

def check _datetimeavailability(state,movie,dateandtime):
if state.moviedatetimes[movie]>dateandtime:
return state
else:
return False

def check _seatavailability(state,movie,seats):
if state.movieseats|[movie]>seats:
return state
else:
return False

def book _seats(state,a,movie,seats):
state.movieseats[movie] = state.movieseats[movie] - seats
state.owe[a] = movie _tickets _cost(state,movie,seats)
return state

def pay _for _tickets(state,a,movie):
if state.money[a] >= state.owe[a]:
state.money|a] = state.money|[a] - state.owe[a]
state.owel[a] =0
state.booking[movie]="Booked’
return state
else: return False

5.2.4 Initial State

The initial state to the Planning algorithm includes the user’s cur-
rent location, movies showing in theaters near the user’s current
location, the scheduled dates and times of their shows, number of
seats available, and the cost of their tickets. An important point to
note here is that even though this is domain knowledge, the infor-
mation is extracted from external sources such as web search en-
gines or other websites. In addition, the user request must contain

the name of the movie, the preferred date and time and the number
of tickets to be booked.

5.2.5 Generated Plan

The planning algorithm uses the defined domain knowledge (con-
sisting of methods and operators) and current context to generate
the appropriate and feasible sequence of actions that need to to be
executed in order to accomplish this task. Figure 3 shows a sample
plan generated by our framework for booking a movie on the user’s
behalf.

6. ADVANTAGES OF THE PLANNING
FRAMEWORK

Our planning framework offers a number of advantages:

e Minimal user intervention - The framework automatically
generates a sequence of actions required to achieve a user’s
task based on available information and resources without re-
quiring any user intervention. Human guidance is required
only at the crucial step when some information is needed
from the user. Thus, the users do not have to worry about
knowing how exactly to perform certain kinds of tasks in a
ubiquitous system, what kinds of services and applications
are present in the system and how to interact with them. They
can leave the intricate details of performing tasks as well as
handling failures to the planning framework.

e Fault-tolerance - If an action fails, the framework detects it
and backtracks by retrying actions or by replanning and tak-
ing another path to achieve the same goal. The replanning
approach to failure recovery works because ubiquitous envi-
ronments are dynamic and constantly changing. Moreover,
there are usually several ways of achieving a task.

e Adaptable to varying context - The planning framework gen-
erates the plan to achieve a task taking into consideration the
current context of the user and environment. It finds out what
information and resources are currently available in the sys-
tem and then tries to achieve the goal using these resources.

7. RELATED WORK

While Al Planning has been successfully applied in several do-
mains such as robotics and games, it has not been employed in
context-aware systems or ubiquitous systems. Most of the exist-
ing work in this domain has focused on web services composition
using Al Planning [3,8, 13,15, 16].

Ranganathan et al. [9] developed a STRIPS-based planning frame-
work that used state space planning for a meeting room domain.
The framework was based on a predicate model of pervasive com-
puting where the state of the environment and its elements were
represented as a set of predicates. The users were allowed to spec-
ify the goals that had to be achieved such as starting a presenta-
tion. The actions are either an invocation of a method on a service,
device or application and were represented in terms of their pre-
conditions and effects. A utility function is used to determine the
best goal state.

8. CONCLUSION AND FUTURE WORK

In this paper, we addressed a key capability required by a context-
aware system to act proactively - acting autonomously without an
explicit user request. To address it, we proposed a new paradigm
for enabling proactivity in context-aware middleware systems by
means of HTN planning. We presented the design of a Planning
Framework within the infrastructure of our intelligent context-aware
middleware called Rover II. We implemented this framework and
evaluated its utility with several use cases. We also highlighted the
benefits of using such a framework in dynamic ubiquitous systems.

In the future, we plan to carry out further experiments to validate
the use of our framework and approach as well as test the scala-
bility of the system in lager environments. We also plan to build a
pipeline from our context-aware middleware to client agent appli-
cations running on devices such as smartphones or desktops which
will enable the plan to be executed on the user’s device itself rather
than remotely.

9. REFERENCES
[1] P. Bhargava and A. Agrawala. Modeling users’ behavior

from large scale smartphone data collection. In under review.

[2] P. Bhargava, S. Krishnamoorthy, and A. Agrawala. An
ontological context model for representing a situation and
the design of an intelligent context-aware middleware. In
Proceedings of the ACM Conference on Ubiquitous
Computing, 2012.

[3] J. Bidot, C. Goumopoulos, and I. Calemis. Using ai planning
and late binding for managing service workflows in
intelligent environments. In Pervasive Computing and
Communications (PerCom), 2011 IEEE International
Conference on, pages 156-163. IEEE, 2011.

[4] K. Erol. Hierarchical task network planning: formalization,
analysis, and implementation. 1996.

[5] M. Ghallab, D. Nau, and P. Traverso. Automated planning:
theory & practice. Elsevier, 2004.

[6] S. Krishnamoorthy, P. Bhargava, M. Mah, and A. Agrawala.
Representing and managing the context of a situation. The
Computer Journal, 55(8):1005-1019, 2012.

[7] D. Nau, Y. Cao, A. Lotem, and H. Mufioz-Avila. Shop:
Simple hierarchical ordered planner. In Proceedings of the

16th international joint conference on Artificial

intelligence-Volume 2, pages 968-973. Morgan Kaufmann

Publishers Inc., 1999.

A. Qasem, J. Heflin, and H. Muiioz-Avila. Efficient source

discovery and service composition for ubiquitous computing

environments. In Workshop on Semantic Web Technology for

Mobile and Ubiquitous Applications (ISWC), 2004.

[9] A.Ranganathan and R. H. Campbell. Autonomic pervasive
computing based on planning. In Autonomic Computing,
2004. Proceedings. International Conference on, pages
80-87. IEEE, 2004.

[10] E. D. Sacerdoti. The nonlinear nature of plans. Technical
report, DTIC Document, 1975.

[11] A. Salovaara and A. Oulasvirta. Six modes of proactive
resource management: a user-centric typology for proactive
behaviors. In Proceedings of the third Nordic conference on
Human-computer interaction, pages 57-60. ACM, 2004.

[12] M. Satyanarayanan. Pervasive computing: Vision and
challenges. Personal Communications, IEEE, 8(4):10-17,
2001.

[13] E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau. Htn

planning for web service composition using shop2. Web
Semantics: Science, Services and Agents on the World Wide

Web, 1(4):377-396, 2004.

[14] D. Tennenhouse. Proactive computing. Communications of
the ACM, 43(5):43-50, 2000.

[15] M. Vukovic and P. Robinson. Adaptive, planning based, web
service composition for context awareness. In In
Proceedings of the Second International Conference on
Pervasive Computing, 2004.

[16] M. Vukovic and P. Robinson. Shop2 and tlplan for proactive
service composition. In UK-Russia Workshop on Proactive
Computing. Citeseer, 2005.

[17] R. Want, T. Pering, and D. Tennenhouse. Comparing
autonomic and proactive computing. IBM Systems Journal,
42(1):129-135, 2003.

[18] D. E. Wilkins. Can ai planners solve practical problems?
Computational intelligence, 6(4):232-246, 1990.

[8

—

	1 Introduction
	2 Motivating Scenarios
	3 Hierarchical Task Network Planning
	4 Planning framework of the Rover II context-aware middleware
	4.1 Planning Algorithm
	4.2 Activity Store containing Domain Description

	5 Implementation and Use Cases
	5.1 Communicating with a user's contact
	5.1.1 Task
	5.1.2 Methods
	5.1.3 Operators
	5.1.4 Initial state
	5.1.5 Generated plan

	5.2 Booking a movie
	5.2.1 Task
	5.2.2 Methods
	5.2.3 Operators
	5.2.4 Initial State
	5.2.5 Generated Plan

	6 Advantages of the Planning Framework
	7 Related Work
	8 Conclusion and Future Work
	9 References

