Use the ensemble methods when detecting DoS attacks in Network Intrusion Detection Systems
DOI:
https://doi.org/10.4108/eai.29-11-2019.163484Keywords:
Machine Learning, Ensemble Classifier, Stacking, DoS, UNSW-NB15 datasetAbstract
Building a good IDS model from a certain dataset is one of the main tasks in machine learning. Training multiple classifiers at the same time to solve the same problem and then combining their outputs to improve classification quality, called ensemble method. This paper analyzes and evaluates the performance of using known ensemble techniques such as Bagging, AdaBoost, Stacking, Decorate, Random Forest and Voting to detect DoS attacks on UNSW-NB15 dataset, created by the Australian Cyber Security Center 2015. The experimental results show that the Stacking technique with heterogeneous classifiers for the best classification quality with F − Measure is 99.28% compared to 98.61%, which is the best result are obtained by using single classifiers and 99.02% by using the Random Forest technique.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 EAI Endorsed Transactions on Context-aware Systems and Applications
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open-access article distributed under the terms of the Creative Commons Attribution CC BY 3.0 license, which permits unlimited use, distribution, and reproduction in any medium so long as the original work is properly cited.