Modeling Users’ Behavior from Large Scale Smartphone Data Collection
DOI:
https://doi.org/10.4108/eai.12-9-2016.151677Keywords:
Context-aware computing and systems, User behavior modeling, Learning from contextAbstract
A large volume of research in ubiquitous systems has been devoted to using data, that has been sensed from users’ smartphones, to infer their current high level context and activities. However, mining users’ diverse longitudinal behavioral patterns, which can enable exciting new context-aware applications, has not received much attention. In this paper, we focus on learning and identifying such behavioral patterns from large-scale data collected from users’ smartphones. To this end, we develop a unified infrastructure and implement several novel approaches for building diverse behavioral models of users. Examples of generated models include classifying users’ semantic places and predicting their availability for accepting calls etc. We evaluate our work on real-world data of 200 users, from the DeviceAnalyzer dataset, consisting of 365 million data points and show that our algorithms and approaches can model user behavior with high accuracy and outperform existing approaches.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 EAI Endorsed Transactions on Context-aware Systems and Applications
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open-access article distributed under the terms of the Creative Commons Attribution CC BY 3.0 license, which permits unlimited use, distribution, and reproduction in any medium so long as the original work is properly cited.