Infrastructure-less Occupancy Detection and Semantic Localization in Smart Environments
DOI:
https://doi.org/10.4108/eai.22-7-2015.2260062Keywords:
crowdsourcing, opportunistic sensing, occupancy counting, semantic localizationAbstract
Accurate estimation of localized occupancy related informa- tion in real time enables a broad range of intelligent smart environment applications. A large number of studies using heterogeneous sensor arrays reflect the myriad requirements of various emerging pervasive, ubiquitous and participatory sensing applications. In this paper, we introduce a zero- configuration and infrastructure-less smartphone based lo- cation specific occupancy estimation model. We opportunis- tically exploit smartphone’s acoustic sensors in a conversing environment and motion sensors in absence of any conver- sational data. We demonstrate a novel speaker estimation algorithm based on unsupervised clustering of overlapped and non-overlapped conversational data and a change point detection algorithm for locomotive motion of the users to infer the occupancy. We augment our occupancy detection model with a fingerprinting based methodology using smart- phone’s magnetometer sensor to accurately assimilate loca- tion information of any gathering. We postulate a novel crowdsourcing-based approach to annotate the semantic lo- cation of the occupancy. We evaluate our algorithms in dif- ferent contexts; conversational, silence and mixed in pres- ence of 10 domestic users. Our experimental results on real-life data traces in natural settings show that using this hybrid approach, we can achieve approximately 0.76 error count distance for occupancy detection accuracy on aver- age.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 EAI Endorsed Transactions on Context-aware Systems and Applications
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open-access article distributed under the terms of the Creative Commons Attribution CC BY 3.0 license, which permits unlimited use, distribution, and reproduction in any medium so long as the original work is properly cited.