Enrichment of Multi-criteria Communities for Context-aware Recommendations
DOI:
https://doi.org/10.4108/casa.1.1.e3Keywords:
collaborative filtering, context-aware recommender system, matrix factorization, multi-criteria communitiesAbstract
Recommender systems are designed to help users alleviate the information overload problem by offering personalized recommendations. Most systems apply collaborative filtering to predict individual preferences based on opinions of like-minded people through their ratings on items. Recently, context-aware recommender systems (CARSs) are developed to offer users more suitable recommendations by exploiting additional context data such as time, location, etc. However, most CARSs use only ratings as a criterion for building communities, and ignore other available data allowing users to be grouped into communities. This paper presents a novel approach for exploiting multi-criteria communities to provide context-aware recommendations. The main idea of the proposed algorithm is that for a given context, the significance of multi-criteria communities could be different. So communities from the most suitable criteria followed by a learning phase are incorporated into the recommendation process.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 EAI Endorsed Transactions on Context-aware Systems and Applications
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open-access article distributed under the terms of the Creative Commons Attribution CC BY 3.0 license, which permits unlimited use, distribution, and reproduction in any medium so long as the original work is properly cited.