
1

Modelling an Efficient Three-Tier Fault Tolerance
Approach for Resource Provisioning over Cloud
Suvarna S. Pawar1,*, Y. Prasanth1

1Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation Vaddeswaram - 522502,
Guntur District, Andhra Pradesh, India

Abstract

INTRODUCTION: Nowadays, the cloud computing paradigm encounters newer challenges in offering fault tolerance
methods during service provisioning. The failures during service provisioning are unavoidable in the large-scale
heterogeneous network. Therefore, the adoption of appropriate fault tolerance techniques can improve the provided service's
efficiency and reliability.
OBJECTIVES: Thus, fault tolerating metrics give better accuracy to enhance the QoS, where the three-tier fault-tolerance
approach is proposed to resolve the various failures in service provisioning.
METHODS: Initially, a Collector Model collects the request and ranks it based on the service to be provided. Secondly, the
redundancy filter module is designed to filter out the request replication and avoid the unnecessary process to be carried out.
Finally, the fairness resource allocation module is designed to perform the prominent request received from the users based
on the available resources without service congestion.
RESULTS: This three-tier model operates concurrently to handle the multiple requests from the users of various connected
nodes. The experimental analysis demonstrates that the three-tier fault tolerance model can enhance the cloud reliability over
the large-scale heterogeneous network by ensuring QoS.
CONCLUSION: The well-realized fault tolerance approach can efficiently demonstrate the structural model and fault
tolerance process over the computing environment, therefore enhancing the cloud extendibility. Moreover, the computing
environment's failure is hugely complex, and failure has to be handled efficiently.

Keywords- Cloud computing, service provisioning, fault tolerance, three-tier model, replication avoidance.

Received on 04 July 2021, accepted on 31 August 2021, published on 14 October 2021

Copyright © 2021 Suvarna S. Pawar et al., licensed to EAI. This is an open access article distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and
reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/eai.14-10-2021.171320

1. Introduction

Cloud serves as a hierarchical distributed collaboration
and scalable paradigm, which is considered to project a
superior service architecture merged with cost reduction
process for providing the storage and computing
resources [1]. Moreover, cloud reliability has become a
massive obstacle that prevents the extensive spread of
adoption over the computing paradigm. For instance, the
computing engine of Google fails in March'15, which
hinders the service accessibility for nearly about minutes
[2]. Similarly, in the same month, Apple's cloud service
is also failed where the millions of Apple users are

* Corresponding author: Email: sspawar.scoe@sinhgad.edu

hampered to buy digital music from the apple play store
[3]. Additionally, various applications are carried out
over the infrastructure where the system realizes the
essential function and fulfils real-time cloud requirements
[4]. With the vast amount of available research institutes
and enterprises, the cloud's necessity makes them migrate
their corresponding applications towards the cloud. The
major challenge that relies on the cloud is: How the
construct provides feasible, reliable, and real-time cloud
applications with fault tolerance ability?

The author must consider allocating resources with a
task scheduling nature to determine the task request
proportion towards the virtual machine (VM) based on
runtime context. A vast amount of techniques are

EAI Endorsed Transactions
on Cloud Systems Research Article

EAI Endorsed Transactions on
Cloud Systems

07 2021 - 03 2022 | Volume 7 | Issue 21 | e2

http://creativecommons.org/licenses/by/3.0/

Suvarna S. Pawar, Y. Prasanth

2

modelled by the investigators to enhance the CC
reliability. Sharafeddine et al. [5] elaborate a system
architecture that gives fault tolerance ability to the CC
paradigm. The fault tolerance and resource allocation
process are anticipated to attain fault tolerance by
performing massive copies of every task to subsequent
computing nodes. Su et al. [6] anticipate a model-based
cloud-driven approach to automatic and resource
provisioning among the public and private cloud
environment.

The provisioning of a well-analysed dynamical fault-
tolerance approach for the real-time CC environment is
considered a complex issue [7]. Initially, cloud
applications are generally composed of a vast number of
distributed nodes. It is incredibly complex to determine
the general form of language modelling and adopts it to
classify the fault tolerance and complex structural
behaviour of cloud applications [8]. Subsequently, the
cloud applications are accommodated to VM dynamically
to fulfil diverse requests generated from the end-users.

The author discusses the number of user requests from
various resources like storage, bandwidth allocation, and
VM requirements in [9]. However, it is vital to maintain
the competency to provide the fault-tolerance strategy
dynamically to avoid redundant data with the most
acceptable resource allocation [10]. This kind of model is
adopted to manage the fault of passive and active tasks,
which fulfils the real-time and feasible requirements of
the cloud environment [11]. Finally, the fault tolerance
mechanism over cloud applications includes various
available resources, uncertainties, and concurrency of
resource scheduling that triggers the complexity of model
validation [12].

It is highly complex to demonstrate a cloud model that
offers the model's completeness and soundness with
fault-tolerance characteristics [13]. This investigation
concentrates on fulfilling a research objective to provide
a fault tolerance technique using the three-tier model and
ensure the QoS functionality, characterized by
concurrency and asynchrony, which is used to design the
primary components towards computing paradigm [14]-
[15]. The following are the research objectives:
1) Here, a novel fault-tolerance approach is proposed to
compute the response time, time is taken for a response,
task size, count, and host size. When a failure is
encountered in VM, the proposed three-tier model
(collector, redundancy filter, and resource allocation
module) can dynamically manage the fault tolerance
ability during task allocation over an active and a passive
manner.
2) A three-tier model is proposed with a hierarchical
manner to schedule fairness allocation based on users'
requests, fault tolerance over VM failure, and redundant
data filtering to avoid congestion over the CC
environment. This model is used to integrate the primary
components with fault tolerance ability and fulfil the QoS
requirements.
3) The proposed three-tier model is used to validate and
analyse the soundness of the fault-tolerance model. The
proposed three-tier enforcement algorithm is provided to

fulfil the need for cloud application and acquire superior
reliability over the deadline (final time value). The
simulation is carried out in a MATLAB environment to
compute the functionality of the proposed model. The
outcomes validate the provided objective and give a
promising solution.

The remainder of the work is organized as Section 2 is
background studies related to CC's fault tolerance
approaches. Section 3 analyses the cloud model's three-
tier architecture, which includes the collector module,
redundancy filter module, and fairness resource
allocation module. Section 4 is numerical results and
discussion to project the soundness of the proposed three-
tier module. Finally, section 5 is a conclusion with future
research directions.

2. Related work

Marahatta et al. [16] discuss that when the cloud
environment receives massive task instances from diverse
applications, the functionality is initiated over various
hosts. However, some hosts pretend to fail accidentally.
It results in fault over the system. Various fault tolerance
methods generally eliminate this process. An enormous
factor leads to host failure, and certain faulty events and
conditions generally trigger these failure events. The
failures encountered in this method include crash over the
operating system, hardware malfunctioning, software
failures, network partitioning, short power outages, and
so on.

Kushwah et al. [17] discuss various prevailing fault-
tolerance approaches over data centres, including
replication, task re-submission, retry, job migration,
check-point, and so on. Specific investigations are carried
out by Kushwah et al., which initiates some techniques
over principle execution, migration, re-submission,
software renovation, and replication to complement
diverse fault-tolerance methods over data center-based
task scheduling. Moreover, in various distributed and
parallel computing approaches, the extensively utilized
methods are used to replicate over multiple hosts.

Guo et al. [18] discuss a rearrangement-based
enhanced fault tolerance scheduling approach to handle
various dynamical scheduling process-based issues over
cloud systems. The preliminary backup modelling is used
to examine fault tolerance. The appropriate backup copy
is validated after a specific performance evaluation to
project that the resources are too occupied. Additionally,
waiting tasks are re-arranged to adopt the realized
sources. On the contrary, when the task is transmitted to
the awaited queue of the VM where the sequence of
execution is completely fixed, which cannot be modified.
Soniya et al. [19] discuss overlapping backup approaches
and the strategies for the virtual machine migration over
the cloud environment to enhance the resource utilization
process. It is preliminarily a backup approach, like the
approach mentioned above stated by Guo et al. [18].
Yadav et al. [20] discuss a scheduling algorithm named
as dynamically merged task scheduling process. This

EAI Endorsed Transactions on
Cloud Systems

07 2021 - 03 2022 | Volume 7 | Issue 21 | e2

Modelling an Efficient Three-Tier Fault Tolerance Approach for Resource Provisioning over Cloud

3

model is the modified version of the breadth-first search
process to predict the complete optimal functionality of
VM for every task. The technique provided by Guo et al.
[18] fails to reduce the response time and make span
computation process. However, it is not easily merged
with VM management approaches to diminish energy
utilization and enhance fault tolerance.

The constant monitoring of resource characteristics
during the execution of jobs with diverse probability-
based and statistics-based approaches predicts the job
failure rate can leverage the observations with resource
failure for appropriate selection of fault-tolerance
scheduling and resource allocation. It is based on various
scheduling indicators for the generation of the decision
scheduling process where the grid scheduler handles jobs'
arrivals.

The scheduling process needs to select the available
resources with least failure rate. The multi-constraint
fault tolerance/load balancing process is anticipated to
diminish the make span computation, task failure, and
cost while enhancing resource utilization. The selections
of resources are made with specific actual failure rates,
the number of jobs provided, the processing ability of the
accessible resources, and effective job execution. Duan et
al. [21] discuss a novel scheduling process termed as Pre-
Ant policies composed of various prediction models that
rely on the scheduler and fractal mathematics to adopt
enhanced ant colony algorithms. The model prediction
demonstrates whether the execution is triggered based on
the scheduler with load calibration. The scheduler is
accountable for scheduling to reduce energy consumption
over the fulfilled QoS. The integration of consolidation
algorithm and energy-based optimal allocation strategy is
modeled as the bin-packing problem with reduced power
consumption model, as demonstrates by Ghribi et al. [22].
Nazir et al. [23] provide a novel adaptive fault tolerance-
based job scheduling process. It is also considered as a
check-point mechanism. The anticipated method is
dynamically updated with a failure index that relies on
resourceful completion of task allocation to preserve the
failure index. The available resource brokers adopt fault
index from scheduler to adopt diverse scheduling
intensities during task arrival. The resources' fault and
success index value are diminished when the task is
finished within the given time limit.

Based on these analyses and the best of the knowledge
retrieved with the extensive analysis, no existing works
have been performed fault tolerance with multi-tier cloud
model to guarantee fault-tolerance, elimination of data
redundancy, and fairness based resource allocation [24] –
[25]. This model intends to predict the system fault and
provides the resistance towards the fault by avoiding non-
essential data over the cloud environment. The resource
allocation based on the received request is done with a
fairness strategy to guarantee QoS.

3. Methodology

This section provides a better understanding of the
fault tolerance mechanism with an appropriate system
model. Here, the proposed three-tier model with three
different modules (collector module, redundant data
filter, and fairness resource allocation) is explained
elaborately.

3.1. System model

The proposed three-tier model includes three modules:
Initially, a Collector Model collects the request and ranks
it based on the service to be provided. Secondly, the
redundancy filter module is designed to filter out the
request replication and avoid the unnecessary process to
be carried out. Finally, the fairness resource allocation
module is designed to perform the prominent request
received from the users based on the available resources
without service congestion. This three-tier model is
adopted to predict the failure and the system's ability to
handle failure. The analysis is done with an online
available dataset QoS dataset with three different web
services (Cloud Service 1-3). The values over the dataset
are normalized using the Eq. (1):

𝑍𝑍𝑖𝑖 =
𝑍𝑍𝑖𝑖 − 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚
(1)

Here, the dataset values are verified for maximum and
minimum values to set the web services over the cloud
environment. The failure rate is predicted based on the
actual request generated from the user. The error over the
system due to failure is expressed as in Eq. (2):

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = �
1
𝑛𝑛
��𝑌𝑌𝑖𝑖 − 𝑌𝑌𝑖𝑖𝑃𝑃𝑃𝑃�

2
𝑛𝑛

𝑖𝑖=1

(2)

Here, 𝑌𝑌𝑖𝑖𝑃𝑃𝑃𝑃 and 𝑌𝑌𝑖𝑖 are the predicted and the actual task
failure identified over the cloud environment, ′𝑛𝑛′ is
several tasks generated from the user.

3.1.1 Resource model for task allocation
In a CC environment, the service provider receives
various independent tasks given by the users. The set of
tasks are provided as 𝑇𝑇 = {𝑇𝑇1,𝑇𝑇2, … , 𝑇𝑇𝑘𝑘}. These tasks are
connected with various task requirements with a set of
parameters required to execute certain Task 𝑇𝑇𝑘𝑘 . It
includes incoming tasks, deadlines, and system failure,
respectively. The tasks are categorized as faulty when the
system fails based on fairness proneness. The failed task
is designed as 𝑇𝑇 = {𝑇𝑇1,𝑇𝑇2, … , 𝑇𝑇𝑙𝑙} for failure based
scheduling process with the fault-tolerance mechanism.
The cloud environment is composed of a host with virtual
machines (𝑉𝑉𝑉𝑉1,𝑉𝑉𝑉𝑉2,𝑉𝑉𝑉𝑉3) where the cloud model is
used for creating virtualized resources to fulfill the end-
users' requirements. The VM requirements are provided
using 𝑉𝑉𝑗𝑗 = {𝑉𝑉𝑗𝑗𝑛𝑛} where ′𝑛𝑛′ is the number of resources
used for task allocation.

EAI Endorsed Transactions on
Cloud Systems

07 2021 - 03 2022 | Volume 7 | Issue 21 | e2

Suvarna S. Pawar, Y. Prasanth

4

3.1.2 Fault tolerance mechanism
The task failure occurs due to resource unavailability,
time exceeding the threshold limit, hardware failure,
hardware failure, system that runs out of memory,
improper library installation, resource over-utilization,
and so on. Some of these faults are considered to be
permanent/transient, which are independent of each
other. Therefore, modelling of an efficient fault-tolerant
mechanism has to fulfil the task deadline (response time)
of all the system task that handles fault occurs under a
worst-case environment. The three-tier model is
extensive for fault tolerance that replicates tasks to
multiple copies scheduled to various hosts. Thus, there is
a possibility of enormous resource wastage with
remarkable energy consumption. In this research work,
the tasks are replicated (failure). Initially, the next tasks
are considered from task (failure), and the tasks are
replicated. The collector model then collects the tasks and
maintains it as a bag of incoming tasks to the failed
system from the end-users. The collector model is used to
map the appropriate hosts, allocate resources, and
schedule various hosts' tasks, respectively. The redundant
copies of the task sequence are designed as depicted in
Fig 1. Thus, the execution should not overlap various
hosts to eliminate redundant data execution.

3.1.3 Task scheduling and fairness resource
allocation
The process of scheduling is partitioned into two phases.
Initially, the task is provided to the failure system, and the
second phase is the creation of tasks from replicated data.
The tasks from these regions are provided to the collector
module. The tasks are collected from various systems and
maintained over the bag of incoming features (BoT). The
fairness resource allocation is given to BoT, which is
maintained over the collector module. The scheduler
needs to schedule the Task-based on the available
resources with the proper response time. When the task
completion period exceeds the given time limit and the

response time is prolonged, it is observed that the system
encounters an internal fault (any sort) and causes a delay
in the task completion process. The system's failure has
to be identified efficiently, where the process is explained
in the algorithm given below. Algorithm 1 depicts the
prediction of fault and performance tolerance based
scheduling process.

Algorithm 1: Prediction of fault and tolerance
scheduler
1. Process: Fault prediction and tolerance scheduler ()
2. Initialize task, historical dataset, set of VM, set of
hosts
3. Failure prediction (task): prediction ()
4. if (prediction status = failed/faulty) then
5. Preserve the Task over BoT
6. Predict fault over system ()
7. else
8. Maintain Task over BoT
9. Non-fault task scheduling ()
10. end if
11. end procedure (Fault prediction and tolerance
scheduler)

The failure tasks are placed over the task queue in an
earlier deadline way. The consecutive tasks are
considered from task queue (failure), and every task is
replicated into multiple copies. The requested resources
of the entire task from successive tasks are evaluated
where the requested values are selected, i.e., resource
vector is computed for all the tasks. Then, the task needs
to be mapped towards available hosts with appropriate
resources using Algorithm 1 and the fault prediction
algorithm is given in Algorithm 2.

Algorithm 2: Fault prediction & scheduling

1. Process: fault prediction ()
2. Initialize the weight of BoT
3. for all dataset (𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 𝑛𝑛)
4. for all 𝑗𝑗 = 1 𝑡𝑡𝑡𝑡 𝑛𝑛;
5. Compute task scheduling with actual output;
6. Evaluate Error (MAE);
7. Use Mean Absolute Error to reduce the error;
8. Adopt it to the layers of collector and redundant
failure model;
9. Repeat the process till the error is minimized;
10. end for
11. end for
12. end procedure

//Scheduling the Task
1. Procedure scheduling failed task ()
2. Set of failed task {𝑇𝑇1,𝑇𝑇2, … , 𝑇𝑇𝑙𝑙}

3. Select successive tasks from failed task over queue,
i.e., 𝑇𝑇1,𝑇𝑇2,𝑇𝑇3;
4. perform reconstruction with filter module
5. Check VM list;
5. Sort task based on resource availability;
6. Check available host list;
7. if resources are scheduled to perform task, then
8. check the task scheduling order
9. if 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑛𝑛𝑛𝑛𝑛𝑛 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, then
10. schedule task to available host
11. else
12. break the process
13. end if
14. else
15. break the process
16. end if
17. end procedure

EAI Endorsed Transactions on
Cloud Systems

07 2021 - 03 2022 | Volume 7 | Issue 21 | e2

5

3.1.4 Redundant filter module
The redundant filter model reduces the bottleneck while
handling more filters. The task scheduling speed is
reduced when the successive request is generated from
when the constraints are encountered when a
considerable number of requests appear from the primary

source. The advantage of executing the redundant filter
module is to provide an opportunity for paralleling
running the task even in case of system failure by
facilitating the load to be spread among the available
resources (fairness allocation) and enhance the
throughput, as shown in Fig 1. The redundancy filter
provides a pipeline based

Fig 1 System model of three-tier module

manner without any redundancy of task allocation. The
allocated task is given to the scheduler for appropriate
scheduling with the delayed response time. The filtering
is performed before it filters out the redundant task to
complete the process. The primary benefit of this module
is its resiliency.

When the filter encounters any failed task over the
machine (unavailable), the queue's task has to be re-
scheduled. The filter directly interferes with other
instances of the components. The failure of the system
does not affect the outcome of the failure of the
redundancy filter. The process of the filter is more
complicated as it is carried out in a distributed
environment. The task that flows among these filters re
no lost and preserved over the queue. When the filter fails
to receive any task, the queue's task needs to be re-
scheduled to another filter instance. Based on these
analyses, it is observed that there is successful task
allocation over the host environment. The filter runs in
an isolated manner and provides an appropriate context
to carry out the task allocation process.

This proposed three-tier module's primary objective is
to attain better performance when the incoming tasks are
prone to failure. The task that arrives over the system
needs to join the queue without any system failure. The
three-tier model's complexity is evaluated for the ′𝑛𝑛′
tasks and expressed in the 𝑂𝑂(𝑛𝑛2). The relation among the

failure system is based on the task and resources with
correlation establishment. The correlation determines the
association between the task and resources. The task
failure is encountered when the scheduler gives minimal
resources for processing. The tasks are failed only during
the resource allocation is lower, and the request is higher.
Based on the experimental observations, the three-tier
model uses a fault tolerance mechanism to assign failure
tasks to the most appropriate VM and physical host, as in
Fig 1. Therefore, the proposed three-tier model works
efficiently.

4. Numerical results and discussions

This research work chooses MATLAB 2016
environment, which industrialists and academia
extensively utilize to perform experimentations. It is
competitive to offer the cloud environment with the
entire essential testing interface. Therefore, it is
extensively suitable for algorithm verification. The
essential parameters are discussed below: processing
capabilities of the host are chosen randomly (1000-4000
MIPS (Million Instruction Per Second)), bandwidth (1-5
Gbps), VM processing capabilities (250-1000 Mbps).
The performance of the proposed three-tier model is
verified with parameters like response time, throughput

𝑇𝑇1 | 𝑇𝑇2 … | 𝑇𝑇𝑘𝑘

𝑇𝑇1 | 𝑇𝑇2 … | 𝑇𝑇𝑙𝑙

Task
collector
module

Redundant
filter

module

𝑇𝑇1 | 𝑇𝑇2 … | 𝑇𝑇𝑘𝑘

Fairness
resource
scheduler 𝑇𝑇1 | 𝑇𝑇2 … | 𝑇𝑇3

𝑉𝑉1 𝑉𝑉2 𝑉𝑉3

𝑇𝑇1 | 𝑇𝑇2 … | 𝑇𝑇3

𝑉𝑉1 𝑉𝑉2 𝑉𝑉3

𝑇𝑇1 | 𝑇𝑇2 … | 𝑇𝑇3

𝑉𝑉1 𝑉𝑉2 𝑉𝑉3
𝐻𝐻1

𝐻𝐻2

𝐻𝐻3

Users

Three-tier
module

Task over queue

Task queue

Modelling an Efficient Three-Tier Fault Tolerance Approach for Resource Provisioning over Cloud

EAI Endorsed Transactions on
Cloud Systems

07 2021 - 03 2022 | Volume 7 | Issue 21 | e2

Suvarna S. Pawar, Y. Prasanth

6

(Kbps), number of redundant data, time taken by all the
end-users', Mean Absolute Error (MAE), final time
value, cosine similarity value (CS), Pearson’s correlation
coefficient (PCC) and Karl Pearson’s correlation
coefficient (KPCC).

The proposed three-tier model's performance is tested
with the variations in task count to improve the guarantee
ratio. The three-tier model searches for a suitable task
scheduling process and virtual machine where the
existing approaches consume more resources. The
neighbourhood scheduling mechanisms' guarantee ratios
are lesser where these models consume excess tasks from
the host with increased task count. Therefore, the tasks
involved are finished after crossing the deadline setup.
Some investigators adopt an overlapping mechanism for
concurrent task processing. When the task count is
higher, then the task scheduling process leads to a
conflict where it reduces the guarantee ratio.

Similarly, with the increase in task size, the slack time
is reduced drastically. When the primary sources are
failed, then the backup copy does not efficiently perform
the execution. With the increased task size, the guarantee
ratio is also higher. The existing approaches do not adopt
a resource utilization method that cannot give a time slot
for execution. The process cannot perform the task
before the deadline. When the task size increases with the
failed system, then the backup copy consumed more
resources. It cannot predict the more suitable VM for task
scheduling. Thus, a new host is launched with the
available VM. Moreover, VM and host's initiation needs
a specific time to complete the task before the given
deadline. The consequences of host count initialization
are performed.

It is observed that the guarantee ratio of the proposed
three-tier model is increased with the increase in host
count. With the increase in host count, more VM is
provided to execute the slack time. The guarantee ratio
of the proposed three-tier model is higher than the other
approaches. Based on this, the throughput is higher
(kbps) with proper response time, elimination of
redundant data. The similarity among the redundant data
is analysed with cosine similarity, KPCC, and PCC. The
error that occurred during the task performance is
provided with the error rate analysis done with MAE.
The failed system shows higher error compared to the
non-failed system. The error rate is inversely
proportional to resource allocation, i.e., when the system
fails, it leads to error; however, in a non-failed system,
the resource has to be allocated concurrently.

When there is an increase in host count, then there is
some impact on task completion time. The parameter
related to the task does not show any variations; thus, the
time needed to complete the specific task is not reduced.
The task completion over the three-tier model is higher
than the existing approaches. The simulation parameters
are given in Table 1.

Table 1. Simulation environment and parameter
setup

Web
services

type
Cores MIPS RAM

(MB)

Disk
storage
(GB)

CS1 1 500 1540 6
CS2 1 1000 3850 6
CS3 1 2000 885 6

The response time (seconds) of the proposed three-tier
model is higher than other approaches. It is analysed
using three different servers known as CS1, CS2, and
CS3, respectively. Fig 2 depicts cloud servers' responses
in three different colours, i.e., blue, dotted red, and
dashed yellow. The X-axis represents the execution of
MIPS tasks, while Y-axis depicts the response time
(seconds). Here, the response time of CS1 is higher than
in another model when there is no failure over the system
design. Fig 3 depicts the throughput (kbps) where the x-
axis shows real end-users and the y-axis shows
throughput computation with kbps. The throughput of
CS2 is higher when compared to CS1 and CS3. Here,
CS1 shows nominal throughput values while CS3 gives
lesser values during proper system functionality.
However, when the system fault is injected; then the
model shows some fluctuations in the output. Fig 4
depicts the computation of several redundant data. The
efficiency of CS1 and CS3 is reduced while handing
redundant data; similarly, in CS2, the efficiency is
higher. Fig 5 depicts the total response time to the users
while requests are generated from the end-users. Here,
the response from three different servers is noted (CS1,
CS2, and CS3), respectively. The total time taken by CS1
is higher than CS2 and CS3 during the system failure.
Here, CS3 takes a lesser response time than CS1 and CS2
during the system failure (for maximum request
generated from the users).

The failure in the cloud system leads to error
generation to the output parameters. The error is
measured here is Mean Absolute Error. The error rate of
the response from the CS is analysed for 2000 users. The
probability of error occurrence in provided CS (1, 2, and
3) is sensed from this observation. CS1 and CS2 give
higher errors than CS3. Thus, the feasibility of CS3 is
higher for handling the fault. However, it shows a lesser
response time. The comparison of CS1, CS2, and CS3 is
shown in Fig 6 – Fig 8. Here, the existing TL-CSP is
compared with the proposed three-tier model.

Fig 7 depicts the computation of KRCC. The trust
establishment and the success rate (guarantee ratio) of
CS1, CS2, and CS3 are measured. The service
provisioning rate of the web services is evaluated. The
value ranges from 0-1 gives the feasibility of the
correlation coefficient. When the value lies within this
range, the service is said to be more efficient. When the
value exceeds 1, then the service is not so proficient. The
cosine similarity is measured and shown in Fig 10. The
cosine similarity measures the similarity among the two
vectors and determines whether the flow is done over the
same direction. Based on this, the similarities among the
services provided are analysed. The proposed model
gives better similarity mapping during service
provisioning to fulfil the QoS requirements. Fig 9 depicts

EAI Endorsed Transactions on
Cloud Systems

07 2021 - 03 2022 | Volume 7 | Issue 21 | e2

7

the computation of PCC. The relationships among the
variables are measured with the ratio scale to establish
the relationship strength with continuous variables.
Based on these similarity measures, the service provided
by CS3 is better and more reliable. Thus, Fig 6-8 depicts
the selection of the cloud service model. CS3 is chosen
to be a feasible model to tolerate the fault. However, the
response time is lesser for CS3 while handling a massive
request from the users. Fig 12 depicts the total time value
taken by the cloud services to respond during the time of
faulty condition. The functionality of these three services
w.r.t fault tolerance and response time is inversely
proportional to one another. The response time of CS3 is
lesser than CS1 and CS2, respectively. Table 2 depicts
the analysis of allocated resources based on the online
available web service dataset.

Table 2. Allocated resource analysis
Average
resources

(failed tasks)
0.420 0.419 0.421

Average
resources

(successful
task)

0.560 0.585 0.580

Pearson
Correlation
coefficient

(PCC)

0.98 0.97 0.98

Cosine
Similarity (CS) 0.97 0.97 0.97

Karl’s Pearson
coefficient for

correlation
(KRCC)

0.98 0.98 0.98

Fig. 2. Response time based on cloud services Fig .3. Throughput computation

Fig. 4. Number of redundant data from incoming
task Fig .5. Total time needed for all user’s

0 200 400 600 800 1000 1200 1400 1600 1800 2000

CS

-1000

0

1000

2000

3000

4000

5000

6000

7000

Re
sp

on
se

 ti
m

e
(s

ec
)

CS1

CS2

CS3

1 2 3

CS

0

5

10

15

20

25

30

35

40

45

N
um

be
r o

f R
ed

un
da

nt
 d

at
a

CS1 CS2 CS3

CS

0

1

2

3

4

5

6

To
ta

l t
im

e
fo

r a
ll

us
er

s

10 6

Modelling an Efficient Three-Tier Fault Tolerance Approach for Resource Provisioning over Cloud

EAI Endorsed Transactions on
Cloud Systems

07 2021 - 03 2022 | Volume 7 | Issue 21 | e2

Suvarna S. Pawar, Y. Prasanth

8

Fig .6. MAE computation of cloud service 1 Fig. 7.MAE computation of cloud service 2

Fig .8. MAE computation of cloud service 3 Fig .9. Pearson correlation coefficient
computation

Fig.10. Cosine similarity computation Fig .11. KRCC computation

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Users

0

2000

4000

6000

8000

10000

12000

M
A

E

CS1

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Users

0

2000

4000

6000

8000

10000

12000

14000

M
A

E

CS2

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Users

0

2000

4000

6000

8000

10000

12000

14000

M
AE

CS3

CS1 CS2 CS3

CS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PC
C

Three tier model

TL-CSP

CS1 CS2 CS3

CS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
os

in
e

si
m

ila
rit

y

Three tier model

TL-CSP

CS1 CS2 CS3

CS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

KR
CC

Three tier model

TL-CSP

EAI Endorsed Transactions on
Cloud Systems

07 2021 - 03 2022 | Volume 7 | Issue 21 | e2

9

Fig .12. Total time taken by CS 1-3 Fig .13. Comparison of Fairness resource
utilization rate

Fig.14. Comparison of rejection ratio (%) Fig. 15. Comparison of Failure task count

Fig .16. Selection of cloud service

Similarly, Fig 13 depicts the fairness resource utilization
rate. It is depicted as the ratio among the time taken to execute
specific tasks by total time. Fig 14 depicts the rejection rate
of incoming tasks. Fig 15 shows that the task failure rate is
analysed based on the tasks being failed due to no proper
scheduling. The comparison of fairness resource utilization
ratio (%), rejection ratio (%), and failure task count is done
among three-tier model, Prediction-based Energy-aware fault
tolerance scheduling (PEFS), real-time fault-tolerant
scheduling approach with rearrangement (RFTR), dynamical
fault-tolerant scheduling (DFTS), and Modified Breadth-First
Search (MBFS). Fig 16 depicts the service selection of cloud
with web service 3. Table 3 depicts the comparison of fairness
resource utilization rate and the evaluation done among the
proposed and existing approaches, and table 4 depicts the

rejection ratio (%) evaluation. Table 5 depicts the evaluation
of failure task count.

Table. 3. Comparison of Fairness resource utilization

Web
Services PEFSO RFTR DFTS MBFS

Three-
tier

model
CS1 42.6480 61.7164 81.7597 89.3796 94.9354
CS2 17.1910 51.2942 73.6735 86.4453 86.6071
CS3 42.2390 69.3503 77.8024 79.2437 92.5351

CS1 CS2 CS3

CS

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

F
in

al
 ti

m
e

va
lu

e

10 6

1 2 3

CS

0

10

20

30

40

50

60

70

80

90

100

Fa
irn

es
s

R
es

ou
rc

e
U

til
is

at
io

n
R

at
io

 (%
)

PEFSO

RFTR

DFTS

MBFS

Three tier model

1 2 3

CS

0

10

20

30

40

50

60

70

80

90

100

R
ej

ec
tio

n
R

at
io

 (%
)

PEFSO

RFTR

DFTS

MBFS

Three tier model

500 1000 1500 2000

Task count

0

100

200

300

400

500

600

700

800

900

1000
F

ai
lu

re
 T

as
k

co
un

t

Actual failure

PEFSO

RFTR

DFTS

MBFS

Three tier model

Modelling an Efficient Three-Tier Fault Tolerance Approach for Resource Provisioning over Cloud

EAI Endorsed Transactions on
Cloud Systems

07 2021 - 03 2022 | Volume 7 | Issue 21 | e2

10

Table .4. Comparison of rejection ratio (%) Table. 5. Comparison of Failure Task count

From the above Tables, it is observed that the
anticipated three-tier model outperforms existing PEFSO,
RFTR, DFTS, and MBFS model. The fault tolerance ability
of the three-tier model is higher than the other models.
Simultaneously, the response time to the incoming task
request is nominally lower for the three-tier model.
However, it does not produce any conflicts over the
fairness of resource allocation. Thus, the three-tier model
pretends to fulfil the research objective efficiently.

6. Conclusion and Future Work

Cloud applications generally rely on a largescale
environment composed of a vast number of distributed
nodes. The complex and dynamical nature of the cloud
environment loads to various conflicts in node failure very
often. Some existing approaches do not concentrate on real
time fault-tolerance, and some investigators concentrate on
schedule to attain the optimization objective to enhance
reliability and resource utilization efficiency. This research
work concentrates on providing a hierarchical model with
three tiers known as the collector model, redundant data
filter model, and fairness resource allocation model. It
examines the dynamical fault tolerance ability with
appropriate VM deployment with task and response time
based on a deadline. Also, it provides the essential
components of cloud applications like users' requests,
tasks, VM, and scheduling processes. Then, analysis and
validation are performed with the dynamic characteristics
of constructed three-tier model. The algorithm provided by
this model realizes the tolerating ability of the system with
the response time. Finally, the experimentation is carried
out in a MATLAB simulation environment to show various
applications' reliability.

The anticipated fault tolerance method and the existing
approaches like PEFSO, RFTR, DFTS, and MBFS are
evaluated to fulfil the system's reliability. The well-realized
fault tolerance approach can efficiently demonstrate the
structural model and fault tolerance process over the
computing environment, therefore enhancing the cloud
extendibility. Moreover, the computing environment's
failure is hugely complex, and failure has to be handled
efficiently. The process of fulfilling the QoS requirements

is exceptionally challenging. In the future, the anticipated
three-tier model is extended to demonstrate the multi-
objective constraint, which deals with the stability of
transferring the fault tolerance to fault prevention in a
stable manner. Similarly, the three-tier model's
implementation is compared with the evaluation of various
online available benchmark datasets based on QoS metrics
like execution time, reliability, and resource utilization.

References

[1] Xia, J. Zhang, T. Q. S. Quek, S. Jin, and H. Zhu,
“Energy-efficient task scheduling and resource allocation
in downlink C-RAN,” in 2018 IEEE Wirel. Commun.
Netw. Conf., Apr 2018, pp. 1–6.

[2] Liu, T. Han, N. Ansari, and G. Wu, “On designing
energy-efficient heterogeneous cloud radio access
networks,” IEEE Trans. Green Commun. Netw., pp. 1–13,
2018.

[3] Al-Dhabi, F. Paraiso, N. Djarallah, and P. Merle,
“Elasticity in cloud computing: State of the art and research
challenges,” IEEE Trans. Serv. Comput., vol. 11, no. 2, pp.
430–447, Mar 2018.
[4] Botta, W. de Donato, V. Persico, and A. Pescapé,
“Integration of cloud computing and internet of things: A
survey,” Futur. Gener. Comput. Syst., vol. 56, pp. 684–
700, Mar 2016.

[5] Sharafeddine, K. Jahed, O. Farhat, and Z. Day, “Failure
recovery in wireless content distribution networks with
device-to-device cooperation,” Comput. Networks, vol.
128, pp. 108–122, Dec 2017.

[6] Su, Q. Xu, J. Luo, H. Pu, Y. Peng, and R. Lu, “A secure
content caching scheme for disaster backup in fog
computing enabled mobile social networks,” IEEE Trans.
Ind. Informatics, pp. 1–11, 2018.

[7] Chintala, R.R., Narasinga Rao, M.R., Venkateswarlu,
S. “Performance metrics and energy evaluation of a
lightweight block cipher in human sensor networks”,
International Journal of Advanced Trends in Computer
Science and Engineering, vol. 8 , no. 4 ,pp. 1487-1490,
2019.

Actual
Failure 250 500 750 1000

PEFSO 210 472 718 923
RFTR 184 495 654 920
DFTS 232 490 746 981
MBFS 179 417 706 951

Three-tier
model 246 430 711 955

Web
Services PEFSO RFTR DFTS MBFS

Three-
tier

model
CS1 5.4741 3.4345 3.1845 1.7077 0.0126
CS2 95.6448 39.0667 4.0640 3.7637 1.7687
CS3 68.9504 7.6284 3.4695 3.3955 1.7705

Suvarna S. Pawar, Y. Prasanth

EAI Endorsed Transactions on
Cloud Systems

07 2021 - 03 2022 | Volume 7 | Issue 21 | e2

11

[8] Sambasiva Rao, K., Kameswara Rao, M. “A
lightweight digital signature generation mechanism for
authentication of IoT devices “, International Journal of
Recent Technology and Engineering, vol. 7, no. 6, pp.
1862-1866, 2019.

[9] Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. Lou,
``Fuzzy keyword search over encrypted data in cloud
computing,'' in Proc. IEEE INFO- COM, San Diego, CA,
USA, Mar. 2010, pp. 1_5.

[10] Wei, H. Zhu, Z. Cao, X. Dong, W. Jia, Y. Chen, and
A. V. Vasilakos, “Security and privacy for storage and
computation in cloud computing,” Information Sciences,
vol. 258, pp. 371–386, 2014.

[11] Kadham, N.R., Sreenivasa Ravi, K. “A lightweight
One Time Password (OTP) based smart learning in Internet
of Things”, 2018 International Journal of Engineering and
Technology(UAE), vol. 7 pp.480-483, 2018.

[12] Alsaghier, H.M., Shakeel Ahamad, S., Udgata, S.K.,
Reddy, L.S.S. “A secure and lightweight protocol for
mobile DRM based on DRM community cloud (DCC)”,
Advances in Intelligent Systems and Computing, vol. 515,
pp.475-483, 2018.

[13] Chen W, Lee Y C, Fekete A, et al. Adaptive multiple-
workflow scheduling with task rearrangement [J]. The
Journal of Supercomputing, 2015, 71(4): 1297-1317.

[14] Jing W, Liu Y. Multiple DAGs reliability model and
fault-tolerant scheduling algorithm in cloud computing
system[J]. Computer Modeling and New Technologies,
2014, 18(8): 22-30

[15] Patra PK, Singh H, Singh R, et al. Replication and Re-
submission Based Adaptive Decision for Fault Tolerance
in Real-Time Cloud Computing: A New Approach[J].
International Journal of Service Science, Management,
Engineering, and Technology, 2016, 7(2): 46-60.

[16] Swathi, D.R., Srikanth, V. “Hybrid trust management
in cloud computing”, International Journal of Advanced
Science and Technology, vol. 29, no. 3, pp. 8394-
8401,2020

[17] Potluri, S., Rao, K.S. “Simulation of QoS-Based Task
Scheduling Policy for Dependent and Independent Tasks in
a Cloud Environment”, Smart Innovation, Systems and
Technologies, vol. 159, pp.515-525,2020

[18] Sirisha, N., Kiran, K.V.D., “An efficient and
lightweight security scheme for big data”, International
Journal on Emerging Technologies vol. 11 , no. 1, pp. 414-
420, 2020.

[19] Soniya, J. Angela, J. Sujana, and T. Revathi,
“Dynamic fault-tolerant scheduling mechanism for real

time tasks in cloud computing,” International Conference
on Electrical, Electronics, and Optimization Techniques
(ICEEOT), 2016.

[20] Gali, S., Nidumolu, V. “Multi-context trust aware
routing for internet of things”, International Journal of
Intelligent Engineering and Systems, vol. 12, no. 1, pp.
189-200,2019.

[21] Duan, C. Chen, G. Min, and Y. Wu, “Energy-aware
scheduling of virtual machines in heterogeneous cloud
computing systems,” Future Generation Computer
Systems, vol. 74, pp. 142–150, 2017.

[22] Ghribi, M. Hadji, and D. Zeghlache, “Energy efficient
VM scheduling for cloud data centers: Exact allocation and
migration algorithms,” 2013 13th IEEE/ACM International
Symposium on Cluster, Cloud, and Grid Computing, 2013.

[23] Nazir, K. Qureshi, and P. Manuel, “Adaptive check
pointing strategy to tolerate faults in economy based grid,”
Journal of Supercomputing, vol. 50, no. 1, pp. 1–18, 2009.

[24] P. Sherubha, “Semi-supervised Learning approach for
detecting abnormalities in cloud computing,"
"International Virtual Conference on Smart Advanced
Material Science & Engineering Applications," 2020.

[25] P. Sherubha, “Graph Based Event Measurement for
Analyzing Distributed Anomalies in Sensor Networks,"
Sådhanå (2020) 45:212, https://doi.org/10.1007/s12046-
020-01451-w

[26] Dhote, B.L., Krishna Mohan, G. “Trust and Security
to Shared Data in Cloud Computing: Open Issues,
Advances in Intelligent Systems and Computing”, vol. 870,
pp. 117-126, 2019

[27] Patil Abhijit, J., Syam Prasad, G.,”Trust based security
model for IoT and fog based applications, International
Journal of Engineering and Technology(UAE)”, vol. 7, pp.
691-695,2018

[28] Nashnosh, M.T., Vijaya Babu, B.,” LESIPT:
Lightweight enhanced secure incentive protocol with
trusted value for multi-hop wireless networks”
,International Journal of Applied Engineering Research
vol. 9, no. 19, pp. 5373- 5384, 2014

[29] Kameswara Rao, M., Usha Switha, T., Naveen, S. “A
novel graphical password authentication mechanism for
cloud services”, Advances in Intelligent Systems and
Computing, vol. 433, pp. 447-453,2016.

[30]
https://sourceforge.net/projects/qosmonitoring/files/webse
rvice1.txt/download

Modelling an Efficient Three-Tier Fault Tolerance Approach for Resource Provisioning over Cloud

EAI Endorsed Transactions on
Cloud Systems

07 2021 - 03 2022 | Volume 7 | Issue 21 | e2

https://doi.org/10.1007/s12046-020-01451-w
https://doi.org/10.1007/s12046-020-01451-w
https://sourceforge.net/projects/qosmonitoring/files/webservice1.txt/download
https://sourceforge.net/projects/qosmonitoring/files/webservice1.txt/download

