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Abstract 
Machine vision using CNN is a key application in Industrial automation environment, enabling real time as well as offline 
analytics. A lot of processing is required in real time, and in high speed environment variable latency of data transfer 
makes a cloud solution unreliable. There is a need for application specific hardware acceleration to process CNNs and 
traditional computer vision algorithms. Cost and time-to-market are critical factors in the fast moving Industrial 
automation segment which makes RTL based custom hardware accelerators infeasible. This work proposes a low-cost, 
scalable, compute-at-the-edge solution using FPGA and OpenCL. The paper proposes a methodology that can be used to 
accelerate traditional as well as machine learning based computer vision algorithms. 
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1. Introduction

Computer vision and machine learning enable industrial 
environments to become more intelligent and enable more 
analytics in real time. The industrial environment is very 
fast moving, and the large number of cameras deployed 
generate a huge amount of data to be processed. This data 
enables online as well as offline analytics. Factors such as 
variable latency of data transfer and data privacy make a 
cloud solution for such analytics unfavourable. The high 
speed industrial environment thus calls for application-
specific compute-at-the-edge hardware accelerators to 
process the sensor data using, for example, computer vision 
algorithms.  

A custom hardware accelerator has challenges of its own, 
including cost of the hardware, as well as time-to-market for 
the acceleration solution [1] [2]. Field Programmable Gate 
Arrays (FPGAs) have proven to be reliable accelerators for 
rapidly changing industries. OpenCL, which is an open 
source high level synthesis (HLS) framework has further 

helped in reducing the time-to-market of FPGA solutions for 
target acceleration.  

This paper addresses the critical factors mentioned above 
for acceleration of Computer Vision based applications, 
especially for industrial environments. In this paper, we 
propose a solution methodology for hardware acceleration 
of Convolutional Neural Networks (CNNs) based on a 
combination of a Cyclone V FPGA and an Intel Atom 
Processor. This methodology can be also implemented to 
accelerate traditional Computer Vision algorithms. 

Convolutional neural networks are a class of machine 
learning algorithms which work on multiple layers of image 
convolutions. This can be thought of as a cascade of feature 
maps from low level features, e.g. directional edges, colours, 
to higher level features, e.g. complex curvatures or partial 
regions of objects. There can various types of layers used in 
CNN, in this work we deal with the following: 

• Convolutional layers – An NxN convolution mask
that operates on the images from the input or the
previous layer. Each layer has many such feature
masks.
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• Pooling Layers – These are used to reduce the
dimension of the images by selecting the max or
average over a fixed region.

• Fully connected layers – These layers are a linear
transformation of the input by a matrix
multiplication.

• Activation functions – These add nonlinearity in
between layers, essential for any deep neural
network’s operation.

CNNs are popular in deep learning based image analytics 
and are our target for acceleration in this paper. 

Field Programmable Gate Arrays (FPGA) are re-
programmable integrated circuits that can replicate hardware 
logic by making connections between arrays of logic gates, 
they also include specialized hardware that are commonly 
used, as well as Block RAMs (BRAM) which act like 
system memory. Traditionally FPGA design has been in the 
domain of hardware and RTL designers, but HLS 
frameworks such as OpenCL allow algorithms to be run on 
FPGAs easily. The kernel code written in OpenCL are 
converted to RTL by the FPGA OpenCL compilers (like 
Intel FPGA OpenCL compiler) and synthesizes the bit-
stream. Our paper focuses on a reusable design pattern for 
accelerating CNNs on FPGAs which is implemented using 
OpenCL. 

The structure of the rest of the paper is as follows. 
Section 2 describes related work with FPGA based CNN 
acceleration, Section 3 explains the problem statement. 
Section 4 gives the system overview for the acceleration. 
Section 5 and 6 describe the methodology used to accelerate 
traditional computer vision and deep learning algorithms 
using OpenCL. We present our results and performance 
analysis in Section 7, and summarize our work in Section 8.  

2. Related Work

There are existing solutions for accelerating computer vision 
algorithms and deep learning networks on FPGA. Wang et 
al. [3] propose PipeCNN, an OpenCL based acceleration 
solution for CNNs that supports multiple FPGAs. However 
their architecture being generic, may not fit all applications 
in an optimal manner. We found this to be the case with our 
network. More about this is explained in Sections VII. Intel 
OpenVINO [4] is a cross platform neural network inference 
library that allows users to accelerate their inference on 
heterogeneous platforms including FPGAs. However the 
library currently supports larger FPGAs. Our target platform 
is a Cyclone V FPGA, which is low cost, low power, and is 
best suited for our application.  

Chen et al. [5] propose the roofline method, a widely 
used analytical method to check the memory bandwidth and 
compute resources needed on a FPGA particularly for CNN 
architectures. Meloni et al. [6] go beyond the roofline limit 
to make maximal usage of the FPGA and CPU combination. 
Our method is reminiscent of this, as we shall see with our 
fully pipelined method described in Section 4. Bing et al. [7] 

propose an alternate method to reduce the computational 
load by implementing depth-wise separable convolutions.  

3. Problem Statement

The target environment is an industrial setup having labels 
with printed text moving on a high speed conveyor belt 
equipped with an overhead camera. The objective is to run 
real time computer vision algorithms supporting high 
camera frame-rate. The specific use case in this paper is 
running Optical Character Recognition on the labels. The 
solution should meet the following criteria: 

• Complete self-sufficiency of the solution
• Low cost solution for compute-on-edge industrial

solution
• Maximal usage of CPU and FPGA at all times
• Reusable architecture for traditional Computer

Vision operations as well as CNNs
• Reduced engineering efforts and faster time to

market by using OpenCL
• RTL level maximal efficiency and performance

extracted from OpenCL implementation

4. System Overview

The target use case is a Machine Vision application to 
recognize printed labels on a fast-moving conveyor belt and 
uses CNN to carry out Optical Character Recognition as in 
Figure 1. 

4.1. Hardware Setup 

The Apollo Island platform consists of Apollo Lake which is 
a Dual Core Intel Atom processor, a Cyclone V FPGA 
connected to the processor by a PCIe link, and a DDR3 
memory. A 5 Megapixel CMOS camera is connected to the 
FPGA via LVDS interface. The conveyer belt is mounted 
with an Apollo Island based camera (consisting of Intel 
Atom and Cyclone V FPGA connected to a 5MP CMOS 
camera) to read and process printed labels. 

Figure 1. Industrial Setup for fast OCR 
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Figure 2. Industrial Setup for fast OCR 

4.2. CNN based Algorithm 

The stages of the algorithm are as in Figure 2. The camera 
on board the Apollo Island takes the overhead image of the 
label, the FPGA then pre-processes the image and passes it 
to the CPU, where connected component labelling is used to 
get image regions with individual characters, which are then 
recognized by the CNN on the FPGA, and finally the post-
processing is done on the CPU to give the text output.   

The FPGA pre-processes the raw image data from the 
sensor. The CMOS camera sensor provides raw Bayer 
image data. The FPGA implements de-Bayering logic to 
convert the raw image to RGB format. The image is then 
processed by RGB2Grayscale block to generate grayscale 
image which is passed to the CPU.  

The candidate regions containing characters are generated 
by the Connected Component Labelling (CCL) block which 
is used to detect connected regions in binary images. The 
grayscale image is thresholded and CCL localizes and 
extract candidate character regions in the image. These 
candidate regions are then passed to the CNN sequentially.  

Convolutional Neural Networks (CNN) are a class of 
machine learning algorithms which have recently performed 
very well in image classification and are very widely used 
for machine vision. In OCR, the input is an image and the 
output is a choice among a set of characters that are to be 
recognized. We pass the candidate character regions 
obtained from CCL to our CNN network instantiated on the 
FPGA.  

Figure 3. Industrial Setup for fast OCR 

Figure 3 shows the CNN network topology trained to 
perform OCR in this work. The network consists of: 

• Convolution layer with 16 nodes and 3x3 mask
• Pooling layer with 16 nodes and 2x2 mask
• Convolution layer with 64 nodes and 3x3 mask
• Pooling layer with 64 nodes and 2x2 mask
• Fully Connected layer with 128 nodes
• Fully Connected layer with 256 nodes

The classification in the final layer in the CNN network 
gives the character being recognized. The character obtained 
from all segmented images are then post-processed and 
arranged together to get the resulting text from image. 

4.3. Computation Analysis 

The computation calculation in Table 1 is as per the network 
topology described in Section 4.2. As seen in the table, the 
convolution operations are most compute intensive in CNN. 
In this paper we present an OpenCL based solution to 
accelerate CNN by creating custom hardware architecture to 
compute the convolution operations. The implementation is 
modular and scalable, and can be modified to suit any CNN 
topology. 

The solution uses the dual core CPU and FPGA in a fully 
pipelined manner. The CPU uses two threads, one to 
compute the CCL, which takes the maximum amount of 
time, and another thread to post-process the CNN outputs 
and fetch new images from the FPGA. The CNN 
computation offload on FPGA runs parallel to these 
software threads. This pipelined implementation is 
explained in Section 5. This architecture ensures extraction 
of maximum resource utilization on Apollo Island platform. 
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Table 1. CNN Per-Layer Compute 

Layer Nodes Input Size Compute 
Convolution Layer 1 16 16x16 36864 
Pooling Layer 1 16 16x16 4096 
Convolution Layer 2 64 8x8x16 589824 

Pooling Layer 2 64 8x8x16 65536 

Fully Connected Layer 1 128 4x4x64 131072 

Fully Connected Layer 2 256 128 32768 

5. Image Convolution Kernel Model

Convolution operations, and other spatial domain filtering, 
require non-contiguous memory accesses, which uses high 
memory bandwidth. Traditional computer vision operations 
such as sobel, erosion, dilation share similar memory access 
characteristics with convolutional operation. The operations 
generally consist of convoluting or multiplying a mask/filter 
with a sub-region of an image called a sliding window. The 
sliding window keeps moving, allowing the operation to be 
replicated across the image. 

The proposed hardware design pattern reads and 
processes an image in raster scan order. Processing image 
slices as a 1D data stream enables bypassing the memory 
fetch overhead. By using shift registers to store a maximum 
of N-1 rows and N pixels at a time, where N is the size of 
the convolution. The nodes are connected in a pipelined 
fashion so that each node receives an input pixel and 
generates an output pixel every clock cycle. This 
architecture is scalable to the size of the filter being utilized 
as well as stride, and can be utilized to accelerate both 
traditional as well as deep learning based computer vision. 

Figure 4. Image Convolution Kernel Model 
To further improve the performance, we leverage a 

special feature of Altera FPGAs allows the use of M10k 
block rams as shift registers. This dramatically enhances the 
resource usage in this architecture. In the Apollo Island 
platform, the sensor is directly connected to the FPGA, 
hence this architecture allows processing before the sensor 
even outputs the entire image, which demonstrates maximal 
efficiency of this architecture. 

The input image size for Layer 1 in the CNN network for 
OCR is 16x16, and convolution kernel size is 3x3. The 
convolution kernel thus needs to buffer 2 rows of image data 
and 3 extra pixels and start processing the convolution. The 
raster scan architecture ensures that one pixel is processed 
every clock cycle. 

6. CNN Accelerator Hardware Architecture

Figure 5 shows the hardware architecture for accelerating 
the convolution layers of the CNN network. The input 
image, as well as the intermediate outputs, are accessed in a 
raster scan order, as described in Section 5. The convolution 
nodes of the CNN topology in depicted in Figure 4 are 
implemented on the FPGA. They receive image slices with 
characters and process them across multiple layers and send 
the result to the CPU to compute the fully connected layers 
and perform the post processing for OCR.  

• The convolution operation is a dot product of two
vectors. OpenCL naively uses more DSPs than required
for the multiplication operation, hence a small custom
RTL block is instantiated to optimize the DSP usage.
The pooling operation is an averaging of 2x2 image
slices.

• Owing to limited resources available on the FPGA, the
physical nodes are distributed among Layer 1 and
Layer 2 to balance the computational load between the
layers. A weight buffer, for storing all the network’s
weights, is used to reduce the CPU DDR overhead of
loading many weights every cycle. A unique
methodology is introduced to compute partial results of
the Layer 2 convolutions, as all outputs from Layer 1
are not available to Layer 2 at the same time. The non-
linear activation function is the ReLU operation.

6.1. Compute Balancing and Partials 
Computation 

The CNN accelerator leverages a key compute balancing 
strategy to maximize the active usage of hardware resources. 
The number of nodes for different layers of CNN that are 
physically instantiated in hardware is determined by the 
number of computes as in Table 1 as well as available 
resources on FPGA. The nodes of a layer get processed 
iteratively by the instantiated physical nodes, or kernels. 
Two layers are connected together by a FIFO which stores 
the data generated by the previous layer and is accessed 
iteratively by the nodes of the subsequent layer. The raster 
scan order is maintained in the FIFO across the different 
outputs, or feature maps, from the nodes of the previous 
layer. 

A compute balanced hardware consuming maximum 
DSPs and that is active without being idle in any clock cycle 
is achieved by a unique Partials Computation methodology. 
All nodes in one layer need to generate output feature maps 
for the next layer to start processing.  
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Figure 5. High Level Hardware Architecture for CNN Acceleration 

This creates stalls and affects the performance of the 
FPGA. To address this issue, an architectural scheme is 
presented that enables a layer to start processing with 
minimal data from the previous layer by computing 
partials. This modification has been critical in maximizing 
the resource activity on the FPGA. 

Partials Output 
Circular Shift Register

Multiply
Add

Pixel buffer

Weight buffer

Layer n-1 output

Layer n output

Figure 6. High Level Partial Compute Block 

The computations of Layer 2 require outputs from all 
nodes of Layer 1. We alleviate this problem by using the 
fact that the output of Layer 2 can be computed as the 
sum of convolutions over each individual node of Layer 
1. We call the results of these individual convolutions as
the partials of Layer 2, these are stored in the Partials
Buffer, which is a circular shift register. As the outputs
from Layer 1 are computed, the partials are updated as
shown in Figure 6, until all the nodes are completed. This
unique architecture allows continuous convolutions
without any stalls and allows the hardware to operate with
maximum performance.

6.2. Weights Buffering on FPGA 

CNN is a high bandwidth application which operates on 
huge amount of data as weights, inputs and intermediate 

as well as final outputs. Weights of the neural network, 
especially for Layer 2, need to be continuously updated as 
the convolutional kernels iterate many times over all the 
nodes. This creates a bottleneck in the memory bandwidth 
and slows down the input image streaming pipeline from 
the CPU. Hence, all the weights of the network are stored 
on board the FPGA in M10k blocks. This frees up the 
input and output streams and also saves CPU overhead of 
indexing different weight fetch requests. 

7. Results and Performance analysis

The CNN accelerator presented in this work has been 
developed using OpenCL and has been optimized to meet 
RTL level performance. The resource area usage is as in 
Table 2. The different blocks present on the FPGA that 
we report the numbers are based on ALM (Adaptive 
Logic Modules), DSP (Digital Signal Processors) and 
M10ks, which are the atomic unit of system memory on 
the FPGA, equal to 10 kB of memory.  

Table 2. Resource Utilization on Cyclone V FPGA 

Resource Percentage Used 
ALM 88 

DSP 76 

M10K 44 

Table 3. Resource Utilization on Cyclone V FPGA 

Threaded Operations CPU (ms) FPGA (ms) 
IO Channel (FPGA) - 8.3
CCL+ Threshold 25 - 
CNN-Conv (FPGA) 200 8 
CNN - FC 15 - 

We had tested the resource usage of PipeCNN on our 
optimized architecture, however it was unable to fit in the 
FPGA and ALM usage reported by the fitter was 116%. It 
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also used 5 DSP cores per 3x3 convolutional kernel 
whereas our implementation uses only 4 without any loss 
of accuracy. 

Table 3 provides profiling data for the software as well 
as for the hardware accelerated flow for OCR. The 
Cyclone V hardware operates on a frequency of 132MHz, 
and the end to end application processes 220 characters in 
33ms. 

The hardware achieves 25x performance over 
convolution layers. The software flow could originally 
compute OCR at 4 FPS and the CNN accelerator boosts 
the end-to-end performance by 7.5X by running at 30FPS. 

The state of the art OCR implementations recognize 20 
words in 350ms and 100 words in 500ms. Taking that 
average number of characters in a word is 4.84, the time 
to recognize a single character takes at least 1.033ms. The 
implemented architecture on the other hand takes 0.15ms 
to recognize a character and demonstrates 6.8x better 
performance. 

The impact of automation is immense and deeply 
affects all kind of industries. Modern industry is 
extremely cost sensitive and looking for low cost 
solutions without compromising on speed of processing. 
Fast TTM and flexibility to change or fine tune 
requirements is very critical.  

8. Summary

This work presents a unique architecture to accelerate 
Convolutional Neural Networks and spatial domain 
computer vision operations in general. This was 
implemented using OpenCL on Intel Apollo Island 
Platform, which is a low cost FPGA solution. OCR is an 
effective way decode a specific part number, date of 
manufacturing, date of expiry etc. in a fast moving 
conveyor belt and is a key machine vision application in 
industrial environment.  
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