
Hardware Acceleration of Computer Vision and Deep
Learning Algorithms on the Edge using OpenCL
B. Mishra1*, D. Chakraborty1, S. Makkadayil1, S. D. Patil2 and B. Nallani3

1Intel Corporation, Bangalore, India
2Intel Corporation, Bangalore, India during the time of writing the paper
3Worked on the project at Intel Corporation, Bangalore, India

Abstract
Machine vision using CNN is a key application in Industrial automation environment, enabling real time as well as offline
analytics. A lot of processing is required in real time, and in high speed environment variable latency of data transfer
makes a cloud solution unreliable. There is a need for application specific hardware acceleration to process CNNs and
traditional computer vision algorithms. Cost and time-to-market are critical factors in the fast moving Industrial
automation segment which makes RTL based custom hardware accelerators infeasible. This work proposes a low-cost,
scalable, compute-at-the-edge solution using FPGA and OpenCL. The paper proposes a methodology that can be used to
accelerate traditional as well as machine learning based computer vision algorithms.

Keywords: CNN, OpenCL, Computer Vision, Machine Learning, Industrial Automation, FPGA, OCR, Hardware Acceleration.

Received on 08 September 2019, accepted on 02 November 2019, published on 05 November 2019

Copyright © 2019 B. Mishra et al., licensed to EAI. This is an open access article distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and
reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/eai.5-11-2019.162597

*Corresponding author. Email:bakshree.mishra@intel.com

1. Introduction

Computer vision and machine learning enable industrial
environments to become more intelligent and enable more
analytics in real time. The industrial environment is very
fast moving, and the large number of cameras deployed
generate a huge amount of data to be processed. This data
enables online as well as offline analytics. Factors such as
variable latency of data transfer and data privacy make a
cloud solution for such analytics unfavourable. The high
speed industrial environment thus calls for application-
specific compute-at-the-edge hardware accelerators to
process the sensor data using, for example, computer vision
algorithms.

A custom hardware accelerator has challenges of its own,
including cost of the hardware, as well as time-to-market for
the acceleration solution [1] [2]. Field Programmable Gate
Arrays (FPGAs) have proven to be reliable accelerators for
rapidly changing industries. OpenCL, which is an open
source high level synthesis (HLS) framework has further

helped in reducing the time-to-market of FPGA solutions for
target acceleration.

This paper addresses the critical factors mentioned above
for acceleration of Computer Vision based applications,
especially for industrial environments. In this paper, we
propose a solution methodology for hardware acceleration
of Convolutional Neural Networks (CNNs) based on a
combination of a Cyclone V FPGA and an Intel Atom
Processor. This methodology can be also implemented to
accelerate traditional Computer Vision algorithms.

Convolutional neural networks are a class of machine
learning algorithms which work on multiple layers of image
convolutions. This can be thought of as a cascade of feature
maps from low level features, e.g. directional edges, colours,
to higher level features, e.g. complex curvatures or partial
regions of objects. There can various types of layers used in
CNN, in this work we deal with the following:

• Convolutional layers – An NxN convolution mask
that operates on the images from the input or the
previous layer. Each layer has many such feature
masks.

EAI Endorsed Transactions
on Cloud Systems Research Article

EAI Endorsed Transactions on
Cloud Systems

07 2019 - 11 2019 | Volume 5 | Issue 16 | e61

http://creativecommons.org/licenses/by/3.0/

• Pooling Layers – These are used to reduce the
dimension of the images by selecting the max or
average over a fixed region.

• Fully connected layers – These layers are a linear
transformation of the input by a matrix
multiplication.

• Activation functions – These add nonlinearity in
between layers, essential for any deep neural
network’s operation.

CNNs are popular in deep learning based image analytics
and are our target for acceleration in this paper.

Field Programmable Gate Arrays (FPGA) are re-
programmable integrated circuits that can replicate hardware
logic by making connections between arrays of logic gates,
they also include specialized hardware that are commonly
used, as well as Block RAMs (BRAM) which act like
system memory. Traditionally FPGA design has been in the
domain of hardware and RTL designers, but HLS
frameworks such as OpenCL allow algorithms to be run on
FPGAs easily. The kernel code written in OpenCL are
converted to RTL by the FPGA OpenCL compilers (like
Intel FPGA OpenCL compiler) and synthesizes the bit-
stream. Our paper focuses on a reusable design pattern for
accelerating CNNs on FPGAs which is implemented using
OpenCL.

The structure of the rest of the paper is as follows.
Section 2 describes related work with FPGA based CNN
acceleration, Section 3 explains the problem statement.
Section 4 gives the system overview for the acceleration.
Section 5 and 6 describe the methodology used to accelerate
traditional computer vision and deep learning algorithms
using OpenCL. We present our results and performance
analysis in Section 7, and summarize our work in Section 8.

2. Related Work

There are existing solutions for accelerating computer vision
algorithms and deep learning networks on FPGA. Wang et
al. [3] propose PipeCNN, an OpenCL based acceleration
solution for CNNs that supports multiple FPGAs. However
their architecture being generic, may not fit all applications
in an optimal manner. We found this to be the case with our
network. More about this is explained in Sections VII. Intel
OpenVINO [4] is a cross platform neural network inference
library that allows users to accelerate their inference on
heterogeneous platforms including FPGAs. However the
library currently supports larger FPGAs. Our target platform
is a Cyclone V FPGA, which is low cost, low power, and is
best suited for our application.

Chen et al. [5] propose the roofline method, a widely
used analytical method to check the memory bandwidth and
compute resources needed on a FPGA particularly for CNN
architectures. Meloni et al. [6] go beyond the roofline limit
to make maximal usage of the FPGA and CPU combination.
Our method is reminiscent of this, as we shall see with our
fully pipelined method described in Section 4. Bing et al. [7]

propose an alternate method to reduce the computational
load by implementing depth-wise separable convolutions.

3. Problem Statement

The target environment is an industrial setup having labels
with printed text moving on a high speed conveyor belt
equipped with an overhead camera. The objective is to run
real time computer vision algorithms supporting high
camera frame-rate. The specific use case in this paper is
running Optical Character Recognition on the labels. The
solution should meet the following criteria:

• Complete self-sufficiency of the solution
• Low cost solution for compute-on-edge industrial

solution
• Maximal usage of CPU and FPGA at all times
• Reusable architecture for traditional Computer

Vision operations as well as CNNs
• Reduced engineering efforts and faster time to

market by using OpenCL
• RTL level maximal efficiency and performance

extracted from OpenCL implementation

4. System Overview

The target use case is a Machine Vision application to
recognize printed labels on a fast-moving conveyor belt and
uses CNN to carry out Optical Character Recognition as in
Figure 1.

4.1. Hardware Setup

The Apollo Island platform consists of Apollo Lake which is
a Dual Core Intel Atom processor, a Cyclone V FPGA
connected to the processor by a PCIe link, and a DDR3
memory. A 5 Megapixel CMOS camera is connected to the
FPGA via LVDS interface. The conveyer belt is mounted
with an Apollo Island based camera (consisting of Intel
Atom and Cyclone V FPGA connected to a 5MP CMOS
camera) to read and process printed labels.

Figure 1. Industrial Setup for fast OCR

EAI Endorsed Transactions on
Cloud Systems

07 2019 - 11 2019 | Volume 5 | Issue 16 | e6

B. Mishra et al.

2

SENSOR

DE
BA

YE
R

RG
B2

GR
EY

THRESHOLD CCL CNN on
SLICE

HARDWARE
(FPGA)

SOFTWARE (CPU)

FC OCR
DECODE

SOFTWARE (CPU)HARDWARE (FPGA)

IMAGE
PRE-PROCESSING

CHARACTER
CANDIDATE REGIONS

CHARACTER
CLASSIFICATION

Figure 2. Industrial Setup for fast OCR

4.2. CNN based Algorithm

The stages of the algorithm are as in Figure 2. The camera
on board the Apollo Island takes the overhead image of the
label, the FPGA then pre-processes the image and passes it
to the CPU, where connected component labelling is used to
get image regions with individual characters, which are then
recognized by the CNN on the FPGA, and finally the post-
processing is done on the CPU to give the text output.

The FPGA pre-processes the raw image data from the
sensor. The CMOS camera sensor provides raw Bayer
image data. The FPGA implements de-Bayering logic to
convert the raw image to RGB format. The image is then
processed by RGB2Grayscale block to generate grayscale
image which is passed to the CPU.

The candidate regions containing characters are generated
by the Connected Component Labelling (CCL) block which
is used to detect connected regions in binary images. The
grayscale image is thresholded and CCL localizes and
extract candidate character regions in the image. These
candidate regions are then passed to the CNN sequentially.

Convolutional Neural Networks (CNN) are a class of
machine learning algorithms which have recently performed
very well in image classification and are very widely used
for machine vision. In OCR, the input is an image and the
output is a choice among a set of characters that are to be
recognized. We pass the candidate character regions
obtained from CCL to our CNN network instantiated on the
FPGA.

Figure 3. Industrial Setup for fast OCR

Figure 3 shows the CNN network topology trained to
perform OCR in this work. The network consists of:

• Convolution layer with 16 nodes and 3x3 mask
• Pooling layer with 16 nodes and 2x2 mask
• Convolution layer with 64 nodes and 3x3 mask
• Pooling layer with 64 nodes and 2x2 mask
• Fully Connected layer with 128 nodes
• Fully Connected layer with 256 nodes

The classification in the final layer in the CNN network
gives the character being recognized. The character obtained
from all segmented images are then post-processed and
arranged together to get the resulting text from image.

4.3. Computation Analysis

The computation calculation in Table 1 is as per the network
topology described in Section 4.2. As seen in the table, the
convolution operations are most compute intensive in CNN.
In this paper we present an OpenCL based solution to
accelerate CNN by creating custom hardware architecture to
compute the convolution operations. The implementation is
modular and scalable, and can be modified to suit any CNN
topology.

The solution uses the dual core CPU and FPGA in a fully
pipelined manner. The CPU uses two threads, one to
compute the CCL, which takes the maximum amount of
time, and another thread to post-process the CNN outputs
and fetch new images from the FPGA. The CNN
computation offload on FPGA runs parallel to these
software threads. This pipelined implementation is
explained in Section 5. This architecture ensures extraction
of maximum resource utilization on Apollo Island platform.

EAI Endorsed Transactions on
Cloud Systems

07 2019 - 11 2019 | Volume 5 | Issue 16 | e6

Hardware Acceleration of Computer Vision and Deep Learning Algorithms on the Edge using OpenCL

3

Table 1. CNN Per-Layer Compute

Layer Nodes Input Size Compute
Convolution Layer 1 16 16x16 36864
Pooling Layer 1 16 16x16 4096
Convolution Layer 2 64 8x8x16 589824

Pooling Layer 2 64 8x8x16 65536

Fully Connected Layer 1 128 4x4x64 131072

Fully Connected Layer 2 256 128 32768

5. Image Convolution Kernel Model

Convolution operations, and other spatial domain filtering,
require non-contiguous memory accesses, which uses high
memory bandwidth. Traditional computer vision operations
such as sobel, erosion, dilation share similar memory access
characteristics with convolutional operation. The operations
generally consist of convoluting or multiplying a mask/filter
with a sub-region of an image called a sliding window. The
sliding window keeps moving, allowing the operation to be
replicated across the image.

The proposed hardware design pattern reads and
processes an image in raster scan order. Processing image
slices as a 1D data stream enables bypassing the memory
fetch overhead. By using shift registers to store a maximum
of N-1 rows and N pixels at a time, where N is the size of
the convolution. The nodes are connected in a pipelined
fashion so that each node receives an input pixel and
generates an output pixel every clock cycle. This
architecture is scalable to the size of the filter being utilized
as well as stride, and can be utilized to accelerate both
traditional as well as deep learning based computer vision.

Figure 4. Image Convolution Kernel Model
To further improve the performance, we leverage a

special feature of Altera FPGAs allows the use of M10k
block rams as shift registers. This dramatically enhances the
resource usage in this architecture. In the Apollo Island
platform, the sensor is directly connected to the FPGA,
hence this architecture allows processing before the sensor
even outputs the entire image, which demonstrates maximal
efficiency of this architecture.

The input image size for Layer 1 in the CNN network for
OCR is 16x16, and convolution kernel size is 3x3. The
convolution kernel thus needs to buffer 2 rows of image data
and 3 extra pixels and start processing the convolution. The
raster scan architecture ensures that one pixel is processed
every clock cycle.

6. CNN Accelerator Hardware Architecture

Figure 5 shows the hardware architecture for accelerating
the convolution layers of the CNN network. The input
image, as well as the intermediate outputs, are accessed in a
raster scan order, as described in Section 5. The convolution
nodes of the CNN topology in depicted in Figure 4 are
implemented on the FPGA. They receive image slices with
characters and process them across multiple layers and send
the result to the CPU to compute the fully connected layers
and perform the post processing for OCR.

• The convolution operation is a dot product of two
vectors. OpenCL naively uses more DSPs than required
for the multiplication operation, hence a small custom
RTL block is instantiated to optimize the DSP usage.
The pooling operation is an averaging of 2x2 image
slices.

• Owing to limited resources available on the FPGA, the
physical nodes are distributed among Layer 1 and
Layer 2 to balance the computational load between the
layers. A weight buffer, for storing all the network’s
weights, is used to reduce the CPU DDR overhead of
loading many weights every cycle. A unique
methodology is introduced to compute partial results of
the Layer 2 convolutions, as all outputs from Layer 1
are not available to Layer 2 at the same time. The non-
linear activation function is the ReLU operation.

6.1. Compute Balancing and Partials
Computation

The CNN accelerator leverages a key compute balancing
strategy to maximize the active usage of hardware resources.
The number of nodes for different layers of CNN that are
physically instantiated in hardware is determined by the
number of computes as in Table 1 as well as available
resources on FPGA. The nodes of a layer get processed
iteratively by the instantiated physical nodes, or kernels.
Two layers are connected together by a FIFO which stores
the data generated by the previous layer and is accessed
iteratively by the nodes of the subsequent layer. The raster
scan order is maintained in the FIFO across the different
outputs, or feature maps, from the nodes of the previous
layer.

A compute balanced hardware consuming maximum
DSPs and that is active without being idle in any clock cycle
is achieved by a unique Partials Computation methodology.
All nodes in one layer need to generate output feature maps
for the next layer to start processing.

EAI Endorsed Transactions on
Cloud Systems

07 2019 - 11 2019 | Volume 5 | Issue 16 | e6

B. Mishra et al.

4

Layer 1 Compute wrapper
L1 physical nodes

Input Image
Stream

Convolution

Convolution

Convolution

.

.

.

.

Pool

Pool

Pool

.

.

.

.
Weights Buffer

Host to Device
Interface

Layer 2 Buffer Layer 2 Compute wrapper
L2 physical nodes

Convolution

Convolution

Convolution

.

.

.

.

Pool

Pool

Pool

.

.

.

.

L1 Output
FIFO
and

 L2 Weights

P
A
R
T
I
A
L
S

B
U
F
F
E
R

Add

Add

Add

.

.

.

.

Figure 5. High Level Hardware Architecture for CNN Acceleration

This creates stalls and affects the performance of the
FPGA. To address this issue, an architectural scheme is
presented that enables a layer to start processing with
minimal data from the previous layer by computing
partials. This modification has been critical in maximizing
the resource activity on the FPGA.

Partials Output
Circular Shift Register

Multiply
Add

Pixel buffer

Weight buffer

Layer n-1 output

Layer n output

Figure 6. High Level Partial Compute Block

The computations of Layer 2 require outputs from all
nodes of Layer 1. We alleviate this problem by using the
fact that the output of Layer 2 can be computed as the
sum of convolutions over each individual node of Layer
1. We call the results of these individual convolutions as
the partials of Layer 2, these are stored in the Partials
Buffer, which is a circular shift register. As the outputs
from Layer 1 are computed, the partials are updated as
shown in Figure 6, until all the nodes are completed. This
unique architecture allows continuous convolutions
without any stalls and allows the hardware to operate with
maximum performance.

6.2. Weights Buffering on FPGA

CNN is a high bandwidth application which operates on
huge amount of data as weights, inputs and intermediate

as well as final outputs. Weights of the neural network,
especially for Layer 2, need to be continuously updated as
the convolutional kernels iterate many times over all the
nodes. This creates a bottleneck in the memory bandwidth
and slows down the input image streaming pipeline from
the CPU. Hence, all the weights of the network are stored
on board the FPGA in M10k blocks. This frees up the
input and output streams and also saves CPU overhead of
indexing different weight fetch requests.

7. Results and Performance analysis

The CNN accelerator presented in this work has been
developed using OpenCL and has been optimized to meet
RTL level performance. The resource area usage is as in
Table 2. The different blocks present on the FPGA that
we report the numbers are based on ALM (Adaptive
Logic Modules), DSP (Digital Signal Processors) and
M10ks, which are the atomic unit of system memory on
the FPGA, equal to 10 kB of memory.

Table 2. Resource Utilization on Cyclone V FPGA

Resource Percentage Used
ALM 88

DSP 76

M10K 44

Table 3. Resource Utilization on Cyclone V FPGA

Threaded Operations CPU (ms) FPGA (ms)
IO Channel (FPGA) - 8.3
CCL+ Threshold 25 -
CNN-Conv (FPGA) 200 8
CNN - FC 15 -

We had tested the resource usage of PipeCNN on our
optimized architecture, however it was unable to fit in the
FPGA and ALM usage reported by the fitter was 116%. It

Hardware Acceleration of Computer Vision and Deep Learning Algorithms on the Edge using OpenCL

EAI Endorsed Transactions on
Cloud Systems

07 2019 - 11 2019 | Volume 5 | Issue 16 | e65

also used 5 DSP cores per 3x3 convolutional kernel
whereas our implementation uses only 4 without any loss
of accuracy.

Table 3 provides profiling data for the software as well
as for the hardware accelerated flow for OCR. The
Cyclone V hardware operates on a frequency of 132MHz,
and the end to end application processes 220 characters in
33ms.

The hardware achieves 25x performance over
convolution layers. The software flow could originally
compute OCR at 4 FPS and the CNN accelerator boosts
the end-to-end performance by 7.5X by running at 30FPS.

The state of the art OCR implementations recognize 20
words in 350ms and 100 words in 500ms. Taking that
average number of characters in a word is 4.84, the time
to recognize a single character takes at least 1.033ms. The
implemented architecture on the other hand takes 0.15ms
to recognize a character and demonstrates 6.8x better
performance.

The impact of automation is immense and deeply
affects all kind of industries. Modern industry is
extremely cost sensitive and looking for low cost
solutions without compromising on speed of processing.
Fast TTM and flexibility to change or fine tune
requirements is very critical.

8. Summary

This work presents a unique architecture to accelerate
Convolutional Neural Networks and spatial domain
computer vision operations in general. This was
implemented using OpenCL on Intel Apollo Island
Platform, which is a low cost FPGA solution. OCR is an
effective way decode a specific part number, date of
manufacturing, date of expiry etc. in a fast moving
conveyor belt and is a key machine vision application in
industrial environment.

Acknowledgements.
We would like to thank our colleagues at Intel Bangalore and
Intel Penang who supported this activity

References
[1] Abdelouahab, Kamel, et al. "Accelerating CNN inference

on FPGAs: A Survey." arXiv preprint arXiv:1806.01683
(2018).

[2] Zhao, Wenlai, et al. "F-CNN: An FPGA-based framework
for training convolutional neural networks." 2016 IEEE
27th International Conference on Application-specific
Systems, Architectures and Processors (ASAP). IEEE,
2016.

[3] D. Wang, K. Xu and D. Jiang, "PipeCNN: An OpenCL-
based open-source FPGA accelerator for convolution
neural networks," 2017 International Conference on Field
Programmable Technology (ICFPT), Melbourne, VIC,
2017, pp. 279-282.

[4] OpenVINO - Open Visual Inference and Neural Network
Optimization Toolkit, Intel Corporation,
https://software.intel.com/enus/openvino-toolkit.

[5] Zhang, Chen, et al. "Optimizing fpga-based accelerator
design for deep convolutional neural networks."
Proceedings of the 2015 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. ACM,
2015.

[6] Meloni, Paolo, et al. "Curbing the roofline: a scalable and
flexible architecture for CNNs on FPGA." Proceedings of
the ACM International Conference on Computing
Frontiers. ACM, 2016.

[7] Liu, B.; Zou, D.; Feng, L.; Feng, S.; Fu, P.; Li, J. An
FPGA-Based CNN Accelerator Integrating Depthwise
Separable Convolution. Electronics 2019, 8, 281.

EAI Endorsed Transactions on
Cloud Systems

07 2019 - 11 2019 | Volume 5 | Issue 16 | e6

B. Mishra et al.

6

