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AbstractConvolutional Neural Networks and its contemporary variants have proven to be ruling benchmarks for most
image processing tasks but resort to pooling techniques and routing mechanisms that affect classification
accuracy and lose spatial relationship information between involved data points. Hence, Hinton et al,
proposed a layered architecture called Capsule Networks (Capsnets) which outperform traditional systems
by replacing pooling techniques with dynamic routing abilities. Capsnets are, thus, en-route to proving
themselves as prospective future benchmarks in visual imagery tasks by surpassing existing state-of-the-
art results on the MNIST dataset. The two novel aspects inspected in this paper are: the enhancement of
this performance on CIFAR-10 through regularization and hyperparameter optimization which, henceforth,
augment applicability to stochastic numeric healthcare data helping uncover newer challenges of predictive
neural networks.
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1. Introduction
Machine Intelligence, involving visual imagery tasks
like segmentation, detection and reconstruction, has
primarily been propelled by Convolutional Neural
Networks (Convnets) but the major limitations of such
systems include: loss of information due to max and
average pooling techniques along with the inability
to encode orientation and positional variations into
predictions[1]. Although, the brain’s mechanisms of
information processing are significantly different from
how traditional systems are wired, latest advancements
like Capsule networks[2] apply the Hebbian Learning
principles which are closer to emulating human
capabilities by applying active vectorization techniques
and by filtering features on layered dimensionality
planes to reduce disparity over disagreement.

Hinton et.al. first proposed shape representation
models in parallel systems[3] to synthesize assignment
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of coordinate intrinsic object frames of reference which
deals with individualised hypotheses(on interpretation
of local fragments of visual input and unit interactions
encoding knowledge on local interaction and spatial
disposition detection constraints) representing units
further enabling interaction organization between
parallelized network entities so that a single pattern
activity representation is obtained as the frames
undergo simultaneous convergence but continue to
remain remain dimensionally viewer centric affected
by attributes such as bilaterally symmetric plane, gross
elongation and gravitational or contextual verticals.
Since, this was implemented using coordinate hardware
units, the architecture implicitly couples surrounding
elements as coordinate frames affecting the relative
environment where it’s based. Activities, in terms of
corresponding channels, can profoundly influence
each other stimulating a rough object segmentation
while the computational overheads can be reduced
by optimizing mappings of distributed encoding by
clustering associated regions.

The idea further evolved into ’Transforming auto-
encoders’[4] modeling scalar features into vector
activity representations and instantiation parameters
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that effortlessly blended into the domains of the given
visual entity. The resulting probability is multiplied
element-wise to the capsule output as implicit routing
learns to detect visual features over time. The obtained
probability is expected to be stable even when the entity
varies over the space of appearance transformations
and the value determines weight in the overall
autoencoder prediction and thus, is a reassurance of
Capsnets abilities to be potential benchmarks in the
future .

The nested set of neural layers resort to dynamic
routing mechanisms of selected features by
implementing denoising algorithms at the lower
levels of capsule predictions before hierarchically
routing activities of the local pool to higher level
capsules which unearth convoluted data patterns
resulting in highly concise informative outputs.

For all capsule i in layer l and for all capsule j in
layer (l+1):
bij ← 0
For r iterations do:
For all capsule i in layer l: cij ← Sof tmax(bi)
For all capsule j in layer (l+1): sj ← Σcijuji
For all capsule j in layer (l+1): vj ← Squash(sj)
For all capsule i in layer l and all capsule j in layer
(l+1): bij ← bij + ujivj
return vj

Hinton et al proposed an expectation maximization
routing algorithm logistic[5], which deals with
encoding of the relationship between entity and pose.
greatly improving the efficiency of capsule routing
by recursive updates to the weighted assignment
coefficient matrix and clustering probabilities(that are
relatively closer). This ConvCaps structure extends
dynamic routing into convolutional filters as the
requisite feature maps are tiled into kernel wise
batched data. The underlying transformation matrix is
trained discriminatively by back-propagating through
unrolled iterations between adjacent pairs of capsule
layers, enabling effective representation of part-whole
relationships and demonstrates Capsule’s increased
robustness towards white box adversarial attacks
significantly lesser vulnerable than baseline ConvNets
while also enhancing the generalisability of learned
pose based matrices and corresponding learning
capacities.

Capsules have also been applied to health-care
applications primarily for lung tumor and brain fMRI
data. (a)Lung disease detection dataset[6] where the
CapsNets architecture was trained on a 400 image
dataset to address two levels of the problem statement:
a. Is the patient ill? and b. if yes, what type of lung

related disease is it? The model was first scanned
for fundamental attributes such as gender, age, noise
filtering. The secondary processing involved testing
the convolutional neural units ability to accelerate
the convergence and optimize them using spatial
transformation techniques. The experiments proved
that Capsnets have an inherent ability to thrive in
scenarios involving limited data.

(b)Brain fMRI images proposes "Capsnet architecture
based visual reconstruction"[7] to reconstruct image
stimuli by decoding position, orientation, and cate-
gories the object could potentially belong to, from
activities in visual cortex. The approach is said to
have 10% more accuracy than previosu state-of-the-art
approaches. This implementation encompasses experi-
mentation across four hypothesis:
a. Implement and ensure successful application to
design an improved architecture maximizing perfor-
mance accuracy;
b. Investigate the over-fitting on a real set of fMRI data;
c. Explore if the solution can be extrapolated to fit
the entire brain or the limitations are confined to the
segmented tumor;
d. Development of visualization paradigm to better
convey learned features.
The network was trained on nonlinear mappings
between the image stimuli and high-level capsule fea-
tures in an end-to-end manner. After estimating the
serviceability of voxels by encoding performance to
accomplish optimal selection, the system is re-trained
on these nonlinear mappings.

Other systems such as CapsuleGAN[8] have been
explored where the discriminator of a generative adver-
sarial network(GAN) is replaced by capsules to model
different objective functions evaluated qualitatively and
quantitatively on the Generative Adversarial Metric
(GAM) whose objective can be mathematically summa-
rized as:

min
G

max
D

V (D,G) = Ex Pdata(x)
[logD(x)]+

Ez Pz(z)
[log(1 −D(G(z)))] (1)

These models are typically used to represent highly
complex distributions which are known to be unstable,
suffer from vanishing gradients, mode collapse and
inadequate mode coverage issues which CapsuleGAN
deals with, by introducing better objective functions,
sophisticated training strategies, empirical tricks and
structured hyperparameters.

The aforementioned papers have laid the basis for
the work carried out and the rest of this paper
is structured as follows: Section 2 articulates the
architectural framework of Capsule networks, Section
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3 deals with the experimentation framework with
proposed changes followed by results obtained and
discussions in Section 4, conclusive remarks in Section
5 and bibliography in Section 6.

2. Architectural Framework
The broad architectural framework of Capsule net-
works is composed of an encoder and a decoder, former
of which comprises of a two dimensional convolutional
ReLU layer for detecting the basic features, a Prima-
ryCaps layer for producing combinations of the above
feature outputs and a DigitCaps layer for the genera-
tion of the loss function and transformational weight
matrix; the Decoder of Capsnets constitutes three fully
connected layers, FC1 (With ReLU activation unit), FC2
(With ReLU activation unit), and FC3 (With sigmoid
activation unit); Both the components effectively work
together towards reconstruction of the input image
while dealing with the accuracy and loss performance
parameters. The loss parameter, in turn, entails margin
loss as computed for each capsule and reconstruction
loss which is scaled down by 0.0005 to prevent domina-
tion.

The detailed technical functionality of each of the
Capsnet layers is as follows:

(i) The ReLU convolutional layer: The layer has
256 kernels each with a bias term, stride of 1,
size of 9x9x1 followed by the ReLU activation.
The layer handles 20992 parameters and outputs
20x20x256 tensor.

(ii) The supporting PrimaryCaps layers: The 32 cap-
sule layer applies 9x9x256 convolutional kernels
to the 20x20x256 input volume while handling
5308672 parameters and outputs 6x6x8x32 ten-
sor.

(iii) The DigitCaps layers: This 10 node digit capsule
layer ingests the 6x6x8x32 tensor and as per
inner workings of each capsule, a weight matrix
is computed and 8 dimensional input space
is mapped to the 16 dimensional capsule
output space. The layer outputs a 16x10 matrix
associated with 1497600 parameters.

The loss function is a weighted sum calculated for
correct DigitCaps and incorrect DigitCaps, primarily
defined as 1 for a matching training label and 0
otherwise. A zero loss event is initiated either when a
correct prediction occurs with probability greater than
0.9 in case of matching training labels or when an
incorrect prediction occurs with probability less than
0.1 in case of mismatched training labels.

Lc = T cmax(0, m+ − ||vc||)2 + γ(1 − T c)max(0, ||vc|| −m-)2

(2)

The transformation matrix Wij is maps the 8-D
capsule to a 16-D capsule output space for each class j in
relation to ui, the capsule output of the previous layer.
The probability magnitude could be mathematically
summarised by vj.

j,i = W ijui (3)

The final output vj for class j is computed using the
novel squashing function as:

vj =
||S j||2

1 + ||S j||2
S j

||S j||
(4)

where
S j =

∑
i

Cijj,i (5)

with cij coupling coefficients measuring the likelihood
of primary capsule i probabilistically triggering capsule
j with sj representing the weighted sum further
shrinked by the squashing function.

The decoder is a regularizer network which recreates
the original 28x28 image while forcing capsules to learn
the features of the data. The first and the penultimate
layer of the capsnet decoder have the ReLU activation
function while the last layer retains the sigmoid
activation unit.

The first fully connected layer calculates the number of
parameters based on bias which outputs a 512 vector,
processing 82432 trainable parameters.

The second fully connected layer calculates the
number of parameters based on bias which outputs a
1024 vector, processing 525312 trainable parameters.

The final fully connected layer calculates the number of
parameters based on bias which outputs a 784 vector,
processing 803600 trainable parameters.This is also
the final 28 X 28 output. Thus, the total number of
parameters in the capsule network are: 8238608. The
Capsnet architectural framework is as visualised[9] in
Figure 1.

Figure 1. Block Diagram of Capsule Network Architecture
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3. Experimental Design
This section entails the proposed enhancements and
optimizations to Capsule networks which primarily fall
under the following categories:
(i)Activation function optimisations involving variants
of ReLU[10] and Swish[11] variants[12].
(ii)Data augmentation with Neural Style Transfer[13]
(iii) Optimisation with additional Softmax[14] layers
(iv) code shuffling[15] within the dataset to model
stochasticity
(v) hyperparameter tuning using grid search and
random search[16]
(vi)parallel implementation of hyperparameter
regularisation[17] with early stopping[18]

3.1. Object Recognition Tasks
A tensorflow backed Keras implementation in a Jupyter
notebook environment run on a tesla k40c GPU
configuration was the key framework while executing
Capsnets on the CIFAR-10 dataset[19] for object
recognition and reconstruction tasks. However, each of
the following optimisations and regularizations were
executed within the same framework environment as
opposed to original capsule network architecture with
default settings as the baseline benchmark. Each of the
implementations have been executed for 20 epochs as
results are known to fairly stabilize thereafter.

Activation Functions. Activation functions or Transfer
functions are defined as non-linear transformations
or complex functional mappings between response
variables and incoming data. The generic form of the
equation is:

Y =
∑

(Weight ∗ Input) + Bias (6)

where ’Y’ can bound from negative to positive infinity.
The activation function applied over an input signal
which decides whether a neuron fires or activates,
depending upon the weight over input which when
paired with back-propagation iterates over the bias
aggregate and update gradients resulting in a loss
metric.

The mathematical definitions of the various activation
function units are as follows: The non-linear ReLU
activation is defined as:

A(x) = max(0, x) (7)

ReLU is a simple, efficient, and most widely used
monotonic function which ensures convergence six
times faster than the tanh function. It rectifies the
vanishing gradient problem but the major limitation

of ReLU is that the neurons are unlikely to recover if
they fall into the negative slope thus, outputting zero
independent of the input scenarios.
The leaky ReLU function (LReLU)[20] defined as

f (x) = 1(x < 0)(αx) + 1(x >= 0)(x) (8)

is an improvised version of ReLU implementation
which deals with the above mentioned limitation by
implementing small negative slopes.
Latest activation functions like the Swish is defined in
terms of the sigmoid as:

f (x) = x.sigmoid(βx) (9)

proposed by Ramachandran et al. The e-Swish activa-
tion with a learnable beta component is mathematically
defined by:

E − Swish = βx ∗ sigmoid(x) (10)

Data Augmentation Using Neural Style Transfer. Data
Augmentation refers to the process of augmenting
the dataset with relevant synthetically modified data
to enhance performance. We used neural image style
transfer mechanisms on representative examples of
the dataset which are further used to train the
network resulting in improved performance. The
method however introduces two types of loss namely
style loss and content loss. The weighted sum of the
same is as represented below.

Ltotal(S, C,G) = αLcontent(C,G) + βLstyle(S,G) (11)

where the content loss of layer I is defined as:

Lcontent(S, C, I) = 0.5
∑
ij

(a[I]Cij − a[I]Gij)
2 (12)

and the loss of the style associated gram matrix is
defined as:

LGM(S, C, I) = 1/4N I
2MI

2
∑
ij

(GM[I]S ij − GM[I]Gij)
2

(13)

Optimisation with additional softmax layers. During mul-
ticlass classification, softmax layers are used with the
same number of nodes prior to the output layer to
obtain the probability distributions for all involved
classes and the same is mathematically defined as:

P (y = j |x) = ewj
Tx + bj

/
∑
k∈K

ewk
Tx + bk (14)

These layers are augmented into the decoder of the
Capsnet architecture before the output layer to enhance
object recognition performance.
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Code shuffling. We introduced stochasticity into the
data to enable the model to minimize the training loss to
adapt to the dynamic characteristics of healthcare data.
If we assume the process of training the network with a
minimum loss value function to be defined by Lw over
the training set with w representing the weight matrix.
So, the minimisation of loss value functions occurs with
say, c elements of the training set, L is then a surface on
the c+1 dimensional space. To geometrically generalize,
loss function can be evaluated over any training set
and associated weight matrix, but it’s plausible that
the resulting value remains unchanged over training
iterations which would make the model susceptible
to the local minima problem. Code shuffling with
mini batch diversification ensures changes over training
iterations. Assuming the local minimum of the loss
value function is Lwi

at training iteration i, the loss
surface geometrically changes over the next iteration
on the stochastic training set assumed to be defined
as: Lwi+1

. Lwi
is different from Lwi+1

which likely won’t
be the local minimum and we hence can compute the
gradient update and continue training.

Hyperparameter tuning using grid search and random
search. Grid search and random search explore the
same parameter space by simultaneously searching
for parameters that potentially influence learning.
Grid search refers to the process of building models
for combinations of hyperparameters, evaluating the
model for each of the combinations and finally,
choosing the set of parameters with the highest
classification accuracy. Random search refers to the
process of randomly choosing hyperparameters which
in general converge in lesser time than the grid search
tuning techniques.

parallel implementation of hyperparameter regularisation
with early stopping. Hyperparameter regularisation of
learning rate is implemented on Capsnets using
the Sherpa library which works well on problems
with computationally expensive iterative function
evaluations. Results surpassed the ReLU benchmark
much before the 20th epoch and early stopping on the
9th epoch was found to avoid overfitting issues.

3.2. Healthcare
As the world appraises the billion dollar healthcare
market, which is poised to grow, technological
advancements are substantial for outreach to meet
the large scale demand for quality. In order to ensure
affordability, exploring this transformational space
in terms of the latest machine learning systems
like predictive neural net frameworks could be an
influential progress in this direction. This subsection
conceptualizes the modelling of Capsnets for the
analysis of hyperglycemia data spanning clinical

databases involving 74 million unique cases which
correspond to 17 million unique patients with 70,000
inpatient diabetes encounters. The original linear
regression statistic model suggests that relationship
between the HbA1c levels and readmission probability
depends primarily on the diagnosis[21]. The results
of the study are significant and critical due to their
influence on morbidity and mortality rates which
in-turn depends on the treatment modality. HbA1c
levels of greater than or equal to 7% were associated
with increased morbidity where as both high and low
levels of the component was associated with increased
mortality[22].

The stochastic numeric healthcare diabetes dataset was
mapped to a time series forecast along with appropriate
channel labels and fed into the Capsule architecture
to predict readmission rate of patients based on their
HbA1c levels and other associated values. The conv2D
layer detects basic features forming a feature map in the
form of a 20 x 20 x 256 tensor. The PrimaryCaps layers
produces combinations of the feature map and outputs
a 6 X 6 X 256 tensor. The DigitCaps layers generates
the transformation weight matrix Wij and the entailing
loss function. The three fully connected layers of the
decoder calculate the number of parameters based on
bias. These layers resort to ReLU while fundamental
analysis proves that variants of Swish and ReLU better
enhance accuracy. The same is as elaborated in the
subsection below. With performance attributes being
key indicators in healthcare sectors, the application
and implementation here is chosen to draw attention to
the fundamental aspects within the organic framework
and to demonstrate the intuitional insights of the
architecture.

4. Results and Discussion

The survey with healthcare data involving hbA1c
levels has proved to be phenomenal with 19.5%
increased relative correlation as compared to previous
benchmarks of linear regression when experimented
with the ReLU activation function on Capsnets.

The results of activation function optimisations of
Capsnets on object segmentation tasks of the CIFAR-10
dataset in terms of accuracy are as follows.

While the leaky ReLU variant performs best, e-Swish
activation functions consistently outperform the ReLU
benchmark.
The results of other optimisations and regularisations of
Capsnets on object segmentation tasks of the CIFAR-10
dataset in terms of accuracy are as shown (Table 2)
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Table 1. Activation function optimisation of Capsnets on CIFAR-
10 dataset in terms of Accuracy

Maximum
Value

Minimum
Value

Average
Value

ReLU 56.9 26.95 48.8
LReLU 59.25 28.35 50.76
e-Swish
(=0.2)

58.2 27.2 49.2125

e-Swish
(=0.625)

58.55 26.7 49.535

e-Swish
(=0.75)

58.15 25.45 49.4075

e-Swish
(=0.875)

58.2 24.45 48.8125

Figure 2. Visualisation of activation function optimisation of
Capsnets on CIFAR-10 dataset in terms of Accuracy

Table 2. Optimisations and Regularisations of Capsnets on
CIFAR-10 dataset

Methodology Average
Value

ReLU 48.796%
Data Augmentation 50.9725%
Softmax Optimisation 51.4375%
Stochastic Data modeling 50.2325%
Sherpa Optimisation and
early stopping

50.65%

Grid Search 48.1025%
Random Search 49.4345%

The results of activation function optimisations of
Capsnets on object segmentation tasks of the CIFAR-
10 dataset in terms of the loss Parameter are as shown
(Table 3).

Figure 3. Visualisation of optimisation and regularisation of
Capsnets on CIFAR-10 dataset

Table 3. Comparison between ReLU, LReLU and e-Swish with
reference to loss parameter

Maximum
Loss

Minimum
Loss

Average
Loss

ReLU 1.16376 0.33637 0.4224748
LReLU 0.82282 0.31885 0.3840183
e-Swish
(=0.2)

0.77288 0.33611 0.387684

e-Swish
(=0.625)

0.79539 0.33427 0.390891

e-Swish
(=0.75)

0.79478 0.33656 0.3904483

e-Swish
(=0.875)

0.8042 0.33553 0.3930248

LReLU outperforms both e-Swish and ReLU in terms
of the loss metric. A graphical representation of the
same is as follows where the y axis represents the loss
and the horizontal x axis represents the epoch value.

Figure 4. Graphical Representation of LReLU and e-swish with
reference to loss
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The results of other optimisations and regularisations
of Capsnets on object segmentation tasks of the CIFAR-
10 dataset in terms of loss are as shown (Table 4)

Table 4. Optimisations and Regularisations of Capsnets on
CIFAR-10 dataset with respect to loss parameter

Methodology Average
Value

ReLU 0.42247425
Data Augmentation 0.3820635
Softmax Optimisation 0.380025
Stochastic Data modeling 0.426145
Sherpa Optimisation and
early stopping

0.383187

Grid Search 0.4244465
Random Search 0.42041665

A visual representation of the above data is as follows:

Figure 5. Graphical Representation of Capsnet optimisation and
regularisation with reference to loss

These results are currently being extrapolated to can-
cer research models which are expected to surpass the
ConvNet accuracy benchmarks leading to implications
and inferences on demographic constitutions. These
activation functions could be experimented on differ-
ent datasets in terms of application, volume and com-
plexity. Newer functions, optimizers and regularisation
techniques or tweaks to the existing implementations
would be worthwhile research avenues to explore.

5. Conclusion
From the experiments, it is evident that, in terms
of activation functions, the e-Swish, and PReLU not
only better optimize and outperform the currently
used ReLU but also, ensure faster convergence and

lesser training time. In terms of other optimisations
and regularizations, additional softmax layers, data
augmentation, sherpa optimisation and code shuffling
outperform the ReLU benchmark but the grid, random
search are on the borderlines of ReLU. Future work in
this promising direction could entail newer and novel
functions applied to more complex models.

The non-normalized, distributed data with changing
behavioral attributes and complex curves often pose
new challenges. This ambitious research venture could
redefine modern processing with respect to time series
analysis and forecasting where age old contemporary
systems seem to have failed miserably with techniques
that are possibly profoundly flawed.

With the consideration of the aforementioned ideology,
these upcoming architectures are expected to rule and
drive systems of the future where technologies are
rapidly advancing and landscapes are fast changing.
While current technological revelations delineates the
aforementioned scenarios, the future could spur out
formidable and impressive inroads to advancements
to not only effectively tackle current challenges but to
create and solve newer problems in this space that we
don’t even know exist yet.
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