
1

Enhancing eMMC using Multi-Stream technique

Sushma Vishwakarma
1,

*, Anantha Sharma
1
 and Sharath Kumar Kodase

1

1
 Samsung Semiconductor India R&D centre Bangalore, India

Abstract

Multi-stream for SSD is a concept where the host writes data with similar expected lifetimes to contiguous blocks of

NAND memory. Consequently, this data has higher chances of being invalidated together. During garbage collection

(GC), there will be minimal valid pages to copy, resulting in improved endurance and decreased write-amplification factor.

Implementing Multi-stream in eMMC devices presents challenges due to lower DRAM, lower computational resource

available. Maintenance of stream related information requires increase in DRAM usage, transfer buffer usage as well as

addition computation for GC of stream related memory area. In this paper, we examine implementation of Multi-Stream

concept in eMMC despite its low resource constraints. We have experimented with an implementation that supports up to

4 streams which uses additional ~108 bytes of DRAM and ~104 bytes of code section, and improves WAF by ~50% on

FIO (File Input/Output) benchmarking setup where lifetimes are simulated by multiple instances of FIO.

Keywords: Embedded Multimedia Card, Multi-Stream for Storage, NAND Flash Storage, Write/Erase asymmetry in flash, Write

Amplification Factor in flash.

Received on 08 February 2019, accepted on 12 March 2019, published on 15 March 2019

Copyright © 2019 Sushma Vishwakarma et al., licensed to EAI. This is an open access article distributed under the terms of the

Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and

reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/eai.15-3-2019.162141

*Corresponding author. Email:sushvish1@gmail.com

1. Introduction

In this paper we are suggesting how to use multi-stream

with eMMC to improve endurance of device. eMMC

(Embedded Multimedia Card) is an embedded storage

solution; with an MMC interface, flash memory &

controller, all in a BGA package. This NAND flash based

eMMC is widely used for high performance applications

such as mobile phone, smart phone, tablet computer,

notebook computer, and automotive segment etc. eMMC

provides fast scalable performance with interface speeds of

up to 400Mbps.

2. Background

eMMC chip is made up of NAND flash-memory, which is

architecturally partitioned into blocks, and each block

contains a fixed number of pages. A page, which consists of

a data area to store user data & a spare area to store

housekeeping data such as error correction code, status

flags, etc. Due to Hardware characteristics of flash memory,

data cannot be directly updated to their residing pages unless

their belonging blocks are erased first. As a result, invalid

pages (page having out-of-date data) should not be read &

should be recycled when the number of free pages is low.

Because of this out-of-place update policy, there is a need to

map the logical block address (LBA) to its corresponding

physical block address (PBA) over flash memory. This

mapping is done by FTL (Flash Translation Layer) that runs

on a controller. Each block can survive over a limited

number of program/erase cycles (P/E).

The flash memory space of eMMC consists of Blocks

and each block consists of a fixed number of Pages. A Block

is the smallest unit for erase operations, while a Page is the

basic unit of reads and writes. A basic size of a page is 4KB,

and the size of a block is 48MB, which is, dependent on

NAND. The current single level cell NAND (SLC)

generally supports 100,000 P/E cycles (depending upon the

used flash technology), and multiple-level cell NAND

(MLC) supports approximately one tenth of what SLC can

achieve.

EAI Endorsed Transactions on
Cloud Systems

12 2018 - 03 2019 | Volume 5 | Issue 14 | e7

EAI Endorsed Transactions
on Cloud Systems Research Article

http://creativecommons.org/licenses/by/3.0/

Sushma Vishwakarma, Anantha Sharma and Sharath Kumar Kodase

2

NAND flash memory constraints can be summarized as:

(1) Write/erase granularity asymmetry: writes are performed

on pages while erase operations are executed on blocks. (2)

Erase-before-write rule: one of the most important

constraints as one cannot modify data in-place. A costly

erase operation must be achieved before data can be

modified in case one needs to update data on the same

location. (3) Limited number of Write/Erase (W/E) cycles.

After the maximum number of erase cycles is achieved, a

given memory cell becomes unusable.

3. Design Idea

A stream is an abstraction of eMMC capacity allocation that

stores a set of data with the same lifetime expectancy. Multi-

stream is a concept where we can group data stream into

multiple streams, where all the data belonging to a particular

stream will have almost same lifetime. Below example will

describe how this stream can address the eMMC aging

problem. Below figure gives the example where two NAND

block (4 pages per block) have been filled up and new data

are written to fill Block 2.

Figure 1.1. Write pattern (0-1-4-7) is applied, and as
the result, some data become invalid in Block 0 and

Block 1

Figure 1.2. Write pattern (0-1-4-7) is applied,
invalidating all data in Block 0 but none in Block 1

Clearly, from figure 1.2, future GC will proceed more

efficiently because an empty NAND flash block (Block 1)

can be reclaimed quickly without copying data around.

These examples demonstrate that an eMMC’s GC

overheads depend not only on the current write pattern, but

also on how data have been already placed in the eMMC.

An eMMC that implements the proposed multi-stream

interface allows the host system to specify the lifetime of

data in the form of stream-id. A multi-streamed eMMC

allocates physical capacity carefully to place data in a

stream together and not to mix data from different streams.

Figure 2. Application is passing stream id for eMMC,
through system stack

All the data associated with a stream is expected to be

invalidated at the same time, e.g., updated, trimmed,

unmapped and de-allocated.

4. Implementation

The challenge for implementing multi-stream in eMMC is

due to its limited computational resource & DRAM and

transfer buffers. Transfer buffers are an area of memory that

hold data in transit, either from the host or from the NAND.

Data is moved to transfer buffers by way of DMA.

In any implementation of multi-stream, we need to

maintain stream information for each block. This stream

information needs to be maintained alongside the data for as

long as it lasts, until it is unmapped or overwritten. The

stream information determines which blocks in NAND that

data associated with it will be written to. Both for host-

writes as well as card initiated writes such as GC.

Maintenance of this information for each block, however,

increases on-disk meta size as well as increasing complexity

of GC.

Our approach to address these requirements is by limiting

maintenance of the stream information only during host

write operations. In this, we allocate 'Active Block' for each

stream separately and assign stream-ids for them

respectively. Active Block is a NAND block with "write

operation in progress" state. Incoming data is written into

these active blocks according to their stream-id. A transfer

buffer will be associated with each Active block to hold the

EAI Endorsed Transactions on
Cloud Systems

12 2018 - 03 2019 | Volume 5 | Issue 14 | e7

3

data in transit. Once active block is completely written, we

add it into list of data blocks. Data structure for Active block

is part of global context of FTL and it contains block index,

page offset, program level etc. total of 27 bytes, which are

needed for writing data into NAND pages. Global context

information will be written into NAND over period, so that

in case of Sudden Power off scenario we can recover to

previous state.

As number of stream-ids increases, there will be

corresponding increase in DRAM usage size by same

number of active block data structure as well as the number

of transfer buffers required. This limits the number of

stream-ids supported by the FTL. Currently based on the

number of Active blocks we can have in memory; our

implementation sets the number of streams supported to be

4.

Figure 3. Multi-streamed eMMC writes data into a
related NAND block according to stream ID regardless
of LBA. Three streams are introduced to store different
types of host system data

Figure 4. Mapping Data with same lifetime to
corresponding stream-id blocks

During GC, stream-id information is ignored. Data

belongs to all stream-ids are considered as a single pool of

data blocks and GC victim block is chosen as if there is no

change because of multi-stream. Same mechanism is used

for free block list as well, hence irrespective of difference in

amount of total data belonging to any of stream, we can

allocate blocks as per existing policy. Since data with

similar lifetime is residing in a NAND block, it is expected

that all the data are going to be erased almost at same time

and hence GC operation will have minimal overhead for

copying of valid pages to a new NAND block. However,

this is not ideal. It is possible in this implementation that

during GC, data from different streams will get written to

same GC destination block, decreasing the efficiency of

multi-stream implementation.

To improve efficiency, the application or host needs to

judiciously use stream-ids, either by applying application

specific intelligence as to know what data will have similar

lifetimes or by applying machine learning to classify data to

different stream-ids.

To associate data with a stream-id, JEDEC eMMC SPEC

5.1 has no support. Hence, we are using context-id field (4

bits: B25-B28) of CMD23 for passing stream-id information

from host to device while write operation. To distinguish

between context-id and stream-id, we are using reserved

field in EXT_CSD register (byte 133). With this interface,

host will send stream-id to the device, and can this filed can

support up to 15 streams from interface point of view where

id “0” is considered as normal data which has not assigned

any stream-id number.

To associate data with a stream-id, JEDEC eMMC SPEC

5.1 has no support. Hence we are using context-id field (4

bits: B25-B28) of CMD23 for passing stream-id information

from host to device while write operation. To distinguish

between context-id and stream-id, we are using reserved

field in EXT_CSD register (byte 133). With this interface,

host will send stream-id to the device, and can this filed can

support up to 15 streams from interface point of view where

id “0” is considered as normal data which has not assigned

any stream-id number.

5. Limitations in eMMC

Performance of eMMC also depends on fill factor of device,

again it is dependent on firmware design policies and

implementation. GC operations are high when the device is

almost full with data. This is mainly because all the data

blocks will have many valid data pages and few invalid

pages and number of overprovisioned blocks affects this

ratio. Active blocks uses these overprovisioned blocks and

hence increasing number of streams degrades worst-case

Iglobal context and when the fill factor is above 90% then

we can de-activate multi-stream feature through which

worst-case performance is kept intact.

The eMMC device uses Transfer buffers to cache the data

written by host, which accumulates random pages and does

an interleaved program to NAND to boost the performance.

In case of multi-stream, we have to accumulate the data in

separate buffers attached with each stream-id since each

transfer buffer is attached to active blocks. Having more

stream-id hinders performance by creating buffer crunch for

cache operation. With our experiments, we could observe

gain in performance up to 4 stream-ids and after which

buffers are insufficient for read-write operations.

6. Benchmarking Environment

Benchmarking numbers taken by running FIO for both

multi-streamed eMMC and without multi-streamed eMMC.

For multi-stream support FIO ran for three different stream-

ids.

Enhancing eMMC using Multi-Stream technique

EAI Endorsed Transactions on
Cloud Systems

12 2018 - 03 2019 | Volume 5 | Issue 14 | e7

Sushma Vishwakarma, Anantha Sharma and Sharath Kumar Kodase

4

Table 1. Benchmarking Environment

System configuration Fio configuration

Hardware setup:

V310 SMDK

eMMC sample: 64 GB

I/O workload: 0% read,

100% write

Software:

Linux kernel: Linaro 3.18.57

Preconditioning: Secure erase

3 parallel jobs with

different data lifetime; 2X,

101X & 709X

6.2 Benchmarking Result

FIO benchmarking analysis after ~ 1400GB writes.

Figure 5.1. Erase Count MLC

Figure 5.2. Write Amplification Factor

7. Real Time Use cases

Benchmarking results shows that an intuitive data to stream

mapping can lead to consistent latency and better NAND

flash lifetime on the multi-streamed eMMC. We further

believe that many applications and use cases can get

similarly large benefits using multi-streamed eMMC.

Consider log bases Database management system like

Cassandra, SQLite4, RocksDB and many more. Similarly,

some multi-head log-structured file system like F2FS

maintains data separation based on their update frequencies.

These are applications that explicitly manages data streams

& orient their IO to be sequential.

7.1. Flash Friendly File System

Flash Friendly File System (F2FS) supports hot and cold

data separation in File System. At runtime, F2FS manages

six active logs inside the “Main Area:” Hot/Warm/cold for

node and data; depends on their update frequencies. The

detailed definition of hotness in F2FS is listed below:

Table 2. Block Allocation policy

Type

Update

Frequency Contained Objects

Stream

id

Node

Hot Directory’s inode block or direct

node block

1

Warm
Regular file’s inode block or direct
node block

2

Cold Indirect node block
3

Data

Hot Directory’s data block

1

Warm Updated data of regular files

2

Cold

Appended data of regular files

moved data by cleaning,

multimedia file’s data

3

7.2. SQLite Database System

Database are more commonly used in embedded system

applications & especially in consumer electronics. SQLite is

one of the most used database applications. It uses nine

types of temporary files & each file has different lifetime.

That can be used for assigning stream id.

Table 3 Temporary files used by SQLite

Sq SQLite File Life Span Stream

id

1 Rollback Journal Created and destroy at

each transaction

3

2 Master Journal Created only for commit
operation

3

3 Write-ahead Log
(WAL) Files

Created at first connection
of DB and remains till the

last connection

2

4 Shared Memory

Files

Lifetime same as WAL 2

5 Statement

Journals

Creates for update or insert

statement

3

6 Temp database Created using “create temp

table” deleted when DB

connection close

2

EAI Endorsed Transactions on
Cloud Systems

12 2018 - 03 2019 | Volume 5 | Issue 14 | e7

Enhancing eMMC using Multi-Stream technique

5

7 Materializations

of views and

subqueries

Temporary tables created

by materialization are each

stored in their own
separate temporary file,

which is automatically

deleted at the conclusion
of the query

2

8 Transient Indices Temporary file for a

transient index;

automatically deleted at
the end of the statement

that uses it.

3

9 Transient DB

used by

VACCUME

Temporary file created by

the VACUUM command

exists only for the duration

of the command itself.

3

8. Future Work

Effectiveness of Multi-stream on endurance of eMMC

mainly depends on how good the data is mapped to streams

based on lifetime. Some of the applications like database

engines file system page cache, etc., where lifetime defined

clearly, can identify stream-id for data. Challenge comes

when multiple applications has to adhere mutually

acceptable stream-id mappings since the performance is

highly depends upon similarity of data lifetimes in single

stream.

 Machine Learning can be applied to determine streams,

where clustering of Logical Block Addresses is made based

on frequency of overwrites on range of LBA compared to

average frequencies on complete device. Since eMMC

resource constraint system, these algorithms can run in host

driver as well and pass on the information.

9. Conclusion

Benchmarking results shows that intuitive data to stream

mapping can lead to large benefits in throughput, consistent

latency and NAND flash lifetime on the multi-streamed

eMMC. There is significant improvement in Endurance as

WAF for multi-streamed eMMC reduced by ~50%. We

believe that many applications and use cases will get similar

large gains from multi-streamed eMMC if the host provides

appropriate lifetime information of the incoming data.

References

[1] Feng Chen, David A. Kaufaty, and Xiaodong Zhang,
“Understanding Intrinsic Charactristics and System
Implications of Flash Memory based Solid State Drives”.

[2] Jeong-Uk Kang, Jeeseok Hyun, Hyunjo Maeng, and
Sangyeum cho “The Multi-streamed Solid-state Drive”

[3] eMMC Flash Programming User’s Guide
“http://www2.lauterbach.com/pdf/emmcflash.pdf”, November
2018

[4] JEDEC eMMC Electrical Standard 5.1
“https://www.jedec.org/sites/default/files/docs/JESD84-
B51.pdf” February 2015

EAI Endorsed Transactions on
Cloud Systems

12 2018 - 03 2019 | Volume 5 | Issue 14 | e7

http://www2.lauterbach.com/pdf/emmcflash.pdf

