
CloudTUI-FTS:
a user-friendly and powerful tool

to manage Cloud Computing Platforms

Massimo Canonico and Davide Monfrecola
Department of Science and Innovation Technology (DISIT)

University of Piemonte Orientale
Italy

massimo.canonico@uniupo.it, davide.monfrecola@gmail.com

ABSTRACT

The NIST defines Cloud Computing as a model for en-
abling ubiquitous network access to a shared pool of con-
figurable computing resources. Thanks to the popularity of
Cloud Computing and its various area of applicability, in
the last years various projects have been realized for build-
ing Cloud systems (e.g., Amazon Web Services, Nimbus,
OpenStack, Eucalyptus, and Microsoft Azure, just to name
a few). Unfortunately, most of these projects (especially
the open source ones) have some drawbacks: the user inter-
faces are not user-friendly, the basic tasks are complex to
setup and to configure even for users with computer science
skills. In this paper we present CloudTUI-FTS: a powerful
and user-friendly tool able to easily interact with different
Cloud platforms. In particular, with CloudTUI-FTS the
user can perform both basic tasks (e.g., start-up/shut-down
a service) and advanced tasks (e.g., create policies and mech-
anisms to prevent faults and to provide service scalability).
We evaluate the effectiveness of our tool on the CloudLab
infrastructure.

Keywords

Cloud Computing systems, user interface, fault tolerance,
scalability

CCS Concepts

•Networks → Cloud computing;

1. INTRODUCTION
In the last years only few research areas related to com-

puter science have had a rapid evolution such as Cloud Com-
puting [8]. Indeed, most of the services that we use everyday
(e.g., webmail, social network, web search, etc.) run over a
Cloud Computing platform. These services are widely avail-
able and most of them are very easy to use. Unfortunately,

(a) euca-run-instances -k mykey -n 1 emi-0B951139
-t c1.medium

(b) ./bin/cloud-client.sh --run --name hello-cloud
--hours 2

(c) nova boot --flavor m1.small --image
"images/ubuntu-12.04" --key_name $USER-key
$USER-001

Figure 1: Launch a new service/VM with (a) Eu-
calyptus API, (b) Nimbus API and (c) OpenStack
API.

this simplicity has nothing to do with the user interface that
the Cloud administrators has to use in order to provide these
services. Indeed, even for a simple task such as starting-up
a service (which corresponds to start up a new Virtual Ma-
chine (VM)), the user has to configure/manage various as-
pects: (i) the VM image type, (ii) the VM system memory
occupancy, (iii) the VM disk occupancy, (iv) all network set-
tings (e.g., IP allocation, netmask, gateway), (v) all security
settings (e.g., firewall configuration, certificate credentials)
just to name a few.

The scenario is even more complex if the user has to
manage various Cloud Computing platforms. Indeed, de-
spite of the effort put by the Open Cloud Computing Inter-
face (OCCI) [12] in trying to create a common and flexible
API for each Cloud computing system, any Cloud platform
has its own procedure, syntax and terminology (e.g., a run-
ning VM is called instance or workspace depending on which
Cloud platform is being used). For example, in Fig. 1, we re-
ported the commands to start-up a new VM (one of the most
common task in any Cloud platform) in three of the most
important open source Cloud platforms: Eucalyptus [10],
Nimbus [5] and OpenStack [4]. Due to space constrain, we
cannot provide more examples showing how the terminology,
usability, syntax and also the semantic of the same task can
be significantly different between the various Cloud solutions
proposed in the last years.

With CloudTUI-FTS it is possible to interact with various
Cloud Computing platforms by using a unique user-friendly
and powerful textual interface. Thanks to CloudTUI-FTS,
the user can easily complete basic tasks (e.g., service starting-
up/shutting-down) and also complex tasks (e.g., create poli-
cies and mechanisms to prevent faults and to provide ser-

VALUETOOLS 2015, December 14-16, Berlin, Germany
Copyright © 2016 ICST
DOI 10.4108/eai.14-12-2015.2262718

vice scalability). These characteristics are included in the
acronyms we used in the name of our tool: Text User Inter-
face (TUI), Fault Tolerant(FT) and Scalable(S).

CloudTUI-FTS is an evolution of our previous project
called CloudTUI [6] with many new features such as: (i) a
new rule engine able to make decisions based on knowledge
base facts; (ii) a new monitoring module able to manage a
wide range of parameters concerning the VM health, (iii)
an improved textual interface including new options for the
users and, finally, (iv) a complete rewriting of the code in
order to ease the multi-platform management.

In the rest of this paper, we describe in detail the main
features of the CloudTUI-FTS. In particular, in Section 2 we
discuss the related works, while in Section 3 we present the
CloudTUI-FTS tool by describing its architecture and its
main components: the Monitor (Section 3.1, the Rule En-
gine (Section 3.2), the Agent (Section 3.3) and the Manager
(Section 3.4). In Section 3.5 we describe how the textual
interface works, while in Section 4, we describe the exper-
imental evaluation of our tool. Finally, in Section 5, we
discuss the conclusions and the future works concerning our
project.

2. RELATED WORKS
As mentioned before, Cloud Computing is having an enor-

mous success in the last years. This is due to the fact that
this model has introduced new opportunities in the way the
services can be provided, but this comes with many com-
plex aspects to manage. Indeed, once the platform is up
and running, the Cloud administrator has to figure out how
to optimize the service provisioning. In order to do that,
the Cloud administrator has two different user interfaces:
a textual and/or a web interface depending on the Cloud
platform.

The problem with textual interfaces regard mainly the
syntax. As showed in Fig. 1, even a simple task such as
starting a VM requires a lot of parameters that are differ-
ent from a Cloud platform to another. In particular, these
parameters are often a sequence of number and letters (i.e.,
IDs) which the user has to remember and to use many times,
in order to run a service. The textual interfaces do not
help out the user since these IDs are not stored anywhere.
This is just one example regarding the limitations of the
textual interfaces that affects all major open source Cloud
platforms such as the euca tools provided by Eucalyptus [10],
the cloud-client [5] provided by Nimbus and the nova tool
provided by OpenStack [4], just to name a few.

With the web interfaces, the user does not have to re-
member the IDs as for the textual interfaces thanks to lists
and drop-down menu that make easier the user selections.
The drawbacks of the web interfaces regard their limitations.
For example, Horizon [1] is the web interface implemented
in OpenStack and it is one of the most complete web in-
terface provided by an open source Cloud Computing plat-
form. Unfortunately, Horizon does not provide any reliable
mechanism to prevent service faults or to manage service
scalability. For example, the only fault tolerant mechanism
available in Horizon consists in sending ping command to a
VM and if the VM does not reply, OpenStack considers the
VM down. Of course, this mechanism may generate many
false positives.

Finally, to the best of our knowledge, none of the inter-
faces both textual and web have been developed to be multi-

Figure 2: The CloudTUI-FTS architecture.

platform. A project who claimed to be multi-platform was
Phantom [2]. Unfortunately, the project has never reached
an acceptable level of robustness and has been dismissed
since one year ago and also the web site of the project is no
longer available.

3. THE CLOUDTUI-FTS TOOL
In Fig. 2, we show the architecture of CloudTUI-FTS with

its four main components: the Monitor, the Rule Engine, the
Agent and, finally, the Manager. In this section we describe
how they work.

3.1 The Monitor component
The Monitor component must collect information con-

cerning the health of each VM, where with health we mean
how the VM is using the resources such as CPU, memory,
network, etc. For example, if the percentage of CPU used by
a VM is closed to 100%, it probably means that this VM is
receiving too much work. In this case, it could be necessary
to start up a clone of the VM (that is, a VM able to provide
the same service) in order to split up the work between both
VMs.

The Monitor component periodically retrieves informa-
tion from the VMs running in the Cloud platform: the re-
trieval frequency, the number of parameters to retrieve and
many other aspects of the Monitor component can be cus-
tomized. Also, the API used to retrieve information are cus-
tomizable and can be specified in the Metering API module.
Thanks to this module, the Monitor component can be in-
dependent with respect to the monitor tool used. For exam-
ple, OpenStack uses Ceilometer [3] as preferred monitoring
tool, while Eucalyptus uses a custom version of the Amazon
CloudWatch [11]. Our Monitor component is compatible
with both solutions. Moreover, the Monitor component is
able to detect outliers values so they are not stored into the
meters_queue. The samples stored in the meters_queue are
used by the Rule Engine component as described in the fol-
lowing section.

3.2 The Rule Engine component
All data collected by the Monitor component are sent to

the Rule Engine component in its meters_queue. The Rule
Engine reads the data from this queue and it has to decide
if some action must be taken. More specifically, the Rule
Engine has a set of rules where each of them are composed
by two parts: the condition and the action. The Rule En-
gine reads the data from the meters_queues and checks if
the condition is true, and, if so, it performs the action de-
scribed in the rule. For example, a rule can be defined as
the following one: “if the CPU utilization is higher than 80%
then clone the VM”. By cloning a VM (that is a service),
the workload can be split up between more VMs in order to

Figure 3: A Intellect rule

Figure 4: The main functions of the Rule Engine
component

decrease the service time. Of course, the rule can be more
complex by including different conditions related to various
sample parameters.

This component has been realized by exploiting Intel-
lect [13]: a Domain-specific language (DSL) and a rule man-
ager for Python. The rules manager provides an intellect,
a form of artificial intelligence, a faculty of reasoning and
understanding objectively over a working memory. Fig. 3 il-
lustrates a rule by using the Intellect syntax. In particular,
we can note the when block (lines 9-10) where the conditions
to check are specified and the then block (lines 11-13) where
the action to take (if the conditions are satisfied) is speci-
fied. In particular, the example code proposed in Fig. 3 sets
a threshold (line 5) and then it checks if the CPU utilization
is higher than the threshold set (line 10). If so, the resource
has to be cloned (line 13) by executing the $resource.clone()
method.

The Rule Engine component checks if a policy has to be
implemented by using a specific method called check_policies().
As shown in Fig. 4, the Rule Engine run function wakes up
when some element is present into the meters_queue (line
6), then it pulls the first element out from the queue (line 8)
and, finally it extracts the information from the element such
as the meter type (e.g., CPU utilization, bandwidth utiliza-
tion, memory occupancy, etc.), the value and the timestamp
when the sample was stored (lines 10-12). Once all infor-
mation has been retrieved, the check_policies() method can
check if there is any rule satisfied. The actions to take are
put into the commands_queue (line 16). The elements in
this queue will be used by the Agent component as described
in the following section.

3.3 The Agent component
The Agent component has to translate the action decided

by the Rule Engine component into the specific API de-
pending on the Cloud platform in use. As mentioned in
Section 2, each Cloud platform has its own API and a user
has to remember the correct syntax and semantic in order
to implement what the Rule Engine component has decided.

Figure 5: The main functions of the Agent compo-
nent

Figure 6: The Manager component: the function to
clone a VM

Fortunately, the CloudTUI-FTS user has nothing to remem-
ber since the Agent component is able to compose the right
sequence of APIs to execute. After that, the Agent sends
the sequence to the Manager component which is in charge
to actually run it. In Fig. 5 an extract of the Agent com-
ponent source code is showed. As other components, the
Agent has a run() method (line 1) which contains the main
function. First of all, the Agent has to extract the next
command in the the cmd_queue (line 4) and then it has to
execute it (line 5) by invoking the generic execute_command
method (line 11). This method is able to retrieve the type
of command to execute (line 12) and then it starts the pro-
cedure by passing the input parameters required (line 13).
As discussed in the next section, the Manager is in charge
of actually running the command with the input parameters
on the Cloud platform selected.

3.4 The Manager component
The Manager component is specific for a Cloud platform

since it is in charge of running the API specialized com-
mands received by the Agent component. The Manager
runs each command, once a time, and it notifies the user
if the command succeeded or not. In Fig. 6, we can see
the source code related to the VM clone procedure specific
for OpenStack Cloud platform. In order to clone a VM,
it is necessary to retrieve all information concerning the
original VM. Indeed, the clone_instance() method retrieves
information concerning the network configuration (lines 3-
10), the security group (lines 12-14) and, finally, all VM
attributes such as the image ID (line 17), the image size
(line 18) and the key pair ID (line 19). Once all is set, the
self.nova.servers.create() method can be invoked in order to
create a clone of the VM.

3.5 CloudTUI-FTS textual interface
For our tool, we decided to implement a textual interface

instead of a graphic or a web one since it is efficient, it does

not require any particular library or hardware installed to
run and, last but not least, it can be used on a remote ter-
minal (this is very important since in some Cloud platform
the user has to login into a remote controller machine to
manage the system).

After that, the user has to decide which task to perform
by selecting one of the following options: the user can create
a new instance (Option 1), can require the list of the run-
ning VMs (Option 2), can reboot a VM (Option 3) and so
on. By selecting the Option 2, the user has to decide many
aspects of the instance to create: (i) the image operating
system (e.g., Ubuntu, Fedora, Windows, and so on depend-
ing on which operating system images have been stored in
the Cloud platform), (ii) the image size (which defines sizes
for RAM, disk, number of cores, and so on, (iii) the secure
group (i.e., which firewall rules have to be activated), (iv)
the network setup (i.e., how the instance will request an IP
address), and (v) the public key to use (that is necessary
to log in to the instance). After that, a new instance will
be created and the user will be notified when it will be up
and running. Due to the space constrains, we cannot de-
scribe in details all the tasks provided by CloudTUI-FTS.
The interested reader can find more details in the project
web site [7].

4. CLOUDTUI-FTS EXPERIMENTAL EVAL-

UATION
In order to evaluate the reliability and the performance

of our tool we have conducted several experiments with
various users. Since our tool needs a Cloud platform up
and running, we decide to use the resources provided by
CloudLab [9]. CloudLab is a scientific infrastructure for re-
search regarding Cloud Computing where researchers can
build their own Clouds. CloudLab comprises approximately
5,000 cores and from 300 to 500 Terabytes of storage in the
latest virtualization-capable hardware.

CloudTUI-FTS has being used by CloudLab users and
computer science students during the distributed system
course in our university. Note that our students have not
any specific background in Cloud Computing and they were
able to play with different Cloud platforms achieving the
basic tasks (e.g., start a service) and also the advance tasks
(e.g., create a “clone” policy). In the last six months we have
fixed the bugs pointed out by the users and we can claim
that CloudTUI-FTS is reliable and user-friendly as we ex-
pected to be. CloudTUI-FTS software is an open source
project and it is freely available for download [7].

5. CONCLUSIONS AND FUTURE WORKS
In this paper we have presented CloudTUI-FTS: a textual

interface able to interact with various Cloud platforms al-
lowing the user to perform basic and advanced tasks without
any preliminary skills on Cloud Computing. Our tool has
four main components in order to make all procedures mod-
ular and easy to expand/improve/customize. An intense ex-
perimental evaluation performed by a large user community
proofed that CloudTUI-FTS is reliable and user-friendly.
Our tool is open source and freely available for everyone
who wants to start studying Cloud Computing or who just
wants a better interface with respect to what Cloud plat-
forms usually provide.

CloudTUI-FTS is an on-going project and we are imple-

menting new features. Currently, we are testing a new com-
ponent called Logger which is in charge of creating various
log files in order to track the behavior of any components
in our tool. The experiments done reveal that the Log-
ger is almost ready to be released with the next version
of CloudTUI-FTS. The preliminary code of this component
can be found in a specific branch of the repository of the
project [7]. Since to the best of our knowledge there is not
a web platform able to interact with many Cloud platforms
concurrently, we are planning to implement a web version
of our tool. Finally, as mentioned before, CloudTUI-FTS
is able to interact with various monitoring tools such as
Ceilometer and CloudWatch. Even if these tools work well,
they are quite complex to install, to configure and to use.
For this reason, we are planning to make the Monitor com-
ponent more general. The user just needs to implement a
method called getMeter() and the Monitor component will
invoke this method to retrieve the new meter value.

6. ACKNOWLEDGMENTS
We thank Dr. S. Garione for its contribution on user input

error handling and on public IP allocation procedure.

7. REFERENCES
[1] Horizon: The OpenStack Dashboard Project.

goo.gl/21cQX0. [Online; accessed 2-Nov-2015].

[2] Nimbus Phantom. http://goo.gl/2SMxGS. [Online;
accessed 2-Nov-2015].

[3] OpenStack Telemetry (Ceilometer).
https://goo.gl/cnDZt5, 2015. [Online; accessed
2-Nov-2015].

[4] K. Jackson. OpenStack Cloud Computing Cookbook.
Packt Publishing, 2012.

[5] K. Keahey. Nimbus: Open source
infrastructure-as-a-service cloud computing software.
In Workshop on adapting applications and computing
services to multi-core and virtualization, 2009.

[6] M. Canonico et al. Cloudtui: a multi cloud platform
text user interface. In VALUETOOLS, pages 294–297.
ICST/ACM, 2013.

[7] D. Monfrecola and M. Canonico. The CloudTUI-FTS
project. goo.gl/UNi47r. [Online; accessed 2-Nov-2015].

[8] P. Mell et al. The NIST Definition of Cloud
Computing. goo.gl/ghvWBH, 2015. [Online; accessed
2-Nov-2015].

[9] R. Ricci et al. Introducing cloudlab: Scientific
infrastructure for advancing cloud architectures and
applications. login, 39(6):36–38, 2014.

[10] R. Wolski et al. The eucalyptus open-source
cloud-computing system. In Proc. of the 9th
IEEE/ACM Int. Sym. on Cluster Computing and the
Grid, CCGRID ’09, pages 124–131. IEEE Computer
Society, 2009.

[11] M. Ryan. AWS System Administration: Best Practices
for Sysadmins in the Amazon Cloud. O’Reilly Media,
Inc., 1st edition, 2015.

[12] The Occi project. An Open Community Leading
Cloud Standards. www.occi-wg.org, 2015. [Online;
accessed 2-Nov-2015].

[13] M. J. Walsh. Intellect: A Domain-specific language
and Rules Engine for Python. goo.gl/vzK5bH, 2015.
[Online; accessed 2-Nov-2015].

