
Towards Automated Data-Driven Model Creation for Cloud
Computing Simulation

Sergej Svorobej
James Byrne
Paul Liston
PJ Byrne

Dublin City University
Glasnevin, Dublin 9, IRELAND

+353 1 700 5218

sergej.svorobej2@mail.dcu.ie
james.byrne@dcu.ie
paul.liston@dcu.ie
pj.byrne@dcu.ie

Christian Stier
Henning Groenda
FZI Research Centre

for Information Technology
Forschungszentrum Informatik (FZI)

Haid-und-Neu-Straße 10-14
Karlsruhe, D-76131, GERMANY

+49 721 9654 632

stier@fzi.de
groenda@fzi.de

Zafeirios Papazachos
Dimitrios S. Nikolopoulos

School of Electronics
Electrical Engineering
and Computer Science

Queen’s University of Belfast
Belfast BT9 5BN, UK

+44 28 9097 4879

z.papazachos@qub.ac.uk
d.nikopoulos@qub.ac.uk

ABSTRACT

The increasing complexity and scale of cloud computing

environments due to widespread data centre heterogeneity makes

measurement-based evaluations highly difficult to achieve.

Therefore the use of simulation tools to support decision making

in cloud computing environments to cope with this problem is an

increasing trend. However the data required in order to model

cloud computing environments with an appropriate degree of

accuracy is typically large, very difficult to collect without some

form of automation, often not available in a suitable format and a

time consuming process if done manually. In this research, an

automated method for cloud computing topology definition, data

collection and model creation activities is presented, within the

context of a suite of tools that have been developed and integrated

to support these activities.

Categories and Subject Descriptors

I.6.7 [Simulation and Modeling]: Simulation Support Systems—

Environments; I.6.8 [Simulation and Modeling]: Types of

Simulation—Discrete Event; D.2.7 [Software Engineering]:

Distribution, Maintenance, and Enhancement—Extensibility,

Enhancement

General Terms

Measurement, Documentation, Design, Experimentation,

Standardization.

Keywords

Modelling, Cloud Computing, Simulation Integration, Data

Collection.

1. INTRODUCTION
Cloud computing data centres are complex systems with a high

degree of heterogeneity and a large number of different elements

(e.g. racks, nodes, hard disk drives, virtual machines) with various

forms of interactions and dependencies. Any system with these

characteristics is exceptionally difficult to manage as any decision

to make a change or react to an exception can have significant

operational and cost implications. To support decisions of this

nature, the inherent relationships within the system must be

understood and incorporated into an evaluation process.

In systems where the relationships are difficult to even

conceptualise due to complexity and scale, it is necessary to

formalise a model of the system in some analytical framework.

Discrete event simulation is one form of analysis suited to

decision support in stochastic environments relating to cloud

computing, and has been proven to be utilised successfully (for

examples, see [9], [18], [23], [34] and [37]). In order to undertake

a simulation based analysis, it is necessary to define, build,

populate and validate a model of the ‘as-is’ situation. Next, the

intended ‘to-be’ situation is represented in the model by changing

the appropriate parameters and finally the model results for the

two situations are compared to quantify the impact of the

proposed changes (see Figure 1 for a widely accepted standard

process for general simulation projects).

In this paper, an automated method for conducting the otherwise

difficult and time consuming system definition, data collection

and model creation activities is presented. Given the potential

scale of data centres, it is assumed that the creation of granular

models of entire systems would not be feasible without such

automation. As such, the methodology contributes significantly to

the possibility of conducting full data centre simulation based

analyses. With up-to-date models of the ‘as-is’ situation readily

available, data centre managers can make and evaluate parameter

changes and ultimately make better informed decisions.

In order to achieve this automation, a suite of tools has been

created and integrated. In brief, there is a data monitoring solution

that captures current state information from the hardware and

stores it in a repository. This data is collected according to

SIMUTOOLS 2015, August 24-26, Athens, Greece
Copyright © 2015 ICST
DOI 10.4108/eai.24-8-2015.2261129

Figure 1. The DES process [20].

defined meta models that describe both the physical (hardware

infrastructure) and logical (virtual machine to hardware mapping)

attributes of the system. Next there is a data retrieval client that

reads the stored information and translates it to a simulation ready

format that defines the model structure and associated input

variables. This information is passed to a simulation engine where

the model is executed. Each of these individual elements is

described in greater detail later but first an overview of related

research in this field is presented.

2. RELATED WORK
Some monitoring tools come complimentary to cloud providers

with high level overview details aimed at billing costs and

utilisation reports such as CloudWatch [3] or AzureWatch [4].

The obtained data is typically presented in an aggregated fashion

through user-friendly dashboards in the form of graphs and tables.

This approach typically does not provide programmatically

accessible sources of data that can be consumed directly by a

discrete event simulation model. In addition, this form of data

aggregation leads to simulation-related data being collected with

less granularity in turn resulting in a higher chance of a greater

margin of error with respect to simulation results when compared

to the real system behaviour.

Other available data capturing frameworks such as Hyperic [35],

Nagios [22], Chukwa [8], Ganglia [12], Tivoli Monitoring [13]

and Performance Co-Pilot [28] expose collected metrics as-is

through a web API, or store it directly in databases. It is possible

to fine-tune these tools to collect vast amount of metrics in order

to make them more suitable for capturing fine grained data centre

system data. Hence these types of frameworks are better suited to

use for the capture of cloud computing related simulation data.

Aceto et al. (2013) [1] carried out a survey on the area of “Cloud

monitoring”, in which they identify the motivations for cloud

monitoring, discuss the properties of monitoring systems for the

cloud, along with issues arising from such properties and how

these issues have been tackled by existing literature. They also

describe twenty eight commercial and open source platforms and

services for cloud monitoring. The authors also identify open

cloud monitoring issues, main challenges and future directions.

Kounev et al. (2011) [15] present a tool called Jewel that takes a

modelling approach based on Queueing Petri Nets [5]. Jewel is

written in ruby and runs on the controller node in the data centre.

It is capable of estimating VM resource demand and of

automatically generating performance models for a given number

of servers with associated network bandwidth.

There are some recent efforts towards realisation of the capturing

of live cloud computing related data towards the automated

creation of simulation models. For example, attempts have been

made to integrate the GroudSim framework a back-end in the

ASKALON Grid computing environment, enabling the

performing of real and simulated executions of real-world

applications using the same integrated development, monitoring

and analysis interface as ASKALON [26] [27].

The exact captured metric requirement for simulation is defined

by the data structure of the model container. In the case of cloud

computing, the model is expected to contain information about

hardware composition of the data centre together with a virtual

layer of hypervisors describing various properties of virtual

machines. There are a number of cloud simulation tools available

in order to create and run a cloud computing simulation model.

Overviews are given in [2], [20], [21], [30] and [38]. For example,

CloudSim [19] uses Java language classes as data holders

extending which will form a model usable by the simulation

engine. For modelling cloud environments, iCanCloud [23] has a

API-only interface to help in the building of a model which then

can be saved in binary format, but in the core it uses OMNeT++

to describe model components. GreenCloud [14] uses OTcl

language scripts to define the model on top of its core written in

C++ making it easier to decouple comparing to programming

language classes.

Prior to performing a simulation run, data relating to the system to

be simulated needs to be collected. The granularity and often

precision of the simulation results depends directly on access to

the correct system data sources.

Data collection approaches vary depending on the domain of the

system. However, with reference specifically to the domain of

cloud computing, there is an ample amount of frameworks

available that have the ability to capture data on multiple layers of

virtualised data centre hosts.

As part of the European Union Framework 7 CACTOS [25]

project, the Eclipse Modelling Framework (EMF) is used to create

a meta model which defines the required information. Further, the

Chukwa measurement collection framework is used by the

CactoScale toolkit to capture the data according to this meta

model. Captured models are then exposed via runtime model

repository described in Section 3.3. Models then can be easily

fetched for use within the simulation toolkit (CactoSim). In this

way, a common data standard is created which can serve as

medium of integration between the tools. The following section

describes the implementation of automated data driving cloud

computing simulation using these tools.

3. IMPLEMENTATION
Implementation of the automated data driven cloud computing

Figure 2. Route of data towards automated simulation model

creation.

simulation is carried out as per Error! Reference source not

found.. Referring to this Figure, this section describes the full

route of data from the data monitoring framework to meta model

enforced model creation followed by the model storage solution

used and finally the data retrieval and consumption within the

context of the simulation toolkit.

3.1 Data monitoring
Cloud platform maintains a variable number of virtual machines

at an arbitrary time. Each virtual machine produces log files

indicating the status and performance of the system. It is

necessary to aggregate and analyse the produced data logs to

assess the overall performance. Figure 3 illustrates the

architecture design of the data collection framework –

CactoScale. The decision to use Chukwa is based on the fact that

it is an open source large-scale log collection and analysis system

for monitoring large distributed systems, it is reasonably robust

and it is built on top of Hadoop Distributed File System (HDFS)

[29] and MapReduce [10]. Chukwa is tailored for collecting logs

and other data from distributed monitoring systems and it

provides a workflow that allows for incremental data collection,

processing and storage in HDFS.

The focus of the data required by the simulation is aimed at

obtaining a system topology map with processing properties of its

elements. Models of data centre hardware (CPU frequency,

memory amount etc.) and logical hypervisor resource allocation

(virtual machine configuration, allocation etc.) are required.

In some cases data centre operation policies will not allow full

integration of third party resource monitoring solution as

CactoScale because of an inability to deploy Chukwa agents on

individual customer virtual machines. The solution then can be

reached by retrieving data from the already running cloud control

tool API such as OpenStack [33] or Flexiant Cloud Orchestrator

[11] by using custom adaptors provided by CactoScale. This

method gives less overall control of the metric collection

properties, but is still can yield sufficient data for the accurate

resource demand simulation.

CactoScale collects system measurements and log data in a HBase

[34] distributed database where they can be analysed in parallel.

The information exchange between CactoScale and CactoSim

Figure 3. CactoScale architecture.

components is done by using instances of specifically designed

meta models. The designed meta models achieve integration and

data exchange amongst the data collection framework and

simulation toolkit.

CactoScale provides measurements of the system load and status

of the infrastructure by creating and sharing instances of the

Cloud Infrastructure Model which consists of Physical Data

Centre Model, the Logical Data Centre Model, and the Physical

and Logical Load Models. These instances are stored and

accessed in the Runtime Model Repository explained in Section

3.3.

3.2 Data centre models
Cloud infrastructure models are created and being managed using

a Model-Driven Software Development (MDSD) process. In

MDSD, the domains of the developed software are targeted

abstraction of the real world noted in common meta models. A

meta model is a domain-specific language that formalizes the

knowledge entities and their connections and dependencies.

Changes to the model instance are not performed manually in

implementation code but rather are made directly in the model.

This goes beyond the scope of model-based development where

the models are mainly used as documentation artefacts. For

model-driven development the knowledge from the models is

automatically transformed into source code via generative

techniques based on model-to-text transformations. MDSD helps

avoid a drift between the abstraction and implementation it also

drastically reduces the work necessary to adapt the models to

iteratively gathered requirements reducing the effort for

consistency preservation between the abstractions of the physical

and virtual layer data centre models [16].

The Physical Data Centre Model (PDCM) defines the structure of

a data centre’s physical infrastructure. The core model structures

the data centre into a hierarchy of racks and nodes, which are

interconnected by a physical network. PDCM is designed to

capture hardware resource properties. The CPU specification

includes the ID holder of the processing unit, frequency, number

of cores and the boolean switch for the turbo mode indication.

Node memory described by a bandwidth and a size measurement

attribute. In addition to size, the storage specification also has

read and write delay parameters.

The Logical Data Centre Model (LDCM) describes the layout,

composition, and mapping of the virtual to the physical

infrastructure in the data centre. It is composed of two parts, the

core model and the hypervisor model. The LDCM encompasses a

description of a number of virtual machine level features such as

amount of provisioned memory, virtual central processing unit

(virtual CPU) type and settings; a set of virtual-physical machine

mappings and related properties, such as the CPU affinity

settings, specification of storage types and access qualities for

virtual machines; and a set of bootstrapping and migration data

such as the size and location of virtual machine disk images and

virtual network configurations and link qualities.

The proposed solution uses Eclipse Modelling Framework (EMF)

[32] technology. EMF enables UI and programmatic access.

Models can be exported based on the XML Metadata Interchange

(XMI) format.

EMF Application

EMF Application

EMF Application

CDO Repository

ODB

NoSQL

RDB

Network

Figure 4. CDO Repository Diagram [9].

3.3 Runtime model storage
The CDO Model Repository [31] is used as a persistence

framework for EMF models. It is capable of using relational and

NoSQL type of databases at the backend and comes with multi-

user access support for managing stored models providing

programmable access policies. Transactional access encourages

parallel data usage while adhering to ACID (Atomicity,

Consistency, Isolation, Durability) properties. Included revision

control support through parallel evolution of the object graph

retained in the repository allows for the tracing of model updates

and the rolling back of committed changes.

As shown in Figure 4 the application connects to the CDO

repository to retrieve the data from the underlying databases in

the format of a model. The data collection framework CactoScale

uses CDO connected to a MySQL database for model storage and

exposure. Due to the dynamic nature of virtual resources in the

cloud the models have to be updated on a frequent basis, but can

always be retrieved by the simulation framework CactoSim in a

consistent state as assured by CDO.

3.4 Data retrieval
The simulation toolkit (CactoSim) is coupled with the data

collection toolkit CactoScale enabling the provisioning of access

to the most recent Cloud Infrastructure Model. This model

represents the current cloud data centre state from the CDO

Repository. CactoSim does not need to constantly stay connected

with the CDO Repository. Instead, it can commit and update its

copy of the model instance when necessary. Simulations are

invoked significantly less frequently than the infrastructure state

extracted by CactoScale.

The sequence diagram in Figure 5 depicts one-way interaction

between simulation and the CDO model storage. CactoSim calls

the CDO storage by creating a session using the network access

:CactoSim Load
Current Model

getSession
:CDOSession

<<create>>openView()

view:CDOView

:Runtime Model
Storage

:View Handler

getResource(physicalDCModel)

getResource(logicalDCModel)

<<close>>

Figure 5. Interaction between CactoSim and runtime model

storage.

credentials of the remote system to spawn a read-only view of the

model storage. Once access is granted, the PDCM and LDCM are

retrieved. From this point, the models can either be serialised

locally into core XML Metadata Interchange (XMI) files or saved

into the local EMF store. At the end of the transaction the

connection is closed. Retrieved models are permanently available

offline and allow for the repetition of simulation runs as well as

the analysis of the differences and commonalities between

alternative model versions.

3.5 Usage within simulation
CactoSim builds upon the basis of Palladio [7] and SimuLizar [6]

to predict Quality of Service (QoS) properties of virtual machines

deployed in a data centre environment. SimuLizar simulates the

impact that adaptations such as redeployments of components or

the reconfiguration of load balancer parameters have on the QoS

properties of a component-based software system. The

simulations are performed for instances of the Palladio

Component Model (PCM) that describe the structure, deployment

and usage of a component-based software system.

All services provided to users by a deployed virtual machine

remain hidden to the data centre operator. Palladio assumes

detailed knowledge of the application’s architecture. This

includes a description of provided and required services with the

performance-relevant behaviour of their implementations.

In order to bridge the gap between Palladio’s white box behaviour

modelling for individual components of an application and the

black box behaviour models provided by CactoScale, a model

transformation is employed. The translation between the fine-

grained Cloud Infrastructure Model and the PCM representation

of the entities employed by CactoSim is handled using model

transformations. In order to accomplish unidirectional model

transformations, a model transformation specified in QVTo is

used [24].

The biggest difference between the ResourceEnvironment model

of Palladio and the PDCM of CactoScale lies in the level of

information reflected in both models. In the CactoScale model

there is an explicit nesting of racks and nodes, shown in Figure 6.

Figure 6. CactoScale created PDCM example.

Figure 7. PDCM transformed to Palladio

ResourceEnvironment model.

Nodes are distinguished into Compute Nodes and Network

Attached Storage nodes. Palladio only knows generic

ResourceContainers. ResourceContainers are used to model all

hierarchies and nesting relationships in Palladio. Racks and both

node types of the CactoScale model are mapped to these Resource

Containers as shown in Figure 7.

A cloud user does not usually supply a detailed deployed

application model to a cloud provider thus making an application

running in a virtual machine appear as black boxes or grey boxes

at best. This lack of information about the virtual machine

behaviour translates into the LDCM captured by CactoScale. The

model contains only the information of the resources assigned to

each virtual machine and their allocation to the nodes via the

hypervisor. To bridge the gap between the CactoScale

representation of the virtual layer and much more detailed

software representation in PCM, transformation is used. Palladio

application Repository and Usage models are created to reflect the

resource demand according to the CactoScale resource utilisation

measurements. The Palladio System model then links the

application repository entities with the deployed virtual machines

in the cloud data centre. In a similar fashion to the way a single

virtual machine image can be used for many running virtual

machines, the Palladio application Repository models can be used

to represent many modelled virtual machines in the simulation.

4. HIGH-LEVEL VALIDATION
This section of the paper describes a testbed implementation of

the analysis solution. Details of the testbed are outlined in Table

1. It consists of sixteen compute nodes which can be used for the

VM placement, Network Attached Storage (NAS) node and two

management nodes where Cloud and Network controllers reside.

The available testbed also provides a fair degree of heterogeneity

given that the nodes host different CPU types (Intel architecture

Haswell and Sandybridge), and the memory varies in capacity and

type providing access to double data rate type three (DDR3)

synchronous dynamic random-access memory (SDRAM) and

newer DDR4 SDRAM. Furthermore, compute node local storage

comprises of a mix of higher capacity slower Hard Disk Drives

(HDDs) with much faster Solid State Drives (SSDs).

There are sixty four virtual machines deployed in the data centre.

In this experiment the same image is used and assigned the same

amount of resources to each virtual machine which is one CPU

core and 512 MB memory per virtual machine. Table 2 shows

virtual machine allocation dispersion on the compute nodes.

Table 1. Cloud testbed physical nodes.

Node

Type

Resource

Type
Resource Description

Cloud

controller

CPU
2x Intel Xeon 6-Core Westmere

(2.92 Ghz)

Memory 48 GB DDR3 Memory

Storage 2x 1TB SATA HDD, 7.2k rpm

Network

controller

CPU
2x Intel Xeon 6-Core Sandy Bridge

(2.0 GHz)

Memory 64 GB DDR3 Memory

Storage
2x 1TB SATA HDD, 7.2k rpm,

RAID-1

NAS node

CPU
2x Intel Xeon 6-Core Sandy Bridge

(2.0 GHz)

Memory 64 GB DDR3 Memory

Storage
2x 500GB SATA HDD, 7.2k rpm

6x 2TB SATA HDD, 7.2k rpm

Compute

nodes 1-4

CPU
2x Intel 8-Core Sandy Bridge (2.6

GHz)

Memory
Node 1,2

Node 3,4

64 GB DDR3

128 GB DDR3

Storage 2x 1TB SATA HDD, 7.2k rpm

Compute

nodes 5, 6

CPU
2x Intel 8-Core Sandy Bridge (2.6

GHz)

Memory
Node 5

Node 6

64 GB DDR3

128 GB DDR3

Storage 2x 240GB SSD

Compute

nodes 7-

12

CPU
2x Intel 8-Core Sandy Bridge

(2.6GHz)

Memory
Node 7-9

Node 10-12

64 GB DDR3

128 GB DDR3

Storage No local storage

Compute

nodes 13,

14

CPU 2x Intel Haswell 8-Core (2.4GHz)

Memory
Node 13

Node 14

64 GB DDR4

128 GB DDR4

Storage 2x 1TB SATA HDD, 7.2k rpm

Compute

nodes 15,

16

CPU 2x Intel Haswell 8-Core (2.4GHz)

Memory
Node 15

Node 16

64 GB DDR4

128 GB DDR4

Storage 2x 240GB SSD

As expected, CactoScale collects data described in Table 1 and

exposes it via the runtime model repository. Then, through the use

of an import wizard within CactoSim, the CDO address path,

credentials and the local file system folder location are provided.

Table 2. Virtual machine allocation by node.

Compute

Node

Number of

VMs

Compute

Node

Number of

VMs

1 2 9 4

2 1 10 7

3 7 11 0

4 0 12 8

5 1 13 4

6 10 14 5

7 5 15 1

8 7 16 2

Figure 8. Aggregated CPU utilisation simulation results

The connection is then made and downloaded models are

serialised locally in XMI format. Next, the simulation

configuration attributes need to be setup amongst which are the

path to newly retrieved cloud data centre models and the

simulated time value. Currently, the behaviour of the VMs is not

analysed yet by CactoScale and an artificial application behaviour

model is used instead to demonstrate the automated transfer and

usage within simulation. As a workaround for experimental

purposes, a dummy CPU resource demand distribution with 10%

probability of high, 30% medium high, 50% medium and 10%

low CPU consumption per virtual machine is used.

The simulation results presented in Figure 8 show average CPU

utilisation prediction across all sixteen nodes. The nodes that host

less virtual machines respectively have lower CPU utilisation

compared to the nodes which are more saturated.

The demonstrated simulation and data collection framework

successfully supports the creation of a detailed model of a live

cloud test bed and the execution of an “as-is” simulation typically

within a few minutes. This significantly saves time and effort for

a cloud data centre operator with respect to the initial simulation

setup. The resulting models have the potential to be used in

system failure “what if” analysis or the evaluation of optimisation

technique recommendations.

5. DISCUSSION
The discussion in Section 5 goes deeper into explaining the

advantages of and limitations to the proposed solution. Referring

to Section 2, there numerous available tools for cloud monitoring

and data collection, with some of these operating at the level of

hardware aimed at the cloud operator, while others focus on a the

level of cloud resource usage aimed at the cloud consumer.

Additionally, solutions exist for cloud operation support, such as

the features available in simulation toolkits. The aim of

simulation is to accurately model cloud operations and

components contained within. However there is very little

information available or identified on work done towards the

integration of the cloud data collection domain with the

simulation modelling domain. This gap serves as the motivation

for work presented in this paper.

The solution described in this paper presents an overview of

identified available technology that can be used for automatic

cloud data centre model generation to support simulation. As the

scale, heterogeneity and resulting complexity of hardware

available within cloud datacentre increases, manual model

creation by a simulation toolkit user becomes too difficult due to

this increasing complexity.

There are some limitations of proposed solution in its current

form. CactoScale has been developed through specifically

targeting a high degree of scalability by using the Chukwa [8]

framework paired with HDFS [29] and a CDO Store [31]. This

solution as thus far only been tested on a marginally small cloud

data centre containing sixteen nodes. In addition, the meta model

contains entries that cannot be monitored within all data centres.

For example not all Power Supply Units (PSU) in the physical

rack would have programmatically accessible energy

consumption sensors.

In order to run more accurate simulation experiments, the data

collection framework needs to provide resource demand

estimation for each virtual machine. This procedure requires the

collection of resource usage traces, and offline analysis towards

producing a behaviour model that can be used within the

simulation. These are included in the next steps envisioned to

complete the integration.

The models exposed by CactoScale are also fit to use by other

tools such as optimisation. This opens a possibility to also

integrate the simulation toolkit with an optimisation toolkit, as

they both potentially use the same data source. Future work

includes investigating the pairing of simulation with optimisation

through feeding models populated with the simulated data to the

optimisation during simulation run time. This will enable

optimisation strategies to be evaluated at design-time.

While these limitations currently exist, the main advantage of

coupling a data collection framework with a simulation

framework lies in the rapid availability of the model from the live

datacentre with minimal time needed, thereby playing a positive

role in simulation tool adoption by the end user. In addition,

CactoScale ensures that the Cloud Infrastructure Models stored in

the Runtime Model Storage are consistent and represent the latest

available live datacentre version. When CactoSim retrieves the

Cloud Infrastructure Models from the repository, they are saved

to the local Prediction Model Storage which is realised using an

EMF Store [36]. These models then can be used for immediate

simulation or further manipulation by the cloud operator.

6. CONCLUSIONS AND FUTURE WORK
In this paper, an automated method for conducting the otherwise

difficult and time consuming system definition, data collection

and model creation activities is presented. Given the potential

scale of data centres, it is proposed that the creation of granular

models of entire systems would not be feasible without such

automation. As such, the methodology contributes significantly to

the possibility of conducting full data centre simulation based

analyses.

Future work is focused towards integration with optimisation,

scalability testing of the proposed solution and further validation

of the outputted models against real use case data.

7. ACKNOWLEDGMENTS
This work is funded by the European Union’s Seventh

Framework Programme under grant agreement 610711

(CACTOS).

8. REFERENCES
[1] Aceto, G., Botta, A., De Donato, W. and Pescapè, A. 2013.

Cloud monitoring: A survey. Computer Networks. 57, 9

(2013), 2093–2115.

[2] Ahmed, A. and Sabyasachi, A.S. 2014. Cloud computing

simulators: A detailed survey and future direction. 2014

IEEE Int. Adv. Comput. Conf., pp. 866–872, Feb. (2014).

[3] Amazon CloudWatch: 2015.

https://aws.amazon.com/cloudwatch/. Accessed: 2015-04-03.

[4] AzureWatch by Paraleap Technologies: 2015.

http://www.paraleap.com/azurewatch. Accessed: 2015-04-

14.

[5] Bause, F. and Dortmund, U. 1993. Queueing Petri Nets A

Formalism for the Combined Qualitative and Quantitative

Analysis of Systems. (1993), 14–23.

[6] Becker, M., Luckey, M. and Becker, S. 2013. Performance

analysis of self-adaptive systems for requirements validation

at design-time. Proceedings of the 9th international ACM

Sigsoft conference on Quality of software architectures

(2013), 43–52.

[7] Becker, S., Koziolek, H. and Reussner, R. 2009. The

Palladio component model for model-driven performance

prediction. Journal of Systems and Software. 82, 1 (2009), 3–

22.

[8] Boulon, J., Konwinski, A., Qi, R., Rabkin, A., Yang, E. and

Yang, M. 2008. Chukwa, a large-scale monitoring system. In

Proceedings of CCA, Vol 8 (2008), 1–5.

[9] Calheiros, R.N. 2011. CloudSim: a toolkit for modeling and

simulation of cloud computing environments and evaluation

of resource provisioning algorithms. Software: Practice and

Experience 41.1 (2011): 23-50. (2011).

[10] Dean, J. and Ghemawat, S. 2008. MapReduce: simplified

data processing on large clusters. Communications of the

ACM. 51, 1 (2008), 107–113.

[11] Flexiant Ltd. Flexiant Cloud Orchestrator, Flexiant Concerto:

2015. http://www.flexiant.com/. Accessed: 2015-04-06.

[12] Ganglia Monitoring System: 2015.

http://ganglia.sourceforge.net/. Accessed: 2015-04-16.

[13] IBM developerWorks - IBM Tivoli Monitoring Wiki: 2015.

https://www.ibm.com/developerworks/community/wikis/home

?lang=en#!/wiki/Tivoli Monitoring. Accessed: 2015-04-10.

[14] Kliazovich, D., Bouvry, P., Audzevich, Y. and Khan, S.U.

2010. GreenCloud: A Packet-Level Simulator of Energy-

Aware Cloud Computing Data Centers. The Journal of

Supercomputing. 62, 3 (Nov. 2010), 1–5.

[15] Kounev, S., Bender, K., Brosig, F., Huber, N. and Okamoto,

R. 2011. Automated Simulation-Based Capacity Planning for

Enterprise Data Fabrics. 4th International ICST Conference

on Simulation Tools and Techniques. (2011), 27–36.

[16] Lano, K. 2009. Model-Driven Software Development With

UML and Java. Course Technology Press.

[17] Law, A.M. and Kelton, W.D. 1991. Simulation Modelling

and Analysis. McGraw Hill.

[18] Liu, L., Wang, H., Liu, X., Jin, X., He, W.B., Wang, Q.B.

and Chen, Y. 2009. GreenCloud: a new architecture for

green data center. Proceedings of the 6th international

conference industry session on Autonomic computing and

communications industry session. ACM,. (2009), 29–38.

[19] Long, W., Yuqing, L. and Qingxin, X. 2013. Using

CloudSim to Model and Simulate Cloud Computing

Environment. 2013 Ninth International Conference on

Computational Intelligence and Security. (Dec. 2013), 323–

328.

[20] Malhotra, R. and Jain, P. 2013. Study and Comparison of

Various Cloud Simulators Available in the Cloud

Computing. International Journal of Advanced Research in

Computer Science and Software Engineering. 3, 9 (2013),

347–350.

[21] Mohana, S.J., Saroja, M. and Venkatachalam, M. 2014.

Analysis and Comparison of Simulators to Evaluate the

Performance of Cloud Environments. Journal of

NanoScience and NanoTechnology. 2, 1 (2014), 739–742.

[22] Nagios Enterprises. Nagios Is The Industry Standard In IT

Infrastructure Monitoring: 2015. http://www.nagios.org/.

Accessed: 2015-04-12.

[23] Núñez, A., Vázquez-Poletti, J.L., Caminero, A.C., Castañé,

G.G., Carretero, J. and Llorente, I.M. 2012. iCanCloud: A

flexible and scalable cloud infrastructure simulator. Journal

of Grid Computing. 10, 1 (2012), 185–209.

[24] Object Management Group. Documents Associated With

Meta Object Facility (MOF) 2.0

Query/View/Transformation, V1.1:

http://www.omg.org/spec/QVT/1.1/. Accessed: 2015-04-08.

[25] Östberg, P.-O. et al. 2014. The CACTOS Vision of Context-

Aware Cloud Topology Optimization and Simulation.

Proceedings of the 6th IEEE International Conference on

Cloud Computing Technology and Science (CloudCom

2014). 15-18 December. Singapore (2014).

[26] Ostermann, S., Plankensteiner, K., Bodner, D., Kraler, G.

and Prodan, R. 2011. Integration of an Event-based

Simulation Framework into a Scientific Workflow Execution

Environment for Grids and Clouds. Towards a Service-Based

Internet: Lecture Notes in Computer Science. 6994, (2011),

1–13.

[27] Ostermann, S., Plankensteiner, K., Prodan, R. and Fahringer,

T. 2011. Groudsim: An event-based simulation framework

for computational grids and clouds. Euro-Par 2010 Parallel

Processing Workshops. Springer Berlin Heidelberg. 305–

313.

[28] Performance Co-Pilot: 2015. http://pcp.io/. Accessed: 2015-

04-13.

[29] Shvachko, K., Kuang, H., Radia, S. and Chansler, R. 2010.

The Hadoop distributed file system. 2010 IEEE 26th

Symposium on Mass Storage Systems and Technologies,

MSST2010. (2010), 1–10.

[30] Sinha, U. and Shekhar, M. 2015. Comparison of Various

Cloud Simulation tools available in Cloud Computing.

INternational Journal of Advanced Research in Computer

and Communication Engineering. 4, 3 (2015).

[31] Stepper, Eike. The Eclipse Foundation - CDO Model

Repository Overview: 2015.

https://eclipse.org/cdo/documentation/. Accessed: 2015-04-

06.

[32] The Eclipse Foundation - Eclipse Modeling Framework

(EMF): 2015. https://www.eclipse.org/modeling/emf/.

Accessed: 2015-04-13.

[33] The OpenStack Project: 2015. https://www.openstack.org/.

Accessed: 2015-04-13.

[34] Tighe, M. 2012. DCSim: A data centre simulation tool for

evaluating dynamic virtualized resource management.

Network and service management (cnsm), 2012 8th

international conference and 2012 workshop on systems

virtualization management (svm). IEEE. (2012).

[35] VMware. vRealize Hyperic (formerly vCenter Hyperic):

2015. https://www.vmware.com/products/vrealize-hyperic/.

Accessed: 2015-04-03.

[36] What is EMFStore and why should I use it? 2015.

http://www.eclipse.org/emfstore/. Accessed: 2015-03-14.

[37] Wickremasinghe, B., Calheiros, R.N. and Buyya, R. 2010.

Cloudanalyst: A cloudsim-based visual modeller for

analysing cloud computing environments and applications.

Advanced Information Networking and Applications (AINA),

2010 24th IEEE International Conference on. (2010), 446–

452.

[38] Zhao, W., Peng, Y., Xie, F. and Dai, Z. 2012. Modeling and

Simulation of Cloud Computing: A Review. Proceedings of

the 2012 IEEE Asia Pacific Cloud Computing Congress

(APCloudCC) (2012), 20–24.

