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ABSTRACT 

The increasing complexity and scale of cloud computing 

environments due to widespread data centre heterogeneity makes 

measurement-based evaluations highly difficult to achieve. 

Therefore the use of simulation tools to support decision making 

in cloud computing environments to cope with this problem is an 

increasing trend. However the data required in order to model 

cloud computing environments with an appropriate degree of 

accuracy is typically large, very difficult to collect without some 

form of automation, often not available in a suitable format and a 

time consuming process if done manually. In this research, an 

automated method for cloud computing topology definition, data 

collection and model creation activities is presented, within the 

context of a suite of tools that have been developed and integrated 

to support these activities. 

Categories and Subject Descriptors 

I.6.7 [Simulation and Modeling]: Simulation Support Systems—

Environments; I.6.8 [Simulation and Modeling]: Types of 

Simulation—Discrete Event; D.2.7 [Software Engineering]: 

Distribution, Maintenance, and Enhancement—Extensibility, 

Enhancement 

General Terms 

Measurement, Documentation, Design, Experimentation, 

Standardization. 

Keywords 

Modelling, Cloud Computing, Simulation Integration, Data 

Collection. 

1. INTRODUCTION 
Cloud computing data centres are complex systems with a high 

degree of heterogeneity and a large number of different elements 

(e.g. racks, nodes, hard disk drives, virtual machines) with various 

forms of interactions and dependencies. Any system with these 

characteristics is exceptionally difficult to manage as any decision 

to make a change or react to an exception can have significant 

operational and cost implications. To support decisions of this 

nature, the inherent relationships within the system must be 

understood and incorporated into an evaluation process.  

In systems where the relationships are difficult to even 

conceptualise due to complexity and scale, it is necessary to 

formalise a model of the system in some analytical framework. 

Discrete event simulation is one form of analysis suited to 

decision support in stochastic environments relating to cloud 

computing, and has been proven to be utilised successfully (for 

examples, see [9], [18], [23], [34] and [37]). In order to undertake 

a simulation based analysis, it is necessary to define, build, 

populate and validate a model of the ‘as-is’ situation. Next, the 

intended ‘to-be’ situation is represented in the model by changing 

the appropriate parameters and finally the model results for the 

two situations are compared to quantify the impact of the 

proposed changes (see Figure 1 for a widely accepted standard 

process for general simulation projects). 

In this paper, an automated method for conducting the otherwise 

difficult and time consuming system definition, data collection 

and model creation activities is presented. Given the potential 

scale of data centres, it is assumed that the creation of granular 

models of entire systems would not be feasible without such 

automation. As such, the methodology contributes significantly to 

the possibility of conducting full data centre simulation based 

analyses. With up-to-date models of the ‘as-is’ situation readily 

available, data centre managers can make and evaluate parameter 

changes and ultimately make better informed decisions. 

In order to achieve this automation, a suite of tools has been 

created and integrated. In brief, there is a data monitoring solution 

that captures current state information from the hardware and 

stores it in a repository. This data is collected according to 
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Figure 1. The DES process [20]. 

defined meta models that describe both the physical (hardware 

infrastructure) and logical (virtual machine to hardware mapping) 

attributes of the system. Next there is a data retrieval client that 

reads the stored information and translates it to a simulation ready 

format that defines the model structure and associated input 

variables. This information is passed to a simulation engine where 

the model is executed. Each of these individual elements is 

described in greater detail later but first an overview of related 

research in this field is presented. 

2. RELATED WORK 
Some monitoring tools come complimentary to cloud providers 

with high level overview details aimed at billing costs and 

utilisation reports such as CloudWatch [3] or AzureWatch [4]. 

The obtained data is typically presented in an aggregated fashion 

through user-friendly dashboards in the form of graphs and tables. 

This approach typically does not provide programmatically 

accessible sources of data that can be consumed directly by a 

discrete event simulation model. In addition, this form of data 

aggregation leads to simulation-related data being collected with 

less granularity in turn resulting in a higher chance of a greater 

margin of error with respect to simulation results when compared 

to the real system behaviour. 

Other available data capturing frameworks such as Hyperic [35], 

Nagios [22], Chukwa [8], Ganglia [12], Tivoli Monitoring [13] 

and Performance Co-Pilot [28] expose collected metrics as-is 

through a web API, or store it directly in databases. It is possible 

to fine-tune these tools to collect vast amount of metrics in order 

to make them more suitable for capturing fine grained data centre 

system data. Hence these types of frameworks are better suited to 

use for the capture of cloud computing related simulation data. 

Aceto et al. (2013) [1] carried out a survey on the area of “Cloud 

monitoring”, in which they identify the motivations for cloud 

monitoring, discuss the properties of monitoring systems for the 

cloud, along with issues arising from such properties and how 

these issues have been tackled by existing literature. They also 

describe twenty eight commercial and open source platforms and 

services for cloud monitoring. The authors also identify open 

cloud monitoring issues, main challenges and future directions.  

Kounev et al. (2011) [15] present a tool called Jewel that takes a 

modelling approach based on Queueing Petri Nets [5]. Jewel is 

written in ruby and runs on the controller node in the data centre. 

It is capable of estimating VM resource demand and of 

automatically generating performance models for a given number 

of servers with associated network bandwidth. 

There are some recent efforts towards realisation of the capturing 

of live cloud computing related data towards the automated 

creation of simulation models. For example, attempts have been 

made to integrate the GroudSim framework a back-end in the 

ASKALON Grid computing environment, enabling the 

performing of real and simulated executions of real-world 

applications using the same integrated development, monitoring 

and analysis interface as ASKALON [26] [27].  

The exact captured metric requirement for simulation is defined 

by the data structure of the model container. In the case of cloud 

computing, the model is expected to contain information about 

hardware composition of the data centre together with a virtual 

layer of hypervisors describing various properties of virtual 

machines. There are a number of cloud simulation tools available 

in order to create and run a cloud computing simulation model. 

Overviews are given in [2], [20], [21], [30] and [38]. For example, 

CloudSim [19] uses Java language classes as data holders 

extending which will form a model usable by the simulation 

engine. For modelling cloud environments, iCanCloud [23] has a 

API-only  interface to help in the building of a model which then 

can be saved in binary format, but in the core it uses OMNeT++ 

to describe model components. GreenCloud [14] uses OTcl 

language scripts to define the model on top of its core written in 

C++ making it easier to decouple comparing to programming 

language classes. 

Prior to performing a simulation run, data relating to the system to 

be simulated needs to be collected. The granularity and often 

precision of the simulation results depends directly on access to 

the correct system data sources. 

Data collection approaches vary depending on the domain of the 

system. However, with reference specifically to the domain of 

cloud computing, there is an ample amount of frameworks 

available that have the ability to capture data on multiple layers of 

virtualised data centre hosts. 

As part of the European Union Framework 7 CACTOS [25] 

project, the Eclipse Modelling Framework (EMF) is used to create 

a meta model which defines the required information. Further, the 

Chukwa measurement collection framework is used by the 

CactoScale toolkit to capture the data according to this meta 

model. Captured models are then exposed via runtime model 

repository described in Section 3.3. Models then can be easily 

fetched for use within the simulation toolkit (CactoSim). In this 

way, a common data standard is created which can serve as 

medium of integration between the tools. The following section 

describes the implementation of automated data driving cloud 

computing simulation using these tools. 

3. IMPLEMENTATION 
Implementation of the automated data driven cloud computing 

  

Figure 2. Route of data towards automated simulation model 

creation. 



simulation is carried out as per Error! Reference source not 

found.. Referring to this Figure, this section describes the full 

route of data from the data monitoring framework to meta model 

enforced model creation followed by the model storage solution 

used and finally the data retrieval and consumption within the 

context of the simulation toolkit. 

3.1 Data monitoring 
Cloud platform maintains a variable number of virtual machines 

at an arbitrary time. Each virtual machine produces log files 

indicating the status and performance of the system. It is 

necessary to aggregate and analyse the produced data logs to 

assess the overall performance. Figure 3 illustrates the 

architecture design of the data collection framework – 

CactoScale. The decision to use Chukwa is based on the fact that 

it is an open source large-scale log collection and analysis system 

for monitoring large distributed systems, it is reasonably robust 

and it is built on top of Hadoop Distributed File System (HDFS) 

[29] and MapReduce [10]. Chukwa is tailored for collecting logs 

and other data from distributed monitoring systems and it 

provides a workflow that allows for incremental data collection, 

processing and storage in HDFS. 

The focus of the data required by the simulation is aimed at 

obtaining a system topology map with processing properties of its 

elements. Models of data centre hardware (CPU frequency, 

memory amount etc.) and logical hypervisor resource allocation 

(virtual machine configuration, allocation etc.) are required. 

In some cases data centre operation policies will not allow full 

integration of third party resource monitoring solution as 

CactoScale because of an inability to deploy Chukwa agents on 

individual customer virtual machines. The solution then can be 

reached by retrieving data from the already running cloud control 

tool API such as OpenStack [33] or Flexiant Cloud Orchestrator 

[11] by using custom adaptors provided by CactoScale. This 

method gives less overall control of the metric collection 

properties, but is still can yield sufficient data for the accurate 

resource demand simulation. 

CactoScale collects system measurements and log data in a HBase 

[34] distributed database where they can be analysed in parallel. 

The information exchange between CactoScale and CactoSim 

 

 

Figure 3. CactoScale architecture. 

components is done by using instances of specifically designed 

meta models. The designed meta models achieve integration and 

data exchange amongst the data collection framework and 

simulation toolkit. 

CactoScale provides measurements of the system load and status 

of the infrastructure by creating and sharing instances of the 

Cloud Infrastructure Model which consists of Physical Data 

Centre Model, the Logical Data Centre Model, and the Physical 

and Logical Load Models. These instances are stored and 

accessed in the Runtime Model Repository explained in Section 

3.3.   

3.2 Data centre models 
Cloud infrastructure models are created and being managed using 

a Model-Driven Software Development (MDSD) process. In 

MDSD, the domains of the developed software are targeted 

abstraction of the real world noted in common meta models. A 

meta model is a domain-specific language that formalizes the 

knowledge entities and their connections and dependencies. 

Changes to the model instance are not performed manually in 

implementation code but rather are made directly in the model. 

This goes beyond the scope of model-based development where 

the models are mainly used as documentation artefacts. For 

model-driven development the knowledge from the models is 

automatically transformed into source code via generative 

techniques based on model-to-text transformations. MDSD helps 

avoid a drift between the abstraction and implementation it also 

drastically reduces the work necessary to adapt the models to 

iteratively gathered requirements reducing the effort for 

consistency preservation between the abstractions of the physical 

and virtual layer data centre models [16]. 

The Physical Data Centre Model (PDCM) defines the structure of 

a data centre’s physical infrastructure. The core model structures 

the data centre into a hierarchy of racks and nodes, which are 

interconnected by a physical network. PDCM is designed to 

capture hardware resource properties. The CPU specification 

includes the ID holder of the processing unit, frequency, number 

of cores and the boolean switch for the turbo mode indication. 

Node memory described by a bandwidth and a size measurement 

attribute. In addition to size, the storage specification also has 

read and write delay parameters. 

The Logical Data Centre Model (LDCM) describes the layout, 

composition, and mapping of the virtual to the physical 

infrastructure in the data centre. It is composed of two parts, the 

core model and the hypervisor model. The LDCM encompasses a 

description of a number of virtual machine level features such as 

amount of provisioned memory, virtual central processing unit 

(virtual CPU) type and settings; a set of virtual-physical machine 

mappings and related properties, such as the CPU affinity 

settings, specification of storage types and access qualities for 

virtual machines; and a set of bootstrapping and migration data 

such as the size and location of virtual machine disk images and 

virtual network configurations and link qualities. 

The proposed solution uses Eclipse Modelling Framework (EMF) 

[32] technology. EMF enables UI and programmatic access. 

Models can be exported based on the XML Metadata Interchange 

(XMI) format. 
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Figure 4. CDO Repository Diagram [9]. 

3.3 Runtime model storage 
The CDO Model Repository [31] is used as a persistence 

framework for EMF models. It is capable of using relational and 

NoSQL type of databases at the backend and comes with multi-

user access support for managing stored models providing 

programmable access policies. Transactional access encourages 

parallel data usage while adhering to ACID (Atomicity, 

Consistency, Isolation, Durability) properties. Included revision 

control support through parallel evolution of the object graph 

retained in the repository allows for the tracing of model updates 

and the rolling back of committed changes. 

As shown in Figure 4 the application connects to the CDO 

repository to retrieve the data from the underlying databases in 

the format of a model. The data collection framework CactoScale 

uses CDO connected to a MySQL database for model storage and 

exposure. Due to the dynamic nature of virtual resources in the 

cloud the models have to be updated on a frequent basis, but can 

always be retrieved by the simulation framework CactoSim in a 

consistent state as assured by CDO. 

3.4 Data retrieval 
The simulation toolkit (CactoSim) is coupled with the data 

collection toolkit CactoScale enabling the provisioning of access 

to the most recent Cloud Infrastructure Model. This model 

represents the current cloud data centre state from the CDO 

Repository. CactoSim does not need to constantly stay connected 

with the CDO Repository. Instead, it can commit and update its 

copy of the model instance when necessary. Simulations are 

invoked significantly less frequently than the infrastructure state 

extracted by CactoScale. 

The sequence diagram in Figure 5 depicts one-way interaction 

between simulation and the CDO model storage. CactoSim calls 

the CDO storage by creating a session using the network access 

  

:CactoSim Load 
Current Model

getSession
:CDOSession

<<create>>openView()

view:CDOView

:Runtime Model 
Storage

:View Handler

getResource(physicalDCModel)

getResource(logicalDCModel)

<<close>>

 

Figure 5. Interaction between CactoSim and runtime model 

storage. 

credentials of the remote system to spawn a read-only view of the 

model storage. Once access is granted, the PDCM and LDCM are 

retrieved. From this point, the models can either be serialised 

locally into core XML Metadata Interchange (XMI) files or saved 

into the local EMF store. At the end of the transaction the 

connection is closed. Retrieved models are permanently available 

offline and allow for the repetition of simulation runs as well as 

the analysis of the differences and commonalities between 

alternative model versions.    

3.5 Usage within simulation 
CactoSim builds upon the basis of Palladio [7] and SimuLizar [6] 

to predict Quality of Service (QoS) properties of virtual machines 

deployed in a data centre environment. SimuLizar simulates the 

impact that adaptations such as redeployments of components or 

the reconfiguration of load balancer parameters have on the QoS 

properties of a component-based software system. The 

simulations are performed for instances of the Palladio 

Component Model (PCM) that describe the structure, deployment 

and usage of a component-based software system. 

All services provided to users by a deployed virtual machine 

remain hidden to the data centre operator. Palladio assumes 

detailed knowledge of the application’s architecture. This 

includes a description of provided and required services with the 

performance-relevant behaviour of their implementations.   

In order to bridge the gap between Palladio’s white box behaviour 

modelling for individual components of an application and the 

black box behaviour models provided by CactoScale, a model 

transformation is employed.  The translation between the fine-

grained Cloud Infrastructure Model and the PCM representation 

of the entities employed by CactoSim is handled using model 

transformations. In order to accomplish unidirectional model 

transformations, a model transformation specified in QVTo is 

used [24]. 

The biggest difference between the ResourceEnvironment model 

of Palladio and the PDCM of CactoScale lies in the level of 

information reflected in both models. In the CactoScale model 

there is an explicit nesting of racks and nodes, shown in Figure 6. 

 

 

Figure 6. CactoScale created PDCM example. 



 

Figure 7. PDCM transformed to Palladio 

ResourceEnvironment model. 

Nodes are distinguished into Compute Nodes and Network 

Attached Storage nodes. Palladio only knows generic 

ResourceContainers. ResourceContainers are used to model all 

hierarchies and nesting relationships in Palladio. Racks and both 

node types of the CactoScale model are mapped to these Resource 

Containers as shown in Figure 7. 

A cloud user does not usually supply a detailed deployed 

application model to a cloud provider thus making an application 

running in a virtual machine appear as black boxes or grey boxes 

at best. This lack of information about the virtual machine 

behaviour translates into the LDCM captured by CactoScale. The 

model contains only the information of the resources assigned to 

each virtual machine and their allocation to the nodes via the 

hypervisor. To bridge the gap between the CactoScale 

representation of the virtual layer and much more detailed 

software representation in PCM, transformation is used. Palladio 

application Repository and Usage models are created to reflect the 

resource demand according to the CactoScale resource utilisation 

measurements. The Palladio System model then links the 

application repository entities with the deployed virtual machines 

in the cloud data centre. In a similar fashion to the way a single 

virtual machine image can be used for many running virtual 

machines, the Palladio application Repository models can be used 

to represent many modelled virtual machines in the simulation. 

4. HIGH-LEVEL VALIDATION 
This section of the paper describes a testbed implementation of 

the analysis solution. Details of the testbed are outlined in Table 

1. It consists of sixteen compute nodes which can be used for the 

VM placement, Network Attached Storage (NAS) node and two 

management nodes where Cloud and Network controllers reside.  

The available testbed also provides a fair degree of heterogeneity 

given that the nodes host different CPU types (Intel architecture 

Haswell and Sandybridge), and the memory varies in capacity and 

type providing access to double data rate type three (DDR3) 

synchronous dynamic random-access memory (SDRAM) and 

newer DDR4 SDRAM. Furthermore, compute node local storage 

comprises of a mix of higher capacity slower Hard Disk Drives 

(HDDs) with much faster Solid State Drives (SSDs). 

There are sixty four virtual machines deployed in the data centre. 

In this experiment the same image is used and assigned the same 

amount of resources to each virtual machine which is one CPU 

core and 512 MB memory per virtual machine. Table 2 shows 

virtual machine allocation dispersion on the compute nodes. 

 

Table 1. Cloud testbed physical nodes. 

Node 

Type 

Resource 

Type 
Resource Description 

Cloud 

controller 

CPU 
2x Intel Xeon 6-Core Westmere 

(2.92 Ghz) 

Memory 48 GB DDR3 Memory 

Storage 2x 1TB SATA HDD, 7.2k rpm 

Network 

controller 

CPU 
2x Intel Xeon 6-Core Sandy Bridge 

(2.0 GHz) 

Memory 64 GB DDR3 Memory 

Storage 
2x 1TB SATA HDD, 7.2k rpm, 

RAID-1 

NAS node 

CPU 
2x Intel Xeon 6-Core Sandy Bridge 

(2.0 GHz) 

Memory 64 GB DDR3 Memory 

Storage 
2x 500GB SATA HDD, 7.2k rpm 

6x 2TB SATA HDD, 7.2k rpm 

Compute 

nodes 1-4 

CPU 
2x Intel 8-Core Sandy Bridge (2.6 

GHz) 

Memory 
Node 1,2 

Node 3,4 

64 GB DDR3  

128 GB DDR3  

Storage 2x 1TB SATA HDD, 7.2k rpm 

Compute 

nodes 5, 6 

CPU 
2x Intel 8-Core Sandy Bridge (2.6 

GHz) 

Memory 
Node 5 

Node 6 

64 GB DDR3  

128 GB DDR3  

Storage 2x 240GB SSD 

Compute 

nodes 7-

12 

CPU 
2x Intel 8-Core Sandy Bridge 

(2.6GHz) 

Memory 
Node 7-9 

Node 10-12 

64 GB DDR3  

128 GB DDR3  

Storage No local storage 

Compute 

nodes 13, 

14 

CPU 2x Intel Haswell 8-Core (2.4GHz) 

Memory 
Node 13 

Node 14 

64 GB DDR4  

128 GB DDR4  

Storage 2x 1TB SATA HDD, 7.2k rpm 

Compute 

nodes 15, 

16 

 

CPU 2x Intel Haswell 8-Core (2.4GHz) 

Memory 
Node 15 

Node 16 

64 GB DDR4  

128 GB DDR4   

Storage 2x 240GB SSD 

 

As expected, CactoScale collects data described in Table 1 and 

exposes it via the runtime model repository. Then, through the use 

of an import wizard within CactoSim, the CDO address path, 

credentials and the local file system folder location are provided. 

 

Table 2. Virtual machine allocation by node. 

Compute 

Node 

Number of 

VMs 

Compute 

Node 

Number of 

VMs 

1 2 9 4 

2 1 10 7 

3 7 11 0 

4 0 12 8 

5 1 13 4 

6 10 14 5 

7 5 15 1 

8 7 16 2 



 

Figure 8. Aggregated CPU utilisation simulation results 

The connection is then made and downloaded models are 

serialised locally in XMI format. Next, the simulation 

configuration attributes need to be setup amongst which are the 

path to newly retrieved cloud data centre models and the 

simulated time value. Currently, the behaviour of the VMs is not 

analysed yet by CactoScale and an artificial application behaviour 

model is used instead to demonstrate the automated transfer and 

usage within simulation. As a workaround for experimental 

purposes, a dummy CPU resource demand distribution with 10% 

probability of high, 30% medium high, 50% medium and 10% 

low CPU consumption per virtual machine is used. 

The simulation results presented in Figure 8 show average CPU 

utilisation prediction across all sixteen nodes. The nodes that host 

less virtual machines respectively have lower CPU utilisation 

compared to the nodes which are more saturated. 

The demonstrated simulation and data collection framework 

successfully supports the creation of a detailed model of a live 

cloud test bed and the execution of an “as-is” simulation typically 

within a few minutes. This significantly saves time and effort for 

a cloud data centre operator with respect to the initial simulation 

setup. The resulting models have the potential to be used in 

system failure “what if” analysis or the evaluation of optimisation 

technique recommendations.   

5. DISCUSSION  
The discussion in Section 5 goes deeper into explaining the 

advantages of and limitations to the proposed solution. Referring 

to Section 2, there numerous available tools for cloud monitoring 

and data collection, with some of these operating at the level of 

hardware aimed at the cloud operator, while others focus on a the 

level of cloud resource usage aimed at the cloud consumer. 

Additionally, solutions exist for cloud operation support, such as 

the features available in simulation toolkits. The aim of 

simulation is to accurately model cloud operations and 

components contained within. However there is very little 

information available or identified on work done towards the 

integration of the cloud data collection domain with the 

simulation modelling domain. This gap serves as the motivation 

for work presented in this paper. 

The solution described in this paper presents an overview of 

identified available technology that can be used for automatic 

cloud data centre model generation to support simulation. As the 

scale, heterogeneity and resulting complexity of hardware 

available within cloud datacentre increases, manual model 

creation by a simulation toolkit user becomes too difficult due to 

this increasing complexity. 

There are some limitations of proposed solution in its current 

form. CactoScale has been developed through specifically 

targeting a high degree of scalability by using the Chukwa [8]  

framework paired with HDFS [29] and a CDO Store [31]. This 

solution as thus far only been tested on a marginally small cloud 

data centre containing sixteen nodes. In addition, the meta model 

contains entries that cannot be monitored within all data centres. 

For example not all Power Supply Units (PSU) in the physical 

rack would have programmatically accessible energy 

consumption sensors.  

In order to run more accurate simulation experiments, the data 

collection framework needs to provide resource demand 

estimation for each virtual machine. This procedure requires the 

collection of resource usage traces, and offline analysis towards 

producing a behaviour model that can be used within the 

simulation. These are included in the next steps envisioned to 

complete the integration.  

The models exposed by CactoScale are also fit to use by other 

tools such as optimisation. This opens a possibility to also 

integrate the simulation toolkit with an optimisation toolkit, as 

they both potentially use the same data source. Future work 

includes investigating the pairing of simulation with optimisation 

through feeding models populated with the simulated data to the 

optimisation during simulation run time. This will enable 

optimisation strategies to be evaluated at design-time. 

While these limitations currently exist, the main advantage of 

coupling a data collection framework with a simulation 

framework lies in the rapid availability of the model from the live 

datacentre with minimal time needed, thereby playing a positive 

role in simulation tool adoption by the end user. In addition, 

CactoScale ensures that the Cloud Infrastructure Models stored in 

the Runtime Model Storage are consistent and represent the latest 

available live datacentre version. When CactoSim retrieves the 

Cloud Infrastructure Models from the repository, they are saved 

to the local Prediction Model Storage which is realised using an 

EMF Store [36]. These models then can be used for immediate 

simulation or further manipulation by the cloud operator. 

6. CONCLUSIONS AND FUTURE WORK 
In this paper, an automated method for conducting the otherwise 

difficult and time consuming system definition, data collection 

and model creation activities is presented. Given the potential 

scale of data centres, it is proposed that the creation of granular 

models of entire systems would not be feasible without such 

automation. As such, the methodology contributes significantly to 

the possibility of conducting full data centre simulation based 

analyses. 

Future work is focused towards integration with optimisation, 

scalability testing of the proposed solution and further validation 

of the outputted models against real use case data. 
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