Notos: Efficient Emulation of Wireless Sensor Networks
with Binary-to-Source Translation

Robert Sauter, Sascha Jungen, Richard Figura, and Pedro José Marrén
Networked Embedded Systems Group
University of Duisburg-Essen
Essen, Germany
robert.sauter@uni-due.de, sascha.jungen@uni-due.de,

richard.figura@uni-due.de, pjmarron@uni-due.de

ABSTRACT

Developing for wireless sensor networks is a challenging task
due to the severe resource constraints of the devices, the un-
certainties of the environment, and the distributed nature
of the system. Therefore, simulation is an essential tool for
developing systems and for evaluating and comparing pro-
tocols at scale in a reproducible manner. Cycle-accurate
emulation of sensor networks allows the execution of plat-
form target code and provides deep insight into the behav-
ior of the overall system including the important aspect of
energy consumption. However, the required fidelity incurs
a significant overhead and limits the size of the emulated
networks considerably. We investigate the use of binary-to-
source translation, where the machine code of an executable
for the target platform is transformed to source code for the
host platform and compiled as part of the emulator. Ad-
ditionally, as part of this transformation we perform static
analysis and optimize the generated code. We have imple-
mented our approach based on the well-established emulator
Avrora and show in our evaluation that this approach can
lead to significantly higher simulation speeds.

Categories and Subject Descriptors
1.6.3 [Simulation and Modelling]: Applications; D.4.8
[Operating Systems]: Performance—Simulation

General Terms
Performance, Measurement, Design

Keywords

Emulation, Simulation, Wireless Sensor Networks

1. INTRODUCTION

The high cost of real deployments and the need for repro-
ducibility and ease-of-use make simulation and emulation
important tools for research and development in the area
of wireless sensor networks. In contrast, the unreliability of

the wireless medium, the resource constraints of the hard-
ware, and the impact of the environment require the testing
and evaluation of new protocols and systems in testbeds
and experimental deployments. Therefore, cycle-accurate
emulation that allows the simulated execution of platform
target code including the application, the operating sys-
tem, and device drivers, is an important simulation method.
This simulation of the hardware itself facilitates the seam-
less transition from simulation, via testbeds, to deployments
and back for development and evaluation. Additionally, this
high-fidelity simulation provides detailed insight into the be-
havior and performance (including the important aspect of
energy consumption) of the software under test.

However, the fidelity leads to significant overhead to ensure
consistency and repeatability compared to more abstract
simulation approaches and tools that focus on the high-
level implementation of protocols building on existing com-
ponents and models for evaluation purposes. While there is
a significant body of work investigating the use of parallel
and distributed machines to increase emulator performance,
we focus on improving the core execution engine that is re-
sponsible for interpreting the individual instructions (e.g.,
an ‘add’ instruction) and updating the state of the simu-
lated hardware. Instead of a main loop that decodes and
interprets instructions, our approach adapts the simulator
itself by translating the binary for the target platform to
source code for the host platform of the simulator. This
source code is then compiled and integrated with the simu-
lator framework forming a dedicated adapted emulator for
the specified firmware. This binary-to-source translation re-
duces overhead at runtime and more importantly provides
the foundation for static analysis of the binary and further
adaptation of the generated code to move decisions from
runtime to generation time when possible.

Contribution and roadmap In this paper we provide a so-
lution that improves the performance of cycle-accurate em-
ulation by translating the binary for the target platform to
code integrated in the simulator. We discuss the problem
of cycle-accurate emulation of wireless sensor networks in
detail in Section 2 and related work in Section 6. Our con-
tribution in this paper is threefold.

In Section 3, we present our approach that focuses on the
core interpreter of the simulator. Instead of a core loop
decoding an instruction and executing the necessary code to

SIMUTOOLS 2015, August 24-26, Athens, Greece
Copyright © 2015 ICST
DOI 10.4108/eai.24-8-2015.2261070

transform the simulated state of the hardware, we translate
the target binary to the source language of the emulator
(in this case Java) and compile and integrate the source
into the emulator itself. Furthermore, this step provides the
foundation for static analysis of the code.

In Section 4, we discuss several optimizations based on the
static analysis that lead to further adaption of the generated
code to the binary. This includes techniques from compiler
construction and virtual machines using just-in-time compi-
lation.

Third in Section 5, we study the impact of binary-to-source
translation and the optimization techniques that build on
it. We show that the impact is significant for small and
medium networks but decreases with network size because
the overhead for synchronization and simulating communi-
cation increases compared to the time the simulator requires
for the actual execution of the program.

2. CYCLE-ACCURATE EMULATION

The development and evaluation of wireless sensor network
systems and protocols make use of a spectrum of settings
with regard to realism spanning the actual deployment on
the one end, simulation on the other end, and testbeds with
different levels of simplifications in between. Furthermore,
within the simulation realm, solutions with three different
abstraction levels exist. The highest abstraction level con-
tains mostly existing traditional tools like OMNeT++ [23]
and ns-2 [16] extended with support for WSN specific pro-
tocols and radio simulations. This abstraction level requires
the implementation of a new protocol in the simulator spe-
cific language but allows building on existing and well tested
components. Second, ‘same-source’ simulation allows the
implementation of new components in the language of the
operating system with compilation for the host CPU of the
simulator. This requires simulating OS components close to
the hardware (for example, a radio device driver) and con-
necting several instances via a simulated medium, but leaves
protocol and application implementations unchanged. With
TinyOS [15] and Contiki [2], at least two major research op-
erating systems in this field support this abstraction level
([14], [17]). Finally, cycle-accurate emulation simulates the
target hardware, i.e., the microcontroller, the radio, and pos-
sibly additional components of the node. In this case, the
same firmware binary that is run on the target platform is
loaded by the emulator and the complete software is inter-
preted and executed by the simulator, including the operat-
ing system and device drivers.

Besides the possibility to use well-tested existing models,
e.g., for the simulation of the wireless medium, higher per-
formance is the main advantage of traditional simulation
tools. However, the unreliability of hardware, software, and
especially the wireless medium as well as the impact of the
environment that are hard to simulate with high fidelity led
to the advent of testbeds and even real deployments as the
primary evaluation setting. While simulation is still used
as an evaluation tool, the primary focus is on supporting
the creation and further development of systems and pro-
tocols. Therefore, the use of the exact same software for
both testbeds/deployments and simulation while providing
the important simulation benefits of reproducibility, scal-

ability, and ease of use is the leading factor to use cycle-
accurate emulation of wireless sensor networks.

The core process of simulating the target CPU is relatively
simple: the simulator contains a model of the relevant parts,
for example the RAM and the registers. Each instruction in
the binary is interpreted and changes the associated state
in the simulator. The main challenges derive from the sim-
ulation of all parts of the microcontroller on the one hand
and the need to keep consistent and reproducible state for
a number of emulated nodes forming a simulated network
on the other hand. Therefore, each event triggered by the
emulated hardware — usually emulating an interrupt on the
hardware level — must be handled at the exact time in cy-
cles as indicated by the hardware model. Furthermore, these
events for one node can be induced by the emulation of the
other nodes of the network. The simulated execution engine
is, therefore, driven by the discrete event simulation method,
where an event queue contains the already scheduled events,
for example interrupts triggered by a hardware timer, that
impact the flow of interpreted instructions.

To increase the performance and exploit the inherent paral-
lelism in simulating a network of nodes, the emulator Avrora
[21] — on which our work builds — uses one thread per simu-
lated node. This requires synchronization of the threads to
ensure deterministic behavior, for example, when the recep-
tion of a message from another node must be simulated at
the correct global time with respect to the simulation of the
whole network.

3. BINARY-TO-SOURCE TRANSLATION

Our work focuses on the core interpreter of the emulator.
In the following, we will refer to ‘binary’ and ‘instructions’
when referring to information about the program-under-test
compiled for the target platform. We use the terms ‘code’
consisting of ‘statements’ and ‘expressions’ when reasoning
about the necessary operations on the host platform to em-
ulate the binary. For example the simulation of an ‘add’
instruction for two registers requires several statements that
do not only compute the result and store it in the simulated
state of the target register, but also change the state of sev-
eral simulated processor flags (‘carry’, etc.). Additionally,
these statements are surrounded by ‘housekeeping’, for ex-
ample checking the event queue and possibly changing the
hardware state or determining which instruction has to be
interpreted next.

Avrora already uses a technique that goes beyond a trivial
decode-interpret-advance loop: there is a class for each in-
struction variant that contains fields for the operands (e.g.,
indicating register 3 or a relative address) and the code nec-
essary to change the simulation state when interpreting the
instruction. The complete binary is decoded in one step
at the beginning of the simulation and the appropriate ob-
ject for each instruction is instantiated with the respective
operands and stored in an array at the corresponding ad-
dress. The emulator then uses these instances when execut-
ing a step during the simulation (c.f., Fig. 1).

Our approach transforms the binary into the source code
of a new Java class by translating each instruction into the
corresponding code and replacing expressions in the code

—{ Instructions }

ADC

rl: Register
r2: Register

v.visit (this)

{ Interpreter }—

LegacyInstr i = shared_instr[nextPC];

accept (v:VisitorInterface): void -‘_

i.accept(this);
cycles = cyclesConsumed;
Commit();

Visitor Interface

public void visit(LegacyInstr.ADC i) {
nextPC = pc + 2;

WDR

accept (v:VisitorInterface): void
v.visit (this)

int tmp_@ = getRegisterUnsigned(i.rl);
| int tmp_1 = getRegisterUnsigned(i.r2);

int tmp_2 = bit(C);

int tmp_3 = tmp_0 + tmp_1 + tmp_2;

Figure 1: Avrora Instruction Classes and Interpreter Loop

with the appropriate operands of the instruction. This class
is then compiled and loaded into the simulator to perform
the core executions on the simulated state of a node, which
eliminates part of the overhead of the interpreter. Addition-
ally, this step allows static code analysis and optimizations
of the generated code as described in the next section. In the
following discussion we differentiate between ‘compile time’
— the compilation of the binary for the target platform —,
‘runtime’ — the execution of the emulator —, and ‘generation
time’ — the phase where the binary is transformed to code
and included in the emulator.

While the basic transformation process is straight-forward
and the design of Avrora allows direct reuse of the source
code for each instruction when generating the code for the
binary, correct integration into the emulation requires ad-
ditional steps as well as do the constraints of the runtime
environment of the emulator (in this case Java). To simu-
late jumps, it must still be possible to continue execution at
each statement corresponding to the start of the code for an
instruction. This is handled by a ‘switch’ statement on the
value of the program counter. Because the runtime limits
the maximum method size to 64 kB of bytecode, the code
for a binary has to be split into several pieces. This second
hierarchy level performing a binary search for the correct
method for the current program counter is generated using
nested if-statements when transforming the binary. Besides
the maximum size of a method, some optimization methods
discussed in the next section work on sequences of instruc-
tions which impacts the optimal position for splitting the
code. Finally, additional code that checks the event queue
adds to the statements for each instruction handling the pure
simulated execution of an instruction.

3.1 Lazy Timer Evaluation

The frequency of taking the direct path from the code of
one instruction to another depends mostly on the number
of events generated for the event queue at runtime. Most
of the event types correspond to the simulation of hardware

interrupts, for example, the notification of the radio of an
incoming packet. The vast majority of events, however, is
generated to facilitate the ticks of the simulated hardware
timers. The simulated microcontroller has several configu-
ration settings determining the behavior of its timers. De-
pending on this configuration — usually performed by the
operating system — there are often just a few cycles between
each increment for one of the timers, which in turn results
in frequent ‘housekeeping’ operations between the code for
individual instructions.

To reduce the number of generated events, we use the fact
that the actual timer value at a given time usually has no rel-
evance on the program flow with the exception of two cases:
First, for the usual configuration, only certain values of the
timer — again configured by the operating system — trigger a
hardware interrupt, which requires the simulator to change
the program flow of the binary. Second, the simulated mi-
crocontroller allows reading the current value of the timer by
accessing a well-known address that instead of being backed
by RAM is used to access hardware timer. Similarly, access-
ing dedicated addresses performs the configuration of the
timer, which is already handled by the emulator and, for
example, changes the frequency of inserting events to speed
up the timer. We optimize this process by extending the
configuration routine with dedicated functionality to handle
the common configuration differently: instead of inserting
an event for each increment of the timer, the component
inserts events only when a hardware interrupt needs to be
simulated. Additionally, when the software accesses the cur-
rent value of the timer at runtime, the value is calculated
by taking into account the last time a hardware interrupt
was triggered, the configured frequency of the timer, and
potential overflows.

4. OPTIMIZATIONS

The translation process in the previous chapter provides the
foundation for additional optimizations based on static anal-
ysis of the binary. Our design includes an overall frame-

work where optimization steps can be added including util-
ity functions to reason about the code. Additionally, several
of the following optimizations consist of a generic part with
one or more concrete implementations. On the one hand,
they can be extended with additional implementations, for
example, additional code replacement strategies. On the
other hand, they provide a foundation for the implementa-
tion of comparable optimizations for other simulated hard-
ware platforms.

4.1 Static Evaluation of Conditions and Re-

moval of Runtime Checks

To simulate the behavior of the emulated hardware correctly,
some superficially simple operations require checking of con-
ditions and handling of special cases or border cases. The
most prevalent example is access to the RAM of the de-
vice. These operations require boundary checks to make
sure that the emulator only accepts valid addresses. Fur-
thermore, both reads and writes to certain memory regions
on the device do not simply read or change the value of a
byte in RAM, but instead trigger effects on other subsystems
of the micro controller. This includes components such as
ADCs, 1/O ports, and hardware timers. A write can, for
example, change the frequency of a hardware timer, which
requires the corresponding logic in the emulator to adapt.
Then again a read may actually trigger the delivery of a byte
from the simulated radio.

To correctly reflect the behavior of the hardware, these op-
erations are handled by utility functions of various complex-
ities. To remove unnecessary checks, we added alternative
dedicated versions of some of these functions that contain
optimized code paths. For example, if the target address of
a RAM access is known to be in a non-critical region, the
emulation code can be almost reduced to a simple array ac-
cess. Finally, if the utility function used at a certain point is
as trivial as an array access, the function definition is inlined
and the code contains the access directly.

While the individual savings are sometimes rather small,
i.e., mostly removing condition checks and the associated
branches, the frequency of the use of this function is so high
that the sum of the savings can be significant. We show
in the evaluation that — compared with the other optimiza-
tions — this technique has often the biggest impact on the
performance of the simulator.

4.2 Constant Folding and Constant Propaga-

tion of Immediates

The so-called immediates are constant operands of instruc-
tions. The simplest case is loading a register with a constant,
but they are for example also operands in jump instructions
— both absolute and relative. For our test programs, usually
around a quarter of the instructions use an immediate. Since
this value is known when code for a specific instruction is
generated, this knowledge is used to apply constant folding
and constant propagation: variables representing the imme-
diate operand are replaced with their value and expressions
are iteratively evaluated and in turn replaced by a constant
value if possible.

A special case of this optimization that applies to all instruc-

tions is the current instruction pointer. Since this value is
always the address of the current instruction, it can be con-
sistently replaced at generation time with its value and di-
rectly used, for example, when emulating jump instructions
or when incrementing at the transition to the code for the
subsequent instruction.

4.3 Peephole Optimization of Individual In-

structions

There are certain instruction/operand combinations that al-
low further reduction in the emulation code compared to the
constant folding approach discussed above. A somewhat fre-
quently occurring example is the use of the exclusive-or in-
struction where both operands use the same register to set
the register to zero. As with other arithmetic instructions,
the correct emulation does not only require the calculation
of the result but also the computation of the values of the
various registers of the simulated processor. However, in
the case of this instruction/operand combination and a few
others, the result as well as the value of the flags is already
known at generation time and the statements can be reduced
to simple assignments of constants.

4.4 Conditional Execution of Potentially Un-

necessary Code

For arithmetic and logical instructions, the code necessary to
calculate the resulting values of the simulated processor flags
often exceeds the code to compute the value for the target
register and, therefore, takes up a considerable amount of
computation of the emulator. If the subsequent instruction
also changes the values of a subset of the flags and does not
rely on some of them, we can generate optimized code for
the first instruction that omits the computation of unneces-
sary values. However, in general it is possible that after the
emulation of each instruction, the emulator has to handle
an event, for example, to generate a simulated interrupt. To
ensure consistency and correctness, in this case the values of
all simulated flags must be computed and stored. For this
reason, the generated code still contains the calculation of
all flags but moves them to a conditional block that is only
executed if events of the queue are ready to fire. In Fig. 2, we
show an example where an ‘add-with-carry’ (ADC) instruc-
tion is followed by a ‘subtract-immediate’ (SUBI) instruc-
tion. The left side shows the associated code of Avrora that
simulates the instruction execution. The right side shows
the optimized version generated by Notos where the ma-
jority of the statements necessary for the ADC instruction
are moved to a conditional block that is only executed if an
event is triggered before the subsequent SUBI instruction.

Aside from bookkeeping (for example, updating the instruc-
tion pointer), the code for an arithmetic or logical instruc-
tion can be divided into three parts: first, the values for
the operands (e.g., register values) are fetched and stored
in local temporary variables. Second, additional intermedi-
ate variables are calculated. Third, the destination operand
and the flags are assigned various computation results com-
bining these intermediate variables. The resulting code is
a sequence of assignments with expressions of varying com-
plexity. For example the ‘add-with-carry’ instruction uses 9
intermediate variables and comprises 15 statements.

public void visit(LegacyInstr.ADC i) {
nextPC = pc + 2;

int tmp_0 = getRegisterUnsigned(i.rl);
int tmp_1 = getRegisterUnsigned(i.r2);
int tmp_2 = bit(C);

int tmp_3 = tmp_0 + tmp_1 + tmp_2;

int tmp_4 = tmp_0 & 0x0000000F ;

int tmp_5 = tmp_1 & 0x0000000F ;
boolean tmp_6 = (tmp_0 & 128) != 0;
boolean tmp_7 = (tmp_1 & 128) != 0;
boolean tmp_8 = (tmp_3 & 128) != 0;
(tmp_4 + tmp_5 + tmp_2 & 16) != 0;
(tmp_3 & 256) != 0;

(tmp_3 & 128) != 0;

Low(tmp_3) == 0;

tmp_6 && tmp_7 && !tmp_8 || !tmp_6 && !tmp_7 && tmp_8;
=N I=V;

byte tmp_9 = Llow(tmp_3);
writeRegisterByte(i.rl, tmp_9);
cyclesConsumed++;

n<NzNOxT

}

public void visit(LegacyInstr.SUBI i) {
nextPC = pc + 2;
int tmp_0 = getRegisterByte(i.r1l);
int tmp_1 = i.imml;
int tmp_2 = 0;
int tmp_3 = tmp_0 - tmp_1 - tmp_2;
boolean tmp_4 = ((tmp_0 & 128) != 0);
boolean tmp_5 = ((tmp_1 & 128) != 0);
boolean tmp_6 ((tmp_3 & 128) != 0);
boolean tmp_7 = ((tmp_© & 8) != 0);
boolean tmp_8 = ((tmp_1 & 8) != 0);
boolean tmp_9 = ((tmp_3 & 8) != 0);

H = !tmp_7 && tmp_8 || tmp_8 && tmp_9 || tmp_9 && !tmp_7;
C = !tmp_4 && tmp_5 || tmp_5 && tmp_6 || tmp_6 && !tmp_4;
N = tmp_6;

Z = low(tmp_3) == 0;

V = tmp_4 && !tmp_5 &% !tmp_6 || !tmp_4 && tmp_5 && tmp_6;
S = (N 1= V);

byte tmp_10 = low(tmp_3);
writeRegisterByte(i.r1, tmp_10);
cyclesConsumed++;

nextPC = 14664 + 2;

tmpInt_@ = (sram[31] & Oxff);

tmpInt_1 = (sram[31] & Oxff);

tmpInt_2 = (C 2 1 : @);

tmpInt_3 = tmpInt_© + tmpInt_1 + tmpInt_2;

tmpByte_0 = ((byte)(tmpInt_3));
sram[31] = tmpByte_0;

if(!eventQueue.advanceIfNoEvent(1)) {
tmpInt_4 = tmpInt_0 & Ox0000000F ;
tmpInt_5 = tmpInt_1 & ©x0000000F ;
tmpBool_0 = (tmpInt_0 & 128) != 0;
tmpBool_1 = (tmpInt_1 & 128) != 0;
tmpBool_2 = (tmpInt_3 & 128) != 0;
= (tmpInt_4 + tmpInt_5 + tmpInt_2 & 16) != 0;
(tmpInt_3 & 256) != 0;
(tmpInt_3 & 128) != 0;
((byte) (tmpInt_3)) == 0;
tmpBool_© && tmpBool_ 1 && !tmpBool 2 ||
!tmpBool_0 && !tmpBool_1 && tmpBool_2;
S=NI=V;
eventQueue.advanceWithEvent(1);
if(!innerLoop) {
break;
}

<NZONzI

¥

nextPC = 14668 + 2;

tmpInt_0 = sram[31];

tmpInt_1 = (C 21 : 0);

tmpInt_2 = tmpInt_© - 253 - tmpInt_1;

tmpBool_0 ((tmpInt_o0 & 128) != 0);

tmpBool_1 ((tmpInt_2 & 128) != 0);

tmpBool_2 = ((tmpInt_0 & 8) != 0);

tmpBool_3 = ((tmpInt_2 & 8) != 0);

= ltmpBool_2 || tmpBool_3 || tmpBool_3 && !tmpBool_2;
ItmpBool_0@ || tmpBool_1 || tmpBool_1 && !tmpBool_0;
tmpBool_1;

((byte) (tmpInt_2)) == 0 && Z;

I'tmpBool_0 && tmpBool_1;

= (N I=V);

tmpByte_0 = ((byte)(tmpInt_2));

sram[31] = tmpByte_0;

nwon

n<NzNnzIT

Figure 2: Example for conditional execution of potentially unnecessary code

For this optimization, the generation algorithm performs the
following steps for two subsequent instructions A and B.
First it constructs an inverse dependency graph: a directed
acyclic graph (DAG) where each temporary variable of both
instructions is a node and there is a node for each flag used
in instruction A and for each flag used in instruction B.
For each assignment, the algorithm adds an edge each node
corresponding to a variable on the right to the node corre-
sponding to the variable on the left. The graph is cycle free
because a flag used in both instructions is represented by 2
dedicated nodes and otherwise the code could not compile
for the temporary variables. The algorithm marks all nodes
that represent flags that are not written by instruction B and
then removes all nodes reachable from these marked ones.
Finally, the algorithm has to filter out flags that are read
in instruction B before written in B. For this, the algorithm
checks for each flag read by B, if a path exists that reaches
a flag written by A without a write by B in between. If
such a path exists, the algorithm removes the node for the
flag and all nodes reachable from it. The final graph con-
tains the flags, that — assuming no simulation event occurs
between the instructions as discussed above — do not have
to be written in instruction A and also reachable from them
the intermediate variables that are only used to calculate
these.

This graph is used to split the code for instruction A into
two parts: the first part — consisting of the statements not
reflected in the remaining graph — always executes and the
second part with the statements left in the graph is moved
into an conditional block and only executes when the event
queue fires. As a final constraint, the algorithm only di-
vides the statements into two blocks if the number of state-
ments in the conditional block is over a threshold. This
constraint makes sure that the overhead by the condition
check itself, which involves access to the data structure of
the event queue, does not offset the possible savings.

4.5 Optimized Code Paths for Instruction Se-

quences

Following in the vein of the previous technique, the genera-
tor also optimizes code across multiple instructions. In this
case, the analyzer looks for instruction sequences that do not
contain any branches — so that the number of cycles spent
in this block is constant — and provides an alternative code
path. The first instruction of such a sequence checks if the
lookahead indicates that no event can occur for the neces-
sary number of cycles. If true, the emulator uses the code
path that combines all instructions in this sequence with re-
duced code to only produce the end results and necessary
intermediate steps.

Compared to the previous technique, these so-called short-
cuts have constraints both at generation time and at run
time that make them a much rarer occurrence than the op-
timization for subsequent instructions. Therefore, the fur-
ther reduction in executed code is usually distinct but not
extraordinary.

4.6 Replacing Common Instruction Sequences
with Manually Optimized Code

While the two previous optimization techniques that tackle
the reduction of executed code work automatically, we also
included a framework for providing manually optimized func-
tions to replace common instruction sequences. This targets
functions of the standard library, artifacts of compilers, and
operating system functionality. The framework supports the
definition of a sequence of instructions with placeholders for
operands, for example, to indicate that the same register
must be used at certain places, but the actual register num-
ber is not specified. This code is then replaced by another
manually defined code path where the placeholders are re-
placed by the actually used argument. This code path must
then calculate the result. Additionally, it must also provide
information about the number of cycles of the replaced code
— possibly depending on the input values at runtime. This
value is used to update the cycle counter at the end of the
calculation and, similarly to the previous approach, to ver-
ify beforehand if the sequence can be executed without an
event occurring in between.

As an example, we analyzed the instructions of the avr-
gece [20] standard library function for calculating an integer
division. Since the target platform does not support this
as a processor instruction, it takes between 193 and 209
cycles for the given implementation to calculate this. On the
host platform, however, this is usually a simple operation of
the CPU. Taking into account the further overhead of the
emulator, is was possible to achieve a 99% reduction from
around 2800 executed statements to around 20.

This example, however, also highlights the limitation of this
approach. While the savings can be significant when just
looking at the function itself, the function must be executed
frequently to have impact of the overall execution time and
most importantly this approach requires considerable man-
ual effort. In this case, the calculation of the result — both
registers and flags — was relatively simple, but the number
of cycles necessary depends on the number of 1 bits in the
result of the division, which was not obvious at first sight.

S. EVALUATION

In this section, we present the evaluation of the different
algorithms with respect to a number of varying factors. We
run all tests on desktop PCs with 2.8 GHz quad-core CPU
supporting simultaneous multithreading. The systems are
equipped with 8 GB of RAM and run a 64-bit Linux and a
64-bit Java virtual machine using 2 GB of RAM.

The bytecode approach with just-in-time compilation (JIT)
adopted by the Java virtual machine makes it hard to obtain
deterministic and predictable results in general. Especially,
the performance differs greatly between the beginning of the
execution and the state where most of the critical-path code

has been transformed by the JIT compiler. For simulations
that often run several minutes or hours, the performance of
this so-called steady state is the determining factor for evalu-
ating the performance of the simulator. Therefore, we follow
the guidelines for evaluating the steady state of Java-based
systems by Georges et al. [6] that recommend a warm-up
phase where the code is executed before the actual measure-
ments take place. Within the execution of a virtual machine,
first we run the simulation twice to trigger the JIT system.
Afterwards, we record the times of 5 sequential executions
of 300 simulated seconds presenting unless otherwise noted
the average, minimum, and maximum time of these tests in
seconds.

We omit the time necessary for generating and compiling
the class representing an application in the simulator. For
complex applications, this is a constant overhead of approx-
imately 20 seconds, which is significant for isolated short
simulation runs and can outweigh any benefit of our ap-
proach. To alleviate this overhead to some extent, we in-
cluded a caching mechanisms so that the simulator generates
a new class only when the binary changes and the generation
is a transparent process that does not require intervention
from the user. Therefore, the numbers presented provide
a better foundation for estimating the difference between
the approaches for long-running simulations and for running
multiple simulations of the same application, for example,
varying network topologies — both cases where the simulator
performance is a critical factor.

5.1 Factors

We vary the following factors in our evaluation: the execu-
tion model (Avrora and Notos), the Notos optimizations, the
simulated application, and the number of simulated nodes.

We use the following terms in the graphs to refer to different
execution models and enabled optimizations.

1. Avrora the baseline existing emulator.

2. noOpt Notos performing the binary-to-source trans-
lation as described in Section 3 without any further
optimizations

3. optUtility Notos with the optimization of utility func-
tions by static evaluation of conditions and removal of
runtime checks

4. optCond Notos with conditional execution of poten-
tially unnecessary code

5. noShortcuts Notos with all optimizations except short-
cuts

6. allOpt Notos with all optimizations

For the applications, we include a simple infinite loop of
multiplications as a simple test for the core execution engine.
Additionally, we evaluate two different applications from the
wireless sensor networks domain. As the foundation, we
use the TinyOS example application MViz that periodically
senses data and uses CTP [7] to forward them to a sink
and, therefore, is a good representative for a typical sensor

30 35
25 30 7
=
25
20
— 20
15 -
15 -+
10 =
I 10
) . I . 3 N]
- .
Avrora noopt optUtility optCond noShortcuts allOpt Avrora noopt optUtility optCond noShortcuts allOpt

(a) Infinite Loop

(b) MVizComplex

Figure 3: Single-node simulation performance (wall time in seconds)

network application. MViz does not use low power listening
by default. We evaluate a second variant ‘MVizComplex’
that enables LPL and additionally performs long-running
computations on the node, which represents advanced sensor
network applications that make use of in-network processing.

Besides evaluating the performance for the simulation of a
single node, we consider network sizes between 16 and 100
nodes.

5.2 Optimization Parameters

Before analyzing the performance of our approach with re-
spect to Avrora, we discuss here two significant parameters
of the translation process: the maximum method size for
the generated code and the minimum shortcut length for
the optimization discussed in Section 4.5.

As discussed in Section 3, the Java runtime puts a hard limit
on the maximum size of a method and a second hierarchy
level is required to transform the binary of larger applica-
tions. Since the second level requires more computations to
reach the correct code for a given address, our initial design
tried to maximum the size of each method. However, initial
tests included some outliers where the simulation of some ap-
plications resulted in comparably weak performance. This is
caused by implementation-defined limits on the complexity
of a method that prevents some stages of the JIT process
to take place. We analyzed the optimum method size with
several applications and found that a maximum of 45 kB is
safe while still limiting the overhead incurred by the second
hierarchy level.

When choosing optimized code paths for instruction sequences,

a tradeoff exists between the potential of skipping state-
ments at runtime on the one hand and on the other hand
the additional overhead for deciding this by inspecting the
event queue — which incurs every time this piece of the code
is executed. Furthermore, the likelihood of actually taking
a shortcut decreases with its length because the probabil-
ity that no event is queued for the requested time span de-
creases. Therefore, the optimization algorithm takes two
parameter into account: the minimum shortcut length, i.e.,
how many instructions are compressed and the minimum

reduction in size when taking the shortcut.

5.3 Single-Node Emulation Performance

In Fig. 3, we show the the results for emulating a single
node for the infinite loop application and the MVizCom-
plex application. While Notos with all optimizations out-
performs Avrora significantly in both cases, Notos with-
out optimizations is just 5% faster than Avrora. Since the
loop that requires almost all simulation time is rather small,
the improved performance when just simulating instructions
sequentially has little impact on the result, also because
Avrora uses an already optimized execution engine that de-
codes all instructions once beforehand. However, especially
the optimization of utility functions that, for example, stream-
lines the access to registers and RAM, significantly reduces
the runtime of Notos.

For the more representative MVizComplex application, No-
tos without optimizations performs already significantly bet-
ter than the baseline. Similarly to the infinite loop example,
the optimization of the utility functions has the most signifi-
cant impact as it influences the biggest part of the simulated
binary.

While showing significant gains in this case that highlights
the potential of this approach, these evaluation results are
of limited practical value and we focus in the following on
the performance when simulating small and big networks of
sensor nodes.

5.4 Network Emulation Performance

In Fig. 4, we show the result for a small network simulation
using 16 nodes. MViz is a good representative for an almost
pure network protocol application. While Notos performs
considerably better than Avrora in all cases, the difference
is significantly smaller than considering a single node and
the gain by the optimizations decreases, also due to the im-
pact of the lazy timer implementation on the synchroniza-
tion overhead. It is noteworthy, that the impact of the short-
cut optimization decreases in this case. This stems mostly
from the application, since this optimization works on in-
struction sequences that are more common in computation-

250 200
180 7
200 - 160 -
140 -
150 - 120 A
- _ - 100 - = = -
100 - - I 80 -
60 -
20 A
0 - T T T T T 0 - T T T T T
Avrora noopt optUtility optCond noShortcuts allOpt Avrora noopt optUtility optCond noShortcuts allOpt
(a) Mviz (b) MVizComplex
Figure 4: Network simulation performance for 16 nodes (wall time in seconds)
1000 — 2500
900 - = —
800 - — 2000 -
700 - — - -
600 - 1500 - - - -
500
400 1000 -
300
200 - 500 -
100
0 - T T T T T 0 - T T T T T
Avrora noopt optUtility optCond noShortcuts allOpt Avrora noopt optUtility optCond noShortcuts allOpt
(a) Mviz (b) MVizComplex

Figure 5: Network simulation performance for 100 nodes (wall time in seconds)

heavy applications compared to the branch-focused protocol
implementations.

MVizComplex combines the operation of a network proto-
col with additional computations as required, for example,
in civil engineering monitoring systems [4]. This provides
more potential for the optimizations which results in higher
increase in speed compared to the Notos baseline. Addi-
tionally, the shortcut optimization has more impact. Never-
theless, also in these cases the static analysis of conditions
and removal of runtime checks is the optimization with the
biggest impact.

Fig. 5 highlights the shift in simulation overhead from inter-
preting the instructions of the individual nodes to ensuring
consistency and handling the simulated communication in
a larger simulated network of in this case 100 nodes. For
MViz, while Notos with all optimizations still outperforms
Avrora by around 10%, the difference is just 1% for the
non-optimized version.

For MVizComplex the advantage is still much more pro-

nounced as Notos can take advantage of the higher ratio
between time spent by the emulator for interpreting the in-
structions of the target binary and the time spent for han-
dling communication and synchronization.

6. RELATED WORK

The advent of research in wireless sensor networks has been
accompanied by research on how to simulate them with high
fidelity and high performance spurred by the difficulty and
cost associated with the development and deployment of real
systems.

ATEMU (18] was one of the first cycle-accurate emulators
for wireless sensor networks. However, ATEMU does not
support parallel emulation and, thus, does not benefit from
multi processor or multi core systems. VMNet [27] enhances
ATEMU with support for host-networking but does not ad-
dress the scalability issue.

There are three major approaches to increase the speed of
wireless sensor network simulators. First, parallel emulation
uses a multithreaded approach to exploit multiple core or

CPUs in one system. Our work is based on Avrora [21][22], a
popular cycle-accurate emulator that supports parallel sim-
ulation using threads and contains a large number of func-
tions to support debugging and evaluation of sensor node
software. With our approach, we replace the core execu-
tion engine for the interpretation of the target platform in-
structions. PolarLite enhances the Avrora emulator with
an optimization that takes the sleep times into account [9]
and with support for using software state from the TinyOS
1.x MAC protocol at runtime to compute bigger lookaheads
[10]. With Boreas [19], we investigated alternative synchro-
nization methods. Both approaches focus on improving the
parallelism of the simulation and are largely orthogonal to
our approach of improving the speed of simulating one node
with binary-to-source translation.

A second approach uses distributed emulation to increase
the performance. DiSenS [26] uses a cluster of hosts to emu-
late a network. However, the performance is strongly depen-
dent on the topology as explained in the paper. LazySync
[11] aims at reducing the number of clock updates in a dis-
tributed emulation. WorldSens [5] is another distributed
emulator that uses an optimistic approach to increase effi-
ciency. In general, binary-to-source translation can be used
for any kind of emulation — sequential, parallel, and dis-
tributed — as it tackles the core execution engine that all
emulators must implement.

A third approach to improve the speed of simulation is to
increase the abstraction level. TOSSIM [14] provides ‘same
source’ simulation for TinyOS by replacing hardware depen-
dent parts with simulation components. This allows simu-
lating the final application code of TinyOS applications but
does not provide the fidelity, analysis details and operat-
ing system independence of cycle-accurate emulation. Time-
Tossim [13] extends TOSSIM with accurate timing by instru-
menting the code based on debugging information gained
from compiling for the target platform. This approach is
suitable if the replacement of part of the platform code by
simulation code and the provided accuracy is adequate for
a scenario. COOJA [17] provides cross-level simulation, i.e.,
the simulation of a network of nodes where the abstraction
levels of the nodes can range from emulation, over source
code simulation to nodes developed in Java. Emulation is ac-
complished by using MSPsim [3] and source code simulation
is coupled to the Contiki operating system. This approach
allows for example emulating only a part of a network while
the other nodes are simulated. This increases the speed but
also decreases the fidelity for the overall simulation. SenQ
[24] and [25] focus on the realism of simulation by combin-
ing a TOSSIM-like approach with an established simulation
platform to benefit from established physical layer models,
battery models and clock drift.

Binary-to-source translation and more generally code mor-
phing and just-in-time compilation have been successfully
used both in research and real-world applications. Widely
used examples for the latter include the emulators provided
by Mac OS for the transition from the 680x0 architecture
to PowerPC and later from PowerPC to x86. Just-in-time
compilation is a cornerstone for most recent programming
languages and runtimes such as Java and the .NET frame-
work. QEMU [1] transforms target binaries using small

pieces of code that implement so-called micro-instructions
for an abstract platform and uses the compilation of this
to generate a dynamic translator. In [12], the authors dis-
cuss optimizing a translation solution to target simpler em-
bedded processors. SPIRE [8] is just one recent example
investigating optimization techniques for binary translation
systems. Most approaches target running user mode appli-
cations from a different platform on a host operating system.
However, to guarantee reproducibility of the simulation of
a network, we target cycle-accurate emulation which con-
strains the possibility of optimizations. To some extent,
our approach to transform the binary to source code also
benefits from progress in this area via the evolution of the
Java virtual machine, similarly to how QEMU benefits from
progress of the optimizations performed by the compiler.

7. CONCLUSIONS AND FUTURE WORK

The evaluation highlights both the potential and the limits
of improving the performance of cycle-accurate emulation
of wireless sensor networks with binary-to-source transla-
tion. On the one hand, our approach that transforms a
binary for the target platform to source code for the host
platform of the simulator can increase the speed of the ac-
tual interpretation of the instructions considerably. More
importantly, this provides the foundation for static analy-
sis and binary-specific optimizations that can significantly
decrease the simulation time — for networks with 16 nodes,
by around 50%. On the other hand, the evaluation also
highlights the shift of the overhead from the interpretation
of the individual instructions to simulated communication
when simulating networks. With increasing network size,
the synchronization overhead increases and the impact of
our approach decreases. Furthermore, due to the constant
overhead for generating and compiling the source code for
the application-specific class — around 20 seconds for com-
plex applications —, our approach is not suitable for a single
short simulation that only runs a few minutes. If, however,
an application or protocol is evaluated with different set-
tings, for example, network sizes or more general network
topologies, even short simulations in sufficient numbers can
benefit from our approach as the overhead incurs only once.

The amount of optimizations performed depends on the sim-
ulated application. In general, our approach works best with
smaller number of branches which translates to applications
that spend more time for computation heavy tasks, for ex-
ample, performing in-network processing. Therefore, our
approach is well suited for simulations of small to medium
sized networks for applications that contain a noteworthy
amount of arithmetic instructions.

For the future, we are planning to evaluate extending the
overall optimization framework as well as adding more con-
crete implementations for the individual generic parts. An-
other interesting possibility is partially automating the pro-
cess of generating fast alternatives for common code se-
quences such as standard library functions and operating
system processes.

Acknowledgments

This work has been partially supported by the FP7 projects
SMARTKYE (smartkye.eu) and BESOS (besos-project.eu)
funded by the European Commission.

8.
1]

[10]

[11]

[12]

[13]

REFERENCES

F. Bellard. Qemu, a fast and portable dynamic
translator. In Proc. of the USENIX Annual Technical
Conf., ATEC ’05, Berkeley, CA, USA, 2005. USENIX
Association.

A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a
Lightweight and Flexible Operating System for Tiny
Networked Sensors. In Proc of the First IEEE
Workshop on Embedded Networked Sensors
(Emnets-I), Nov. 2004.

J. Eriksson, A. Dunkels, N. Finne, F. Osterlind, and
T. Voigt. Mspsim — an extensible simulator for
msp430-equipped sensor boards. In Proc. of the
European Conf. on Wireless Sensor Networks
(EWSN), Poster/Demo session, Jan. 2007.

K. Flouri, O. Saukh, R. Sauter, K. E. Jalsan,

R. Bischoff, J. Meyer, and G. Feltrin. A versatile
software architecture for civil structure monitoring
with wireless sensor networks. Smart Structures and
Systems, 10(3):25-46, Sept. 2012.

A. Fraboulet, G. Chelius, and E. Fleury. Worldsens:
development and prototyping tools for application
specific wireless sensors networks. In Proc. of the 6th
Intl. Conf. on Information processing in sensor
networks. ACM, 2007.

A. Georges, D. Buytaert, and L. Eeckhout.
Statistically rigorous java performance evaluation. In
Proc. of the 22nd Annual ACM SIGPLAN Conf. on
Object-oriented Programming Systems and
Applications, OOPSLA ’07, New York, NY, USA,
2007. ACM.

O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and
P. Levis. Collection tree protocol. In Proc of the 7th
ACM Conf. on Embedded Networked Sensor Systems
(SenSys’09). ACM, 2009.

N. Jia, C. Yang, J. Wang, D. Tong, and K. Wang.
Spire: Improving dynamic binary translation through
spc-indexed indirect branch redirecting. In Proc. of the
9th ACM SIGPLAN/SIGOPS Intl. Conf. on Virtual
FEzxecution Environments, VEE 13, New York, NY,
USA, 2013. ACM.

Z.-Y. Jin and R. Gupta. Improved distributed
simulation of sensor networks based on sensor node
sleep time. In Proc. of the 4th IEEFE Intl. Conf. on
Distributed Computing in Sensor Systems.
Springer-Verlag, 2008.

Z.-Y. Jin and R. Gupta. Improving the speed and
scalability of distributed simulations of sensor
networks. In Proc. of the 2009 Intl. Conf. on
Information Processing in Sensor Networks, IPSN ’09.
IEEE, 2009.

Z.-Y. Jin and R. Gupta. LazySync: A New
Synchronization Scheme for Distributed Simulation of
Sensor Networks. In Proc. of the 5th IEEE Intl. Conf.
on Distributed Computing in Sensor Systems.
Springer, 2009.

G. Kondoh and H. Komatsu. Dynamic binary
translation specialized for embedded systems. In Proc.
of the 6th ACM SIGPLAN/SIGOPS Intl. Conf. on
Virtual Execution Environments, VEE ’10, New York,
NY, USA, 2010. ACM.

O. Landsiedel, H. Alizai, and K. Wehrle. When timing

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]

24]

25]

[26]

27]

matters: Enabling time accurate and scalable
simulation of sensor network applications. In Proc. of
the 7th Intl. Conf. on Information processing in sensor
networks. IEEE, 2008.

P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM:
accurate and scalable simulation of entire TinyOS
applications. In Proc of the 1st Intl. Conf. on
Embedded networked sensor systems. ACM, 2003.

P. Levis, S. Madden, J. Polastre, R. Szewczyk,

K. Whitehouse, A. Woo, D. Gay, J. Hill, M. Welsh,
E. Brewer, and D. Culler. Tinyos: An operating
system for sensor networks. In Ambient Intelligence.
Springer Berlin Heidelberg, 2005.

The Network Simulator NS-2,
http://www.isi.edu/nsnam/ns.

F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and
T. Voigt. Cross-Level Sensor Network Simulation with
COOJA. In Proc. of the 31st Annual IEEE Conf. on
Local Computer Networks. IEEE, 2006.

J. Polley, D. Blazakis, J. McGee, D. Rusk, and J. S.
Baras. ATEMU: a fine-grained sensor network
simulator. In Proc. of the 1st Annual IEEE Comm.
Society Conf. on Sensor and Ad Hoc Communications
and Networks (SECON 2004), October 2004.

R. Sauter, R. Figura, O. Saukh, and P. J. Marrén.
Boreas: Efficient synchronization for scalable
emulation of sensor networks. In Proc. of the 8th
IEEE Intl. Conf. on Mobile Ad-hoc and Sensor
Systems (IEEE MASS 2011). Valencia, Spain, 2011.
R. M. Stallman et al. Using the GNU Compiler
Collection. Free Software Foundation, 2014.

B. L. Titzer, D. K. Lee, and J. Palsberg. Avrora:
scalable sensor network simulation with precise timing.
In Proc. of the 4th Intl. symposium on Information
processing in sensor networks. IEEE Press, 2005.

B. L. Titzer and J. Palsberg. Nonintrusive precision
instrumentation of microcontroller software. In Proc.
of the 2005 ACM SIGPLAN/SIGBED Conf. on
Languages, compilers, and tools for embedded systems,
LCTES ’05. ACM, 2005.

A. Varga and R. Hornig. An overview of the omnet++
simulation environment. In Proc. of the 1st Intl. Conf.
on Simulation Tools and Techniques for
Communications, Networks and Systems, Simutools
’08, Brussels, Belgium, 2008. ICST.

M. Varshney, D. Xu, M. Srivastava, and R. Bagrodia.
Senq: a scalable simulation and emulation
environment for sensor networks. In Proc. of the 6th
Intl. Conf. on Information processing in sensor
networks. ACM, 2007.

Y.-T. Wang and R. Bagrodia. Scalable emulation of
tinyos applications in heterogeneous network
scenarios. In Proc. of the 6th Intl. Conf. on Mobile
Adhoc and Sensor Systems. IEEE, 2009.

Y. Wen, R. Wolski, and G. Moore. Disens: scalable
distributed sensor network simulation. In Proc. of the
12th ACM SIGPLAN symposium on Principles and
practice of parallel programming. ACM, 2007.

H. Wu, Q. Luo, P. Zheng, and L. M. Ni. VMNet:
Realistic Emulation of Wireless Sensor Networks.
IEEE Transactions on Parallel and Distributed
Systems, 18(2), 2007.

