
On the Performance of General Cache Networks

N. Choungmo Fofack
Orange Labs, France

nicaise.choungmofofack@orange.com

M. Dehghan
Univ. Massachusetts Amherst

mdehghan@cs.umass.edu

D. Towsley
Univ. Massachusetts Amherst

towsley@cs.umass.edu

M. Badov
Univ. Massachusetts Amherst

mbadov@cs.umass.edu

D. L. Goeckel
Univ. Massachusetts Amherst

goeckel@ecs.umass.edu

ABSTRACT
The performance evaluation of cache networks has gain a
huge attention due to content-oriented delivery technologies.
If general network topologies are more realistic than hierar-
chical networks widely studied in the literature, their analy-
sis is significantly challenging. Existing models mainly focus
on trees where content custodians are located at the root
and the one-way child-to-parent request forwarding schema
is common. In this paper, we consider complex and irreg-
ular networks where requests may flow possibly in oppo-
site directions from/to several sources/destinations. More-
over, we assume that caches may run one of Time-To-Live
(TTL)-based policies recently introduced for content-centric
networks and modern Domain Name System [5]. We then
derive an analytical framework and a polynomial-time algo-
rithm that approximate accurately performance metrics of
arbitrary graph-based and heterogeneous TTL-based cache
networks. Simulations show that our simplified methodol-
ogy may accurately predict metrics of interest on networks of
caches running popular replacement algorithms (e.g. LRU,
FIFO, or Random) without restricting its scope of applica-
tion to this interesting use case. Unlike existing approaches,
ours scales as network and content catalog sizes increase.

Categories and Subject Descriptors
H.4 [Content-oriented Networking]: Performance

Keywords
Performance Analysis, Approximation Algorithms, Cache
Networks, LRU, FIFO, Random, Time-To-Live (TTL)

1. INTRODUCTION
Over the past years, isolated data repositories running pop-
ular cache replacement algorithms have received significant
attention. Nowadays, interest has shifted from caching sys-
tems in isolation to interconnected caches. The benefits of
the latter approach come from storing contents in caches
that are universally deployed or distributed across the net-

Minerva CODEC

VC P

Cache2 Server2

User1

Server1

User2

Cache1

DiskDisk

Figure 1: Tandem of two caches with bidirectional flows

work. This trend is mostly driven by the recent development
of content-oriented technologies [1, 12]. The purpose is to
adapt the network architecture to accommodate the current
content usage patterns (Video-on-Demand, User-generated
contents, etc.) with the potential to reduce congestion, im-
prove content delivery speed as networks increase in size.

Network performance goals can be achieved in different ways.
We focus on content distribution technologies [1] which al-
low on-demand caching through deployment of caches at
various locations. Briefly speaking, when a data item is first
requested, it is temporarily stored at some nodes and sub-
sequent requests are served directly from these local copies.
Therefore, users may experience a better quality of service.
Obviously, the benefits of such in-network caching choices
are highly tied to the performance of the underlying cache
networks. These performance metrics can be significantly
challenging to predict since the multi-cache systems that
arise from content-oriented architectures are more complex,
irregular, and heterogeneous. More precisely, these networks
may have arbitrary topologies and their nodes may show dif-
ferent features (policies, capacities, routing tables, etc.).

When requests of all files share the same routing topology
with content custodians of all files located at the same root
nodes, bidirectional flows as described in Fig. 1 cannot oc-
cur. In this very specific case, requests flow in the same
direction from child nodes to parents towards the root(s)
and the network topology reduces to all nodes belonging to
this routing topology or directed acyclic graph. We refer to
this case as the unique routing topology model. Instances of
this routing model have been studied in the literature on
networks with linear [14], tree [4, 13], polytree [6, 15], feed-
forward topologies [3, 5, 8]. However, their approaches rely
heavily on the unique routing topology model which is here a
tree/hierarchical structure and the one-way child-to-parent
forwarding schema of the network. This strong requirement

makes their models not applicable to more general cases.
Unlike, Algorithm 1 presented in Section 4 do not suffer
from this limitations.

As reported in [12], only a-NET model, introduced in [16],
addressed so far the performance of the tandem of two caches
shown in Fig. 1 where requests are routed in opposite direc-
tions. This basic network is the atom of arbitrary intercon-
nected caches. Unfortunately, [16, 12] report relative errors
of 15% and find that the violation of the Independent Ref-
erence Model (a.k.a. IRM or Poisson assumption) on miss
streams of caches and aggregated request processes in the
network is the major source of inaccuracy.

In this paper, we develop an analytical framework to as-
sess performance metrics of cache networks by leveraging the
concept of Time-To-Live (TTL)-based models recently intro-
duced in [5] on the one hand. On the other hand, we apply
two-moment matching techniques to fit hyper/shifted expo-
nential renewal processes to general request processes [17].
Our main results are
• an analytical and extensible framework that provides com-
putationally efficient two-moment approximations of filtered,
split, and merged request streams in the network;
• a polynomial-time algorithm to approximate metrics of in-
terest on large and heterogeneous graph-based networks;
• Little’s Law for caching systems and bounds of the TTL-
based cache characteristic time are derived;
• event-driven simulation results showing that our frame-
work is more accurate than the existing model [16].

This paper is organized as follows. In Section 2, we de-
scribe the system under analysis and state our problem. In
Section 3, we derive a Little’s Law-like and characteristic
equations enabling caching systems to be described via TTL-
based models. We then present our algorithm to calculate
characteristic times of isolated caches and our two-moment
matching techniques to characterize filtered, split, and ag-
gregated request streams. We describe our polynomial-time
algorithm for network analysis in Section 4, show its accu-
racy in Section 5, and summarize our findings in Section 6.

2. MODEL
In this section, we state our problem on our toy network
(Fig. 1). Then, we introduce the notation and assumptions
that are used in our cache network model.

2.1 Problem formulation
Two sets of files are requested on the tandem of two caches
of Fig. 1. User un requests the Kn files stored permanently
at server sn. User u1’s missed requests at cache 2 are routed
towards server s1 through cache 1. The overall request ar-
rival process at cache 1 is formed by (well-known) exogenous
requests coming from user u2 and unknown miss processes of
cache 2 and vice versa. Consequently, states of both caches
become dependent. This would not occur if both servers
were located at cache 2 as considered in [3, 4, 6, 13, 14, 15].
Therefore, these existing models are limited since overall re-
quest processes at both caches are unknown and the strong
assumptions (i.e. tree-based structure with content custodi-
ans at located at the root and the one-way child-to-parent
request forwarding schema in the network) required by their
cache-by-cache iterative models do not hold.

2.2 Network model
Let G = (V,E) be the graph representing a general and
heterogeneous cache network, V = {v1, . . . , vN} the set of
caches, and E ⊆ V × V the set of connections between
caches. Additionally, the file catalog is denoted by F =
{f1, . . . , fK}. Each file is stored permanently at one or more
public servers attached to nodes in the network and there is
at least one path between each pair of cache–server.
Requests arrive exogenously and directly from users to some
of the nodes {vn ∈ V } in this system. When a request for
file fi arrives at a cache, it generates a cache hit if the file
is located in the cache and a miss otherwise. In the latter
case, the request is forwarded to other caches in the network
based on the routing table at each cache, until the file is lo-
cated in a cache or at the server storing the file. Then the
file is forwarded along the reverse path taken by the request,
and stored at each cache along the way. If the cache is full
when a miss occurs, one of the files in the cache is selected
based on an eviction policy to make room for the new file.

2.3 Workload model
We denote by Rn,i = {tk(n, i)}k≥0 the overall request pro-
cess of file fi at cache vn where tk(n, i) is the arrival instant
of the k+1-th request. Rn,i is formed by the superposition of
an exogenous request process En,i (generated by local users
of cache n), if any, and the endogenous request processes
(generated by misses of other caches connected to cache n).
Let λn,i be the rate of exogenous arrivals at cache vn, if any,
and Λn,i the intensity of Rn,i. In this paper, we assume that

Assumption 1 (Renewal). Exogenous request processes
{En,i, ∀n, i} are renewal processes. Moreover, {En,i, ∀i} are
independent at cache n.

At cache vn and for file fi, we denote by Xn,i the generic
inter-arrival time of request in the process Rn,i, Fn,i(t) =
P (Xn,i < t) its Cumulative Distribution Function (CDF),

F̂n,i(t) the CDF of its survival time, Nn,i(t) the count-
ing process, Rn,i(t) = E[Nn,i(t)] the Renewal Function as-
sociated to Fn,i(t), and F ∗

n,i(s) = E[e−sXn,i] its Laplace-
Stieltjes Transform (LST) for all t ≥ 0 and s ≥ 0.

2.4 Cache model
In this work, nodes of our network are endowed with a cache
running a replacement algorithm that can be described with
Renewing or Non-renewing TTL-based models introduced
in [6] and [15] respectively. The renewing TTL-based model
assigns a random value to the timer T1 of a file at cache miss
instant t0 and later redraws this timer Tk at each cache hit
instant tk−1 as shown in Fig. 2(a). The non-renewing TTL-
based model sets a random value to the timer T1 only at
cache miss instant t0 as shown in Fig. 2(b).
TTL-based models are used to describe space-driven policies
(like LRU as shown in Fig. 2(a), FIFO/RND as shown in
Fig. 2(b) [4, 10, 13]), time-based policies (like DNS [11],
modern-DNS [15]), and space-time policies (like Pra-TTL
caches [6], Amazon ElastiCache and Squid web cache [3]).

2.5 Other considerations
As previous work, we are interested by the hit probability
Hn,i (resp. the occupancy On,i), defined as the probability

hit miss

t0
time

m1

Xk
tk. . .t1

X1

m0

tk−1

inter-miss time Y

T1

T2

Tkdata in cache
sojourn time Q

(a) Renewing TTL model

hit miss

. . .

m2

Z hits

.

timet0 t1 tZ−1 tZ

data in cache data in cache

Q = T2sojourn time Q = T1

X1 XZ XZ+1

m0 m1

inter-miss time Y

(b) Non-renewing TTL model

Figure 2: Behaviour of a file in the cache.

that file fi is in cache vn at request instants {tk(n, i)}k≥0

(resp. at any time instant t). The global (or average) hit
probability Hn and the Miss Probability Ratio MPRn be-
tween predictions of our approximation and simulation re-
sults at cache vn are also calculated [16].
We assume that all files have the same size [16] or can be di-
vided in small chunks of identical size [10]. Hence we express
the cache size in terms of the number of files/chunks it can
hold at any given moment. We also assume that files become
available at cache vn once at miss instants {mn,l, l ≥ 0}.

3. SINGLE CACHE FRAMEWORK
In this section, we derive new exact results on caches. We
then revisit the notion of characteristic time, generalize the
concept to caching systems described by TTL-based models,
and address operations that modify request streams.

3.1 On the steady state of isolated caches
For readability, we omit the subscript n that refers to the
cache label. Let Ii(t) be a binary random variable indicating
that file fi is in the cache at time t. Assume the limit Ii =
limt↑∞ Ii(t) exists. Since there is a copy of fi or not in the
cache at any time depending on whether Ii = 1 or 0, the
occupancy of file fi in the cache is calculated as it follows
Oi = P (Ii = 1) = E[Ii]. Note that Oi denotes the expected

number of copies of file i in the cache. Let I =
∑K

i=1 Ii be
the total number of files in the cache at any time and Qi

the sojourn time of file fi. For all caching systems, metrics
of interest are related to the sojourn time of the file in the
cache as follows.

Lemma 1 (Little’s Law). For caching systems, the
metrics of interest and expected sojourn time are related by

Oi = Λi(1−Hi)× E[Qi], ∀ fi. (1)

Proof. By applying Little’s law, (1) is established as fol-
lows. First, we note that the expected number of copies for
file fi in a cache is Oi. Second, the rate at which file fi

enters the cache is the miss rate Λi × (1 − Hi). Third, the
expected time that file fi spends in the cache is E[Qi].

Unlike capacity-driven policies, the number of files cached
using expiration-based policies is not bounded in principle.
However, practical considerations require to not exceed a
certain memory occupation level C. The following result
provides conditions for the latter to hold.

Lemma 2 (Characteristic Equations). For caching
systems, the total number of files in the cache at steady state
I equals the cache capacity C almost surely if and only if

K∑
i=1

Op
i = C, p = 1, 2. (2)

Proof. Assuming (2), we show that E[I] = C by noting

that
∑K

i=1 Oi =
∑K

i=1 E[Ii] = E[I]. Then, Var[I] = 0 since

Var[I] =
∑K

i=1 Var[Ii] =
∑K

i=1 Oi − ∑K
i=1 O

2
i . It follows

that P
(|I − E[I]| ≥ η2

) ≤ Var[I]

η2 = 0, ∀η > 0, thanks to

Chebychev’s inequality. Now if I = C almost surely, then
P (|I − C| ≥ η) = 0, ∀η > 0. By calculating the first two
moments of I with the condition {|I − C| ≥ η}, one can
easily show that (2) holds necessarily .

Remark 1 (Che approximation [4, 13]). For capacity-
driven policies (such as FIFO, LRU, RND, and variants [13]),
the total number of files in the cache at steady state is con-
stant I = C and

∑K
i=1 Oi = C is necessary and sufficient.

For general TTL models, there are several ways to choose
per-file timer distributions {Ti(t) = P (Ti < t), ∀fi} such
that (2) holds. Here are three possible choices:
• Cache Characteristic Distribution. Here, files have
the same TTL distribution Ti(t) = T (t), ∀fi character-
ized its mean T = E[Ti], ∀fi solution of (2) with p = 1.
Our cache characteristic distribution for general TTL-based
models is consistent with Che’s approximation [4, 10, 13]
for capacity-driven policies where all files in the cache have
(approximately) the same TTL distribution T (t) which de-
pends on its mean only. [13] showed ingeniously that T (t) is
approximately deterministic for LRU/FIFO caches (i.e. Ti ≈
E[Ti] ≈ T, ∀fi) and exponential for RND caches (i.e. Ti is
exponentially distributed with mean E[Ti] ≈ T, ∀fi).
• Cache Characteristic Moments. In this case, per-file
TTL distributions are no more identical as in the previous
case, but they have identical first two moments E[Ti] = T
and Var[Ti] = σ2, ∀fi solutions of (2) with p = 1 and 2.
• Cache Characteristic Time. This case is stated as

Assumption 2 (Characteristic Time). TTLs have
the same mean E[Ti] = T , ∀fi and (2) holds with p = 1.

Assumption 2 allows two different files, say i and j, to be
cached using two different TTL distributions Ti(t) and Tj(t).
Given that only E[Ti] = T for all files fi, per-file optimal
TTL distributions can be set according to per-file request
processes as proved in [9, Prop. 3.4] and [15, Prop. 4].
Assumption 2 is more general than Che’s approximation
(which is only a particular capacity-constrained TTL-based
cache model with identically distributed per-file TTLs). In
general, the characteristic time T in TTL-based cache mod-
els may be defined even with different per-file TTL distribu-
tions {Ti(t), ∀fi}. Its value T is bounded as follows.

Proposition 1 (Bounds). Under Assumption 2, the
characteristic time T = E[Ti], ∀fi is bounded by

Tmin =
C

Λ
≤ T ≤ Tmax =

C

Λ×M
(3)

where M =
∑K

i=1
Λi(1−Hi)

Λ
is the average miss probability

and Λ =
∑K

i=1 Λi is the total rate on the cache.

Proof. From their definitions, Qi and Ti are stochasti-
cally ordered as follows Qi ≥ Ti. By taking the expectation
on the latter inequality and then replacing E[Ti] by the same
constant T , we obtain E[Qi] ≥ T, ∀fi. Using the latter in-
equality in Lemma 1, we obtain Oi ≥ Λi(1 − Hi)T, ∀fi.
Since ΛiE[Ti] is the expected number of copies of file fi re-
quested within the time interval E[Ti] = T and Oi is the
expected number of copies of file fi in the cache, it follows
that Oi ≤ ΛiT, ∀fi. Applying (2) in Lemma 2 with p = 1,
bounds of T are obtained as in (3).

Remark 2 (Stationary requests). Proofs of Lemmas
1 and 2 and Proposition 1 do not require Assumption 1, but
stationarity and ergodicity of request processes only.

3.2 Metrics of interest and characteristic time
In this section, we present metrics of interest and our char-
acteristic time approximation (CTA) on isolated caches.
We consider that request streams are described by hyper
or shifted-exponential renewal processes based on the value
of the square coefficient of variation (c2v) of inter-request
times [17]. When c2v,i ≥ 1, Fi(t) is a hyper-exponential CDF

i.e. Fi(t) = 1 − (p1e
−θ1t + p2e

−θ2t), p1 + p2 = 1, t ≥ 0,
p1θ

−1
1 = p2θ

−1
2 ; otherwise, it is a shifted exponential CDF

i.e. Fi(t) = 1− e−θ(t−τ), t ≥ τ .
It is known from [6, 15] that metrics of interest of file fi
in non-renewing (resp. renewing) TTL-based cache models

are given by Hi = E[Ri(Ti)]
1+E[Ri(Ti)]

(resp. Hi = E [Fi(Ti)]) and

Oi =
ΛiE[Ti]

1+E[Ri(Ti)]
(resp. Oi = E

[
F̂i(Ti)

]
). We derive explicit

formulas for hyper/shifted-exponential renewal request pro-
cesses in our technical report [7, Sect.4].

The value of T is approximated using a novel technique de-
scribed in Algorithm 1. Its convergence on isolated caches
is studied as follows. Thanks to Lemma 2, the characteristic
time T = E[Ti], ∀fi and per-file TTLs {Ti, fi ∈ F} satisfy

C =

K∑
i=1

ΛiE[Ti]

1 + E [Ri(Ti)]
and C =

K∑
i=1

E
[
F̂i(Ti)

]
(4)

for non-renewing and renewing TTL-based models respec-
tively. Under Assumption 2, we apply Jensen’s inequality
and show that

∑K
i=1 Oi ≥ ∑K

i=1
ΛiT

1+Ri(T)
for non-renewing

TTL models since Ri(t) is a concave function when Fi(t) is
concave. It is easy to check that the hyper/shifted-exponential
CDFs are indeed concave functions. Since (4) holds, it

follows that
∑K

i=1
ΛiT

1+Ri(T)
≤ C. For renewing TTL-based

models, we rely on similar arguments. Thanks to Assump-
tion 2 and Jensen’s inequality,

∑K
i=1 Oi ≤ ∑K

i=1 F̂i(T) since

F̂i(t) is a concave function. However, it follows from (4) that∑K
i=1 F̂i(T) ≥ C. Let us denote by φ(T) = C−∑K

i=1
ΛiT

1+Ri(T)

(resp. φ(T) = C −∑K
i=1 F̂i(T)) in the case of non-renewing

(resp. renewing) TTL based models. The function φ(T)
is strictly decreasing, twice continuously differentiable, and
the root is unique and simple (multiplicity is one). Thanks
to Proposition 1, the zero of φ(T) belongs to [C

Λ
;∞). Algo-

rithm 1 implements the secant method to approximate the
zero of φ(T) with the sequence:

∀I ≥ 0, T (0) = C
Λ

and T (I+1) = T (I) + T (I)−0

φ(T (I))−φ(0)
φ(T (I)).

Since T (0) is tight lower bound (and thus a good estimate
of T) and φ(T) is strictly decreasing (and not wiggly) in

[T (0);∞), it is known that the convergence of the secant
method (and thus Algorithm 1) is superlinear with an order

of convergence equal to the golden ratio 1+
√

5
2

.

Remark 3 (Quadratic convergence). Algorithm 1
converges quadratically if Newton’s method is implemented.
This result holds also for general and concave CDF Fi(t).

3.3 Cache network operations
Exact characterizations of miss, split, and aggregated re-
quest processes exist, but they are too complex and compu-
tationally expensive for practical interest [3, 5, 6, 14, 15].
Hence, for each cache operation we calculate only the first
two moments of inter-request times in the resulting process
and we use a two-moment matching technique to fit them
to hyper/shifted-exponential renewal processes [17].

3.3.1 Filtered request streams (Miss process)
For non-renewing (resp. renewing) TTL-based cache mod-
els, the two first moments of inter-miss times of file fi are

E[Yi] =
E[Xi]

(1+L∗
i (0))

−1 and E[Y 2
i] =

E[X2
i]

(1+L∗
i (0))

−1−2E[Xi](L
∗
i)

′(0)

(resp. E[Yi] =
E[Xi]

(1−L∗
i (0))

and E[Y 2
i] =

E[X2
i]

(1−L∗
i (0))

− 2E[Xi](L
∗
i)

′(0)
(1−L∗

i (0))
2)

where explicit formulas of L∗
i (s) =

∫∞
0

e−st(1−Ti(t))dRi(t)

(resp. L∗
i (s) =

∫∞
0

e−st(1 − Ti(t))dFi(t).) The LSTs L∗
i (s)

take simple expressions when requests are described by hy-
per/shifted exponential renewal processes previously intro-
duced. One can easily check that our closed-form expres-
sions of E[Yi] and E[Y 2

i] are consistent with the formulas
derived by Melazzi et al. [14] in the specific case where TTLs
are constant (and not random variables as generally assumed
in this paper) and always redrawn at cache hit (and thus
limited to the model described in Fig. 2(a).)

3.3.2 Split request streams (Routing departures)
In this section, we consider that a cache may route its missed
requests towards J possible caches or destinations. Our
aim is to describe (i.e. calculated the two first moments
of) the sequence of requests that are forwarded to the j-
th destination. Existing works [16, 9, 15, 3] consider that
this request forwarding operation is memoryless and they
model the splitting process by a Bernoulli process. How-
ever, several destinations are often allowed within more real-
istic networks to enable load balancing or congestion aware-
ness based on a recent history. We therefore propose to
model this request splitting operation by using a discrete
time Markov chain process {ξml , l ≥ 0} on a state space
{1, 2, . . . , J} such that requests occurring at miss instants
{ml, l ≥ 0} are sent to the j-th destination if ξml = j.
Further, we assume that the Markov chain {ξml , l ≥ 0} is
lumpable and without loss of generality we characterize the
sequence of requests sent to the destination labelled 1. First,

the J states of {ξml , l ≥ 0} are lumped into two states I =
{1} and O = {2, . . . , J}. Second, we consider the result-
ing two-state Markov chain {ξml = I or O, l ≥ 0} and its
transition probabilities rI,I = P (ξml+1 = I|ξml = I) and
rO,I = P (ξml+1 = I|ξml = O)). Its stationary distribution

is rI = P (ξml = I) =
rO,I

1+rO,I−rI,I
. The first two moments of

inter-request times Yi→1 of file fi at destination 1 are related
to those of the original process.

E [Yi→1] =
E[Yi]
rI

and E
[
Y 2
i→1

]
=

E[Y 2
i]

rI
+ 2(1−rI)E[Yi]

2

rIrO,I
.

3.3.3 Aggregated request streams (Routing arrivals)
In this section, we consider that a cache may be fed by re-
quests originating from several sources (e.g. exogenous re-
quests sent by its local users, and the endogenous missed
requests forwarded by other caches). Our goal is to char-
acterize the two first moments of inter-request times in the
overall arrival process. It is known from [4, 6, 15, 3] that
the exact characterization of this aggregated process may be
significantly complex and [16, 13] showed that the Poisson
assumption is source of inaccuracy. Hereafter, we describe a
computationally-efficient and accurate methodology to ap-
proximate this superposed process. Without loss of gener-
ality, we consider that requests arrive at a cache from J
sources labelled j = 1, 2, . . . , J . Let E[Xi,j] and E

[
X2

i,j

]
be the first and second moment of inter-request times of
source j. If the calculation of the first moment of inter-
arrival times E[Xi] of requests for file fi is straightforward

E[Xi] =
(∑J

j=1 E[Xi,j]
−1

)−1

, we propose a new formula to

approximate the second moment E[X2
i] in the aggregated

process. E[X2
i] = 1 + c2iE[Xi]

2 where

c2i = wic
2
a+(1−wi)c

2
p, c2a =

J∑
j=1

E[Xi]
E[Xi,j]

c2i,j , c2p = 1, (5)

c2i,j = E
[
X2

i,j

]
/E[Xi,j]

2 − 1, and the per-file weight wi is

w−1
i = 1 +

(
1− C×E[Xi]

−1
∑K

i=1 E[Xi]−1

)2
[

J∑
j=1

(
E[Xi]
E[Xi,j]

)2
]−1

(6)

Theoretical details of our aggregated process approximation
are provided in our technical report [7, Sect.5.1.3].

4. CACHE NETWORK APPROXIMATION
In this section, we extend our single cache framework to ap-
proximate performance metrics of heterogeneous cache net-
works with arbitrary topology. First, we define the notion of
routing topology. We then describe our cache network algo-
rithm (CNA) to handle general networks where bidirectional
flows may occur in presence of multiple routing topologies.

4.1 Case of multiple routing topologies
The routing topology of a file refers to the subset of nodes
that receive/exchange requests of that file. In this paper,
we consider that requests of each file are routed as a Di-
rected Acyclic Graph (DAG) built on top of the arbitrary
network topology. In the following, the terms DAG and
routing topology are used equivalently.

In Fig. 3 for instance, two classes F1 and F2 of content items
are shown in green and blue respectively. Content items of
F1 are stored permanently at the server connected to node

v4
v5

v2

v3

v1

Disk

Disk

Disk

Disk

Disk

Figure 3: Two routing topologies and bidirectional flows.

v5 and their requests are routed on the tree (displayed in
blue) while those of class F2 are permanently available at
two different servers and their requests are routed on the
polytree (displayed in green). Requests of items of classes F1

and F2 are moving in opposite directions (or equivalently it
exists a bidirectional flow) between nodes v3 and v4. Hence,
states of caches 3 and 4 are dependent. Their TTLs T3

and T4 are coupled and solutions of a system of equations
(Cf. Lemma 2). Instances of such systems of equations are
available in our technical report [7, Eq.(15)] for more details.

Our algorithm to tackle this issue is described as follows.
• Input: network topology G(V,E) of size N = |V | , cache
neighbours N (n) ⊆ V , policies Pn and sizes Cn, file cata-
logue F of size K = |F|, routing topologies {DAGi, fi ∈ F},
exogenous requests {rate λn,i and scv c2n,i, vn ∈ V , fi ∈ F}.
• Output: characteristic time Tn, average miss probabil-
ity Mn, per-file metrics of interest {hit probability Hn,i and
occupancy On,i}, per-file aggregated request process {rate
Λn,i and scv c2X,n,i}, per-file miss request process {rate νn,i

and scv c2Y,n,i} at each cache vn ∈ V .
• Procedure: Algorithm 1 starts with an initialization step
where all caches are assumed to have miss probabilities of
one. The consequence is that the miss process of a node
is initialized by its aggregated arrival processes. Then the
characteristic times are also initialized to their lower bound.
After, this initialization step, Algorithm 1 updates the miss
processes of the caches using the initial value of the TTLs.
Then it recalculates the aggregated streams; finally, it up-
dates the TTL values at each cache. Algorithm 1 halts when
all TTL values at all nodes of the network have converged.

4.2 Practical concerns on Algorithm 1
In this section, we show the convergence of our cache net-
work algorithm, its polynomial-time complexity, and its prop-
erties for large scale implementations.
On the convergence. Intuitively, Algorithm 1 converges
since sequences of TTL values are increasing and bounded
(see Proposition 1). More formally, Algorithm 1 finds the

root
T = (T1, . . . , TN) of the system of equations

Φ (
τ) = (Φ1 (
τ) , . . . ,ΦN (
τ)) =
0, where
Φ(.) : RN → R

N ,

τ = (τ1, . . . , τN) is the characteristic time vector, and

Φn(
τ) = Cn − ∑K
i=1

Λn,iτn
1+Rn,i(τn)

(resp. Cn − ∑K
i=1 F̂n,i(τn))

for non-renewing (resp. renewing) TTL based models. Note
that the dependence of Φn(
τ) on the characteristic times τm,
(m
= n, vm ∈ V) is strongly embedded in the aggregated
request arrival process at cache vn via the CDFs {Fn,i(.)}.
Since ∇Φn(
τ) < 0 at ∀
τ > 0 and ∂2Φn(�τ)

∂τ2
n

> 0, Algorithm 1

calculates updates of the characteristic time T
(I)
n at cache

Algorithm 1: CNA on arbitrary graph G(V,E)

1 T
(0)
n ← 0; I ← 1;

2 for each node vn ∈ V do
3 Initialize per-file miss probabilities to one
4 Initialize per-file miss and aggregate processes
5 for each file fi ∈ F such that vn ∈ DAGi do
6 if vn is an edge of DAGi then
7 Set aggregate streams to exogenous process
8 else
9 Merge the file request streams (Sect. 3.3.3) if

multiple sources: ∀vl ∈ DAGi & vn ∈ N (l)
10 end
11 Set miss streams to aggregated processes
12 Split the file miss process (Sect. 3.3.2) if multiple

destinations: ∀vm ∈ DAGi ∩N (n)
13 end
14 Initialize the characteristic time (Prop. 1)

15 Λ
(1)
n ← ∑K

i=1 Λ
(1)
n,i; T

(1)
n ← Cn/Λ

(1)
n ;

16 end

17 while
√

1
N

∑N
n=1(T

(I)
n − T

(I−1)
n)2 > ε do

18 I ← I + 1;
19 for each node vn ∈ V do
20 Update per-file miss and aggregate processes
21 for each file fi ∈ F such that vn ∈ DAGi do
22 Calculate the file miss process (Sect. 3.3.1)
23 Split the file miss process (Sect. 3.3.2) if

multiple destinations: ∀vm ∈ DAGi ∩N (n)
24 Merge the file request streams (Sect. 3.3.3) if

multiple sources: ∀vl ∈ DAGi & vn ∈ N (l)
25 Calculate per-file CDFs (Appendix. A) and

metrics of interest (Sect. 3.2)
26 end
27 Update the characteristic time (Sect. 3.2)
28 if cache policy Pn is Non-renewing TTL then

29 M̄
(I)
n ←∑K

i=1

Λ
(I)
n,i

Λ
(I)
n

(1 +Rn,i(T
(I−1)
n))−1 ;

T
(I)
n ← Cn/(Λ

(I)
n × M̄

(I)
n)

30 else

31 C
(I−1)
n ←∑K

i=1 F̂
(I)
n,i (T

(I−1)
n);

T
(I)
n ← Cn × T

(I−1)
n /C

(I−1)
n

32 end

33 end

34 end

vn by using the secant method i.e. approximating the slope

with Φn(�T (I−1))−Φn(�0)

T
(I−1)
n

where
T (I−1) is the characteristic vec-

tor at the previous iteration. Hence, Algorithm 1 converges
superlinearly in each component Φn(
τ). The convergence is
quadratic if Newton’s method is used instead.
On the complexity. Instructions in bold font are basic
operations of Algorithm 1. Its complexity is of order of
O(NIK) where I the total number of iterations is bounded
by I ≤ Δ2

G with ΔG the diameter of the network topology.
The equality holds i.e. I = N2 in the (worst) case of the
tandem network of N nodes (similar to Fig. 1) with bidirec-
tional flows through all nodes.
In the case of unique routing topology model which is widely
studied in the literature (e.g. networks with linear [14], tree [4,

13], polytree [6, 15], feed-forward topologies [3]), Algorithm 1
needs only I = ΔG iterations.
On the implementation. Approximations [4, 14, 13, 16]
are limited by the size and tree-based topology of networks.
Unlike, Algorithm 1 scales easily as the network and cat-
alog sizes increase. It can be implemented in distributed
MapReduce jobs of Apache Giraph software [2]. During the
initialization phase, each job associated to a node reads the
network and routing configurations. It then stores labels of
its neighbours and identifiers of files it may receive. During
each super-step, each job executes once the while-loop of
Algorithm 1 and exchanges parameters of its node request
streams and characteristic time at the end. All jobs halt if
the root mean squared error of TTLs is less than a given
threshold.

5. EVALUATION RESULTS
In this section, we evaluate the accuracy of our model by
comparing its predictions of per-file hit probabilities on net-
works where caches are running space-driven policies like
Least Recently Used (LRU), Random replacement (RND),
and First-In-First-Out (FIFO). Indeed, the existence of de-
terministic (resp. exponentially distributed) characteristic
times for LRU and FIFO (resp. RND) policies (see [4, 10]
and [13] for more details) allows us to describe them with
TTL-based models as shown in Figure 2. We consider as
“exact” the metrics of interest obtained via long event-driven
simulations (≈ 16.77 × 106 events generated). Files exoge-
nous requests arrive at some nodes of the network with rate
Λ = 1 and Zipf popularity of parameter α = 0.7.

5.1 Characteristic time approximation (cta)
TTL models of isolated LRU, FIFO, and RND caches pro-
duce accurate predictions of per-file hit probabilities [4, 13,
14]. Hence, our goal here is to validate the accuracy of Algo-
rithm 1 when approximating cache characteristic times. We
consider caches of size C = 100, a catalogue of size K = 105,
and Poisson request traffic with total request rate Λ = 1.
The characteristic times or TTLs T cta

POLICY where POLICY
is either LRU, RND or FIFO are calculated by solving (2)
with p = 1 of Lemma 2. Meanwhile, their approximate val-

ues T
(n)
POLICY are given by Algorithm 1. Figure 4 shows that

our algorithm converges after one iteration starting from the
lower bound T (0) = C/Λ to the cache characteristic times.
This convergence was also observed with Interrupted Poisson
Processes (IPPs) of same rate Λ = 1 and scv of inter-request
times c2v = 1.5.

Thanks to these preliminary experiments, we made two in-
teresting observations not yet reported in the literature.
For both Poisson and IPP request models, we observed that
characteristic times of FIFO and RND caches are approxi-
matively equal. Moreover, miss streams of FIFO (resp. RND)
caches fed by Poisson traffic are accurately described by
shifted-exponential renewal processes.

5.2 Performance metrics on cache networks
In this section, exogenous request streams are still described
by Poisson processes. Moreover, we call Poisson approx-
imation the specialization of Algorithm 1 when consider-
ing the first moment of inter-request times only (and set-
ting wi = 0, ∀fi in (5)). Another specialization, that we

Figure 4: Approximations of TTLs T cta
POLICY for LRU, RND

and FIFO policies with Algorithm 1. Poisson arrivals (Λ =
1) and Zipf popularity (α = 0.7). C = 100, K = 105.

call the Whitt approximation, is obtained when wi = 1, ∀fi
in (5). Finally, our general methodology when wi ∈ [0, 1]
in (5) as calculated in (6) will be the Hybrid approximation.
These approximations were evaluated extensively under var-
ious network configurations used for a-NET model [16] and
our Hybrid approximation show better accuracy than oth-
ers. Due to lack of space, we only report part of results for
some metrics of interest. Additional numerical results can
be found in our technical report [7, Sect.6.2 & 6.3].

5.2.1 Poisson approximation and a-NET model
The Poisson approximation and IRM traffic model used by
a-NET model [16] can be seen as assuming that all request
streams are described by Poisson processes at each node of
the network. We evaluate our Poisson approximation and a-
NET model on linear, binary tree, and random (i.e links are
drawn uniformly at random) networks of LRU caches. For
these experiments, we consider that Poisson requests arrive
exogenously at each cache. Due to lack of space we only
report per-file hit probabilities for the random network at
the node directly connected to the servers. On all simulated
cache networks (Cf. [7, Sect.6.1]) and in particular for the
random network (see Fig. 5), we observed that the Poisson
approximation is as accurate as a-NET model [16]. Hence,
only Poisson approximation is used later in this section on
other network configurations for comparison purposes.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

100 101 102

H
it

P
ro
b
.

File Popularity rank, i

Cache 9, Policy:LRU, Capacity: 5

Sim
a-NET

Poisson (w = 0)

Figure 5: Simulations (Poisson arrivals Λ = 1 and Zipf
popularity α = 0.7), Poisson approximation, and a-NET
model on 10 caches random network. K = 100, C = 5.

5.2.2 Accuracy of our Hybrid approximation

Large tree networks. We compare the Poisson, Whitt, and
Hybrid approximations on homogeneous and heterogeneous
tree cache networks where requests occur on leaf nodes only.
In the former case, we consider a ternary tree network of
depth seven having 1093 LRU caches; and, a 4-ary tree
of depth five having 341 caches with capacities chosen uni-
formly at random within the interval [50, 150] and replace-
ment policies are selected among the FIFO, RND, and LRU
policies in the latter case. The catalogue size is K = 104.

10
0

10
1

10
2

10
30

0.05

0.1

0.15

0.2

File ID, i

H
it
P
ro
b
.

Level 1, Cache 1, Policy:LRU, Capacity: 100

Sim
Hybrid

Poisson
Whitt

(a) Cache 1, root node

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

Cache ID, n

H
it
P
ro
b
.

(b) Global cache hit ratio

Figure 6: Simulations (Poisson arrivals on leaves and Zipf
popularity). Poisson, Whitt, and Hybrid approximations.
Ternary tree of LRU caches, Depth 7, K = 103, C = 100.

In both cases (see Figs 6 and 7), Poisson approximation over-
estimates the metrics of interest while Whitt approximation
underestimates them. However, the Hybrid approximation
outperforms others for predicting per-file hit probabilities
and produces miss probability ratios close to one. Other
network settings such as random networks where requests
arrive on edge nodes only can be found in [7, Sect.6.2–6.3].

Large random networks. Finally, we consider a large ran-
dom network of 100 LRU caches with capacities Cn ∈ [50, 150]
and a catalogue of size K = 104. We consider exogenous
Poisson request streams at all caches. As shown in Fig. 8,
our Hybrid approximation is still accurate.

6. CONCLUSION
Performance analysis of general and heterogeneous cache
networks was the main goal of this work. Relying on TTL-
based models, we developed an analytical framework and
an accurate polynomial-time algorithm to address this prob-
lem in a quite general scope since existing models were lim-
ited either by the IRM assumption, tree topology, one-way

10
0

10
2

10
40

0.05

0.1

0.15

0.2

File ID, i

H
it
P
ro
b
.

Level 1, Cache 1, Policy:RND, Capacity: 79

Sim
Hybrid

Poisson
Whitt

(a) Cache 1, root node

10
0

10
1

10
2

10
30.98

1

1.02

1.04

1.06

1.08

Cache ID, n

M
P
R

Hybrid Poisson Whitt

(b) Miss Probability Ratio, MPR = M
appr
n /M

sim
n

Figure 7: Simulations (Poisson arrivals on leaves, Zipf pop-
ularity). Poisson, Whitt, and Hybrid approximations. Het-
erogeneous ternary tree, depth 5, K = 104, C ∈ [50, 150].

10
0

10
1

10
2

10
3

10
40

0.2

0.4

0.6

File Popularity rank, i

H
it

P
ro

b.

Cache 99, Policy: LRU, Capacity: 95

Sim
Hybrid

Figure 8: Hybrid approximation on a large random network
of N = 102 caches, K = 104, C ∈ [50, 150].

child-to-parent forwarding schema, homogeneous nodes, etc.
Moreover, we showed the existence of Little’s Law-like and
we defined new characteristic features (Characteristic Equa-
tions/Moments/Distribution/Time) for caching systems be-
having as generally distributed TTL-based models under
stationary and ergodic request processes. Finally, simula-
tions showed that our (Hybrid) approximation is more ac-
curate than the existing models which addressed arbitrary
cache networks since our approach captures content popu-
larity, temporal locality, and basic cache operations on re-
quest streams in a better way by relying on hyper/shifted-
exponential renewal processes. As future work, we plan to
weaken our renewal assumption and to extend our frame-
work to cache networks under correlated requests.

7. ACKNOWLEDGMENTS
The authors are deeply grateful to Christian Tanguy (Col-
league at Orange Labs, Issy-Les-Moulineaux) for its com-
ments and stimulating discussions on this work.

8. REFERENCES
[1] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher,

and B. Ohlman. A survey of information-centric
networking. IEEE Com. Mag., 50(7):26–36, July 2012.

[2] Apache Foundation. Apache Giraph,
http://giraph.apache.org/. Jul 2014.

[3] D. S. Berger, P. Gland, S. Singla, and F. Ciucu. Exact
analysis of {TTL} cache networks. Performance
Evaluation, 79(0):2 – 23, 2014.

[4] H. Che, Y. Tung, and Z. Wang. Hierarchical web
caching systems: modeling, design and experimental
results. IEEE J.S.A.C, 20(7):1305–1314, 2002.

[5] N. Choungmo Fofack. On models for performance
analysis of a core cache network and power save of a
wireless access network. PhD thesis, Feb. 2014.

[6] N. Choungmo Fofack, P. Nain, G. Neglia, and
D. Towsley. Analysis of TTL-based cache networks. In
Proc. ValueTools’12, Cargèse, France, Oct. 2012.

[7] N. E. Choungmo Fofack, D. Towsley, M. Badov,
M. Dehghan, and D. L. Goeckel. An approximate
analysis of heterogeneous and general cache networks.
Rapport de recherche RR-8516, INRIA, Apr 2014.

[8] N. C. Fofack. Approximate models for cache analysis
with correlated requests. Actes du 10ème Atelier en
Évaluation de Performances, pages 23–24, Jun 2014.

[9] N. C. Fofack, P. Nain, G. Neglia, and D. Towsley.
Performance evaluation of hierarchical ttl-based cache
networks. Computer Networks, 65:212–231, 2014.

[10] C. Fricker, P. Robert, and J. Roberts. A versatile and
accurate approximation for lru cache performance. In
Proc. of the 24th International Teletraffic Congress,
ITC ’12, pages 1–8, 2012.

[11] J. Jung, A. W. Berger, and H. Balakrishnan. Modeling
TTL-based internet caches. In Proc. IEEE
INFOCOM’03, San Francisco, CA, USA, Mar. 2003.

[12] J. Kurose. Information-centric networking: The
evolution from circuits to packets to content.
Computer Networks, 66:112–120, 2014.

[13] V. Martina, M. Garetto, and E. Leonardi. A unified
approach to the performance analysis of caching
systems. In Proc. IEEE INFOCOM, pages 2040–2048,
Apr. 2014.

[14] N. Melazzi, G. Bianchi, A. Caponi, and A. Detti. A
general, tractable and accurate model for a cascade of
LRU caches. Com. Letters, IEEE, PP(99):1–4, 2014.

[15] N. Choungmo Fofack and Sara Alouf. Modeling
modern DNS caches. In Proc. ValueTools’13, Torino,
Italy, Dec. 2013.

[16] E. Rosensweig, J. Kurose, and D. Towsley.
Approximate models for general cache networks. In
Proc. Infocom’10, San Diego, CA, USA, Mar. 2010.

[17] W. Whitt. Approximating a point process by a
renewal process, I: Two basic methods. Operations
Research, 30(1), 1982.

