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ABSTRACT
We present an extension of the linear time, time-bounded, Signal
Temporal Logic to describe spatio-temporal properties. We con-
sider a discrete location/ patch-based representation of space, with
a population of interacting agents evolving in each location and
with agents migrating from one patch to another one. We provide
both a boolean and a quantitative semantics to this logic. We then
present monitoring algorithms to check the validity of a formula,
or to compute its satisfaction (robustness) score, over a spatio-
temporal trace, exploiting these routines to do statistical model
checking of stochastic models. We illustrate the logic at work on
an epidemic example, looking at the diffusion of a cholera infection
among communities living along a river.

Keywords: Monitoring, Spatial Logic, Signal Temporal Logic,
Spatio-Temporal Modelling.

1. INTRODUCTION
Many of the scientific and technological challenges we are cur-
rently facing deal with the complexity arising from the non-linear
interactions between heterogeneous components. Examples span
from biological systems, from bacteria up in the ladder of life, to
ecological interactions, to socio-technical and cyberphysical sys-
tems, in which digital sensors and devices interact with the natural
and social environment. Our ability to understand, control and de-
sign such systems requires refined mathematical and computational
modelling tools.

Formal methods offer a powerful framework in this sense, provid-
ing modelling languages, requirements and properties specification
languages, and efficient analysis routines /algorithms. In particular,
logical methods based on temporal logics have proved to be very
effective both in studying properties of existing systems, like bi-
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ological ones [24], and in the design of new systems [5]. This is
due to their ability to easily express complex temporal behavioural
patterns, and the availability of efficient model checking and mon-
itoring tools, for many classes of mathematical models, ranging
from ODEs [28] to stochastic processes [4, 5].

The literature of applications of formal methods to complex sys-
tems, of temporal logic in particular, has been mainly focused on
well-mixed systems, where the spatial nature of interactions is ab-
stracted for the sake of simplicity. However, spatial information is
often crucial to properly understand their emerging dynamics. For
instance, in bacteria chemotaxis, the motility of cells is realised
by the spatial polarisation of small-G-protease signalling proteins
[26]. Epidemic spreading at the national or worldwide scale de-
pends crucially on the asymmetric /inhomogenuous population dis-
tribution and on the mobility patterns and available air routes [32].
The design and deployment of a bike sharing system cannot ne-
glect the spatial distribution of bike stations, reflecting into dif-
ferent time-inhomogeneous request trends [21]. All these systems
have inherent spatial aspects: they involve a large number of het-
erogeneous spatial entities that are located and can move on a phys-
ical space.

While from the point of view of modelling languages and simula-
tion, some relevant work in spatial modelling has been done in re-
cent years [10,20], the use of modal logic to describe and expecially
validate spatio-temporal properties is much less developed. While
spatial and spatio-temporal logics have been proposed and theoret-
ically investigated in literature [1], model checking routines have
a much more recent history. Relevant works are those on spatial
logics for process algebra with locations as [12,30], or spatial logic
for rewrite theories [3]. Other relevant literature on purely spatial
logic is [13, 23]. In particular, we are not aware of any linear-time
spatio-temporal logic with monitoring or model checking routines
for checking properties of spatially located differential equations
(PDE or patch ODEs) or of spatially located stochastic processes
(patch CTMC).

Here we begin tackling this problem from a practical perspective.
We start by introducing Signal Spatio-Temporal Logic (SSTL), a
spatial extension of Signal Temporal Logic (STL) [15, 28]. STL
is a temporal logic suitable to specify behaviours of real-valued
time series generated during the simulation of a (stochastic) dynam-
ical system. It extends the dense-time semantics of Metric Interval
Temporal Logic [2] (MITL), parameterising it by a set of numer-
ical predicates playing the role of atomic propositions. A special
characteristic of STL is the definition of a quantitative semantics,
allowing us to quantify the satisfiability of a property, i.e. to give a
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value expressing how robustly a property is satisfied.

We extend STL by introducing simple spatial operators, inspired
from the modal spatial operators of the Multiprocess Network Logic
[31]. They permit to describe properties such as “there exists a lo-
cation �j at a certain distance from location �i where the property
ϕ is satisfied”, or “all the locations with a distance no more than d
from � satisfy the property ϕ”. The semantics of such spatial op-
erators is strictly related to the description of space in which the
dynamics takes place. Space can be logical, i.e. a set of locations,
it can be discrete, i.e. a grid or a more general graph, or it can be
continuous, for instance the euclidian space. The first option that
we decided to investigate are systems with a discrete space, struc-
tured as a weighted graph, called patch-based quantitative popula-
tion models. These models describe the number of entities in each
node, with agents located in nodes and moving from a node to an-
other one. 1

The contribution of this paper are: (1) a formal description of patch-
based population models; (2) the definition of SSTL, introducing
new spatial operators, giving in detail the boolean and quantitative
semantics, extending the monitoring algorithms to compute the sat-
isfaction over boolean or real-valued signals, and providing also
a stochastic version of this logic, leveraging the monitoring algo-
rithms within a stochastic model checking routine; and (3) a discus-
sion of the logic at work on a model of the spreading of cholera, a
waterborne disease, considering the effect of rivers in the diffusion
of the epidemics [8, 29].

The paper is structured as follows: in Section 2 we introduce the
population model, while in section 3 we define the patch-based
population model. In Section 4 we describe the syntax and the
semantics of the Signal Spatio-Temporal Logic (SSTL), sketching
the monitoring algorithms in Section 5. In Section 6 we present the
stochastic extension of SSTL and in Section 7 we discuss the case
study and some experimental results. Finally, the conclusions and
future works are drawn in Section 8.

2. POPULATION MODELS
A population model intuitively is a system in which a large num-
ber of different agents or components interact together and take,
through local transitions, a number of different states. The transi-
tions can be seen as descriptions of events changing the global state
of the system. There are many example of population processes,
like social systems, biochemical networks, ecological systems and
computer networks.

DEFINITION 2.1 (Population model). A population modelM
is a tuple M= (S,X,T ), where:
− S = {1, ..., n} is the set of states of the agents in the population.
− X = (X1,⋯,Xn) is the state vector, describing the state of the
population model. The variable Xi ∈ R≥0 represents the density,
concentration, or number (in which case it takes integer values) of
components in the ith state. The domain of X, i.e. the state space
of the system, is a subset of Rn and is denoted by D.
− T = {τ1, ..., τm} is the set of global transitions of the form
τl = (al,vl, fl) where
● al is the label of the transition,
● vl ∈ R

n is the update vector, giving the net change of each
counting variable due to the transition,

1The term patch is borrowed from ecological modelling.

● f ∶ D → R⩾0 is the rate function, giving the rate of the transi-
tion as a function of the global state of the system.

Each transition τl can be seen as a rule of the form

q1si1 +⋯ + qksik → r1sj1 +⋯ + rhsih

where sia , sjb ∈ S are states of the system, and qi, rj are the sto-
ichiometric coefficients, i.e. the amount of components/entities
consumed or produced by the transition. The update vector vl

condenses the stoichiometric information as v⃗l = ∑b≤h rbe⃗jb −
∑a≤k qae⃗ia , where e⃗j equals one in position j and zero elsewhere.

The dynamical evolution of these models can be described in differ-
ent ways: we can interpret them stochastically as a Markov chains
or deterministically as a system of Ordinary Differential Equations
(ODEs).

Stochastic dynamics. The most important class of stochastic pro-
cesses we will consider are Continuous Time Markov Chains
(CTMC) [17] that describe population processes (PCTMC). A PCTMC
can be represented as a time-indexed family of vectors:

(X(t))t∈T = (X1(t), ...,Xn(t))t∈T

where the vector X(t) corresponds to the state of the system at time
t ∈ T, with T ⊆ R⩾0, with each variable Xi counting the number
of entities in the ith state at time t. We assume X(t) ∈ D, where
D ⊆ N

n is the state space of the system.

Given a population model M = (S,X,T ) from the set of tran-
sitions T , we can easily derive the formal representation of the
PCTMC [11] in terms of its infinitesimal generator matrix as:

Q(di,dj) = ∑
τ∈T ∣vτ=dj−di

fτ(di), i ≠ j (1)

For each di,dj ∈ D, with i ≠ j, Q(di,dj) represents the rate of
an exponential distribution, namely the distribution of a random
variable modelling the time needed to go from state di to state
dj . The diagonal elements of the matrix are equal to Q(di,dj) =
−∑i≠j Q(di,dj) and represent the opposite of the exit rate from
the state di. For all i, j s.t. ∄vτ = di − dj , Q(di,dj) = 0.

Deterministic dynamics. Due to state space explosion, population
models are often intractable when interpreted as CTMC, but they
can frequently be approximated by a set of non-linear Ordinary Dif-
ferential Equations (ODEs). This is the so called fluid approxima-
tion [11]. The fluid ODEs can be seen as a macroscopic descrip-
tion of the microscopic CTMC dynamics, and, when populations
are large, it is a good description of the system behaviour [11].

From a Population model M = (S,X,T ), we can construct a set
of ODEs, assuming variables X to be continuous and interpreting
each rate as a flow, thus obtaining the vector field

F (X) = ∑
τ∈T

vτ fτ(X), (2)

defining the ODEs dX
dt

= F (X). These equations, called also rate
equations, can be shown to be a first order approximation of the
average transient behaviour of the PCTMC, and, under a suitable
rescaling of the variables (dividing by the system size, often the
total population), the convergence of the PCTMC to the solution of
the ODEs (see [11]) as populations and system size go to infinity
can be proved.
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EXAMPLE 2.1 (SIR MODEL). We will illustrate the previous
definition by a simple epidemic scenario involving N individuals.
Each individual can be in three different states: susceptible to in-
fection (S), infected (I), and recovered and immune to infection
(R). The set of agent’s states is then S = {S, I,R} and the count-
ing variables are X = (XS ,XI ,XR), where Xi ∈ {0,⋯,N}. The
state space D of the system is a subset of [0,N]3. There are 3 dif-
ferent transitions:
⋆ a susceptible individual can be infected by getting in contact with
an infected individual, inf: I + S �→ 2I with vinf = (−1,1,0) and
rate function finf(X) = kinf ⋅XS ⋅XI ,
⋆ an infected individual can recover, rec: I �→ R with vrec =
(0,−1,1) and rate function frec(X) = krec ⋅XI ,
⋆ a recovered individual can lose its immunity, loss: R �→ S with
vloss = (1,0,−1) and rate function floss(X) = kloss ⋅XR.

The population model is then M = ({S, I,R},X,T ) with T =
{(inf, vinf , finf), (rec, vrec, frec), (loss, vloss, floc)}. The sto-
chastic process for this model can be represented by the family of
vectors (X(t))t∈R⩾0 = (XS(t),XI(t),XR(t))t∈R⩾0 where each
Xi(t) ∈ N counts the number of entities in the state i at time t. The
fluid approximation of this model, instead, is obtained applying (2)
and assuming X ∈ R3, and it corresponds to the system of ODEs:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dXS
dt

= −XI ⋅Xs ⋅ kinf +XRkloss,
dXI
dt

=XI ⋅Xs ⋅ kinf −XIkrec,
dXR
dt

=XIkrec −XR ⋅ kloss.

3. PATCH-BASED POPULATION MODEL
We now adapt the definition and the dynamics of population models
to systems embedded in a physical space.

The definition of a spatial population model is strictly related to the
choice of the space in which the model is embedded. We decided
to work with a discrete space, in particular with weighted graphs
(i.e. graphs where each edge is labeled with a value indicating the
cost/weight/distance to pass from a node to the next one). Each
node represents a different spatial location (patch), each patch con-
tains a population of agents, described by indicating the number
of individuals in each state as a classic population process, as ex-
plained in Section 2. The weight of edges has to be interpreted in
a more broader sense than a spatial distance, and as such we will
refer to it by the word “cost”. The idea is that the cost of an edge
can represent more complex information than the sheer distance
between two nodes. For instance, in a traffic model, we may want
to distinguish two streets with the same distance but different travel
times due to the presence of traffic lights or congestion.

DEFINITION 3.1 (Patch-based population model. ). A Patch-
based population model is a tuple (M,G,V) where:
−M = (S,X,T ) is a population model, satisfying Definition 2.1,
− G = (L,E,w) is a weighted graph where:
● L is the finite set of locations (nodes), L /= ∅
● E ⊆ L ×L is the set of connections (edges),
● w ∶ E → R>0 is the function that returns the cost of each edge.

Furthermore, we denote by E∗ the set containing all the pairs of
connected locations, i.e. the transitive closure of E, extending w to
the domain E∗ as the sum of costs of a shortest path between two
different locations 2,

2The shortest path is the path that minimizes the sum of costs.

− V = {ν1, ..., νk} is the set of inter-patch transitions, i.e. the tran-
sitions that describe the migration of entities between patches, each
transition is of the form νl = (al, s, gl), where:
● al is the label of the transition,
● s ∈ S is the state of the entity that migrates
● gl ∶ D × L × L → R⩾0 is the rate function, where D is the

state space of the system; gl(X, �i, �j) is the rate for the migration
of a component in state s from location �i to location �j when the
global state of the system is X.

The dynamics of these kind of models is given by intra-patch inter-
actions and inter-patch migration of agents resulting in a PCTMC
or in a ODEs system where the variables represent the number/density
of each agent state in each location. In the following, we refer to the
description of such a process by a family of vectors X(t, �)t∈T,�∈L =
(X1(t, �),X2(t, �), ...,Xn(t, �))t∈T,�∈L, indexed by time and space.
However, for practical purposes, e.g. to numerically solve ODEs,
we consider one (time-dependent) variable Xi,� for each state-location
pair.

4. SIGNAL SPATIO-TEMPORAL LOGIC
Signal Spatio-Temporal Logic (SSTL) is an extension of Signal
Temporal Logic (STL) [28] with a spatial operator suitable to spec-
ify spatial behaviour of complex systems. The new spatial operator
is interpreted on patch-based quantitative population models with
a discrete space structured as a graph, as defined in the previous
section.

We recall that the state of the system under study is described by the
state vector X = (X1, ...,Xn), with state space D = D1×⋯×Dn ⊆
R

n, where each variable Xi ∈ Di ⊆ R. Given, a model (M,G,V),
SSTL formulae are evaluated over real valued traces x⃗ ∶ T×L→ D,
generated by simulating the model3, where T is the time set and L is
the set of locations. We write x⃗(t, �) = (x1(t, �),⋯, xn(t, �)) ∈ D,
where each xi ∶ T × L → Di, for i = 1, ..., n, is the projection on
the ith coordinate/variable and it is called the primary signal.

4.1 Syntax
The syntax of SSTL is given by

ϕ ∶= μ ∣ ¬ϕ ∣ ϕ1 ∧ϕ2 ∣ ϕ1 U[t1,t2] ϕ2 ∣ �[w1,w2] ϕ

where conjunction and negation are the standard boolean connec-
tives, [t1, t2] and [w1,w2] are real positive dense intervals with
t1 < t2 and w1 < w2, U[t1,t2] is the until operator and �[w1,w2] is
the spatial somewhere operator. The atomic predicate μ ∶ D→ B is
of the form μ ≡ (f ⩾ 0), where f ∶ D→ R is a (possibly non-linear)
real-valued function, and B = {0,1} are boolean values. The func-
tion y ∶ T × L → R defined from the image of the trace x⃗(t, �) by
f , y(t, �) ∶= f(x⃗(t, �)), is called the secondary signal.

The (bounded) until operator ϕ1U[a,b]ϕ2 requires ϕ1 to hold from
now until, in a time between a and b time units in the future, ϕ2 be-
comes true. The spatial somewhere operator �[w1,w2]ϕ requires ϕ
to hold in a location reachable from the current one with a total cost
greater than or equal to w1 and less than or equal to w2. The eventu-
ally operator F[a,b] and the always operator G[a,b] can be defined
as usual: F[a,b]ϕ ∶= ⊺U[a,b]ϕ, G[a,b]ϕ ∶= ¬F[a,b]¬ϕ. In a simi-
lar way, we derive the everywhere spatial operator �[w1,w2]ϕ ∶=
3With simulation we mean stochastic simulation in case of a
stochastic dynamics and numerical integration in case of a deter-
ministic dynamics.
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¬�[w1,w2] ¬ϕ which requires ϕ to hold in all the locations reach-
able from the current one with a total cost greater than or equal to
w1 and less than or equal to w2.

4.2 Semantics
STL has two different semantics: a boolean semantics that returns
yes/no depending if the observed trace satisfies or not the STL spec-
ification and a quantitative semantics that extends the boolean one
by returning a measure of robustness of the specification. We now
define both semantics for the SSTL logic.

DEFINITION 4.1 (SSTL Boolean Semantics). The boolean sat-
isfaction relation for an SSTL formula ϕ over a spatio-temporal
trace x⃗ is given by:

(x⃗, t, �) ⊧ μ ⇔ μ(x⃗(t, �)) = 1

(x⃗, t, �) ⊧ ¬ϕ ⇔ (x⃗, t, �) /⊧ ϕ

(x⃗, t, �) ⊧ ϕ1 ∧ϕ2 ⇔ (x⃗, t, �) ⊧ ϕ1 and (x⃗, t, �) ⊧ ϕ2

(x⃗, t, �) ⊧ ϕ1 U[a,b)ϕ2 ⇔ ∃t′ ∈ [t + a, t + b] s.t. (x⃗, t′, �) ⊧ ϕ2

and ∀t′′ ∈ [t, t′], (x⃗, t′′, �) ⊧ ϕ1

(x⃗, t, �) ⊧ �[w1,w2]ϕ ⇔ ∃�′ ∈ L s.t. (�′, �) ∈ E∗,

w1 ⩽ w(�′, �) ⩽ w2 and (x⃗, t, �′) ⊧ ϕ

A trace x⃗ satisfies ϕ in location �, denoted by (x⃗, �) ⊧ ϕ, if and
only if (x⃗,0, �) ⊧ ϕ.

DEFINITION 4.2 (SSTL Quantitative Semantics ). The quan-
titative satisfaction relation for an SSTL formula ϕ over a spatio-
temporal trace x⃗ is given by:

ρ(μ, x⃗, t, �) = f(x⃗(t, �)) where μ ≡ (f ≥ 0)
ρ(¬ϕ, x⃗, t, �) = − ρ(ϕ, x⃗, t, �)
ρ(ϕ1 ∧ϕ2, x⃗, t, �) = min(ρ(ϕ1, x⃗, t, �), ρ(ϕ2, x⃗, t, �))

ρ(ϕ1 U[a,b)ϕ2, x⃗, t, �) = sup
t′∈t+[a,b]

(min{ρ(ϕ2, x⃗, t
′, �),

inf
t′′∈[t,t′]

(ρ(ϕ1, x⃗, t
′′, �))}

ρ(�[w1,w2]ϕ, x⃗, t, �) = max{ρ(ϕ, x⃗, t, �′) ∣ �′ ∈ L, (�′, �) ∈ E∗

and w1 ⩽ w(�′, �) ⩽ w2}

where ρ is the quantitative satisfaction function, returning a real
number ρ(ϕ, x⃗, t) quantifying the degree of satisfaction of the prop-
erty ϕ by the tracex⃗ at time t. Moreover, ρ(ϕ, x⃗, �) ∶= ρ(ϕ, x⃗,0, �).

The definition of this quantitative measure is a reformulation of the
robustness degree of [19]. The idea is that the sign of the satis-
faction degree corresponds to the truth value of the formula (with
positive standing for true), while the absolute value of the score re-
turns the maximum perturbation sustainable by the secondary sig-
nals such that the truth value of the formula does not change. Note
that, indeed, the robustness of an atomic proposition μ is equal to
the secondary signal y(t, �) = f((x⃗, t, �)). The choice of the sec-
ondary signals y is an essential part of the definition of the SSTL
formula. Different choices of y result in different formulae, hence
in different robustness measures. We also remark that this robust-
ness notion deviates from the more usual sensitivity-based measure
of robustness, like [27]. Despite this fact, the application of the sen-
sitivity analysis and its related techniques to the robustness score of
Definition 4.2 is still possible; for more details we refer to [15].

5. MONITORING ALGORITHMS
This section is concerned with the monitoring of an SSTL formula;
a property monitor is an algorithm for deciding whether a given
behaviour or trace x⃗ satisfies a property ϕ.

We need to provide an algorithm for each semantics that we have
defined. We will start from the property monitors introduced in [28]
for the boolean semantics and in [15] for the quantitative semantics,
extending them with a procedure to check the spatial properties.

5.1 Boolean semantics
The algorithm proceeds inductively bottom-up on the parse tree of
the formula. Given a formula ϕ, to determine if (x⃗, �) ⊧ ϕ, we con-
struct, for every sub formula ψ and every location � ∈ L, a boolean
signal sψ,�(t), i.e. a function from [0, T ], T ∈ R>0, to {0,1} s.t.
sψ,�(t) = 1 if (x⃗, t, �) ⊧ ψ and 0 otherwise. At the termination
of the algorithm, we have the signal sϕ,�(t) whose value at t = 0
determines if the trace x⃗ satisfies ϕ. Note that we are fixing in the
signal both the location and the subformula, because the properties
can be verified over each location independently, due to Definition
4.1: (x⃗, �) ⊧ ϕ means “the trace x⃗ in location � satisfies the prop-
erty ϕ ”.

A central notion in the monitoring algorithm is that of the minimal
interval covering Isψ,� consistent with the signal sψ,�. It corre-
sponds to the shortest finite sequence of left-closed right open in-
tervals I1, ..., Ih such that ⋃j Ij is an interval, Ii⋂ Ij = ∅, ∀i ≠ j,

and sψ,�(t) = sψ,�(t′), ∀t, t′ belonging to the same interval.4 We
can derive then the set of positive and negative intervals of sψ,� as:

I+sψ,�
= {I ∈ Isψ,�

∣∀t ∈ I ∶ sψ,� ⊧ ψ},

I−sψ,�
= {I ∈ Isψ,�

∣∀t ∈ I ∶ sψ,� /⊧ ψ}.

The positive interval I+sψ,�
corresponds to the satisfaction set of the

formula over the signal sψ,�. Note that any signal can be written
as s = s1 ∨ s2 ∨ ⋯ ∨ sk where each si is an unitary signal, mean-
ing that it has a singleton positive interval, i.e. I+si = {[t1, t2)}
for some t1 < t2 ∈ R⩾0. Furthermore, Isψ,� = I+sψ,� ⋃I−sψ,�

and

I+sψ,� ⋂I−sψ,�
= ∅.

Using these definitions of signals, interval coverings, and satisfac-
tion set, the procedure for the classic operators of STL is equivalent
to the one described in paper [28]. We briefly recall it in the fol-
lowing.

Atomic Predicates: ψ = μ. The computation of the boolean signal
associate with an atomic predicate is a direct application of Defini-
tion 4.1: sμ,�(t) = μ(x⃗(t, �)).
Negation: ψ = ¬ϕ, then I+s¬ϕ,� = I

−
sϕ,�,

Disjunction: ψ = ϕ1 ∨ ϕ2, then, given sϕ1,�, sϕ2,�, let be I the
minimal interval covering consistent with both signals. F or each
Ii ∈ I, we construct the signal sψ,�(Ii) = sϕ1,�(Ii) ∨ sϕ2,�(Ii)
and we merge adjacent positive intervals to obtain I+

ψ,�
.

Until: ψ = ϕ1U[a,b]ϕ2. As we are working with future tem-
poral modalities, we need to shift intervals backwards. This has
to be done independently for each unitary signal, then taking the
union of the so obtained satisfaction sets. Given two unitary sig-
nals p and q, the signal ψ = pU[a,b]q is the unitary signal such
that I+ψ = {((Ip ∩ Iq) ⊖ [a, b])⋂ Ip}, where [m,n) ⊖ [a, b] =
4The fact that we can always obtain a finite interval covering is a
consequence of the restriction to closed intervals [t1, t2], t1 < t2, in
STL. For more detail about signals and interval covering see [28].
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[m− b, n−a)⋂[0, T ]. In the general case, let sϕ1,� = p1 ∨⋯∨pn
and sϕ2,� = q1 ∨⋯∨ qm be signals written as union of unitary sig-
nals, then ψ = sϕ1,�U[a,b]sϕ2,� = ⋁

n
i=1⋁m

j=1 piU[a,b]qj . The proof
of this result can be found in [28].

We now treat the spatial somewhere operator ψ = �[w1,w2]ϕ. As
remarked at the beginning of this section, and relying on the fact
that we have a finite number of locations, we can process inde-
pendently each location in the signal. Given the signal sψ,�, for a
fixed location �, we can rewrite the spatial operator as a disjunc-
tion between all signals in locations �′ s.t. (�′, �) ∈ E∗ and w1 ⩽
w(�′, �) ⩽ w2. This allows us to use the monitoring procedure for
disjunction, constructing the minimal interval covering I consis-
tent with all sϕ,�′ signals s.t.(�′, �) ∈ E∗ and w1 ⩽ w(�′, �) ⩽ w2,
and defining, for each Ii ∈ I ∶

sψ,�(Ii) = ⋁
w1⩽w(�′,�)⩽w2

sϕ,�′(Ii).

The satisfaction set I+sψ,�
is then the union of the positive Ii (i.e. Ii

s.t. sψ,�(Ii) = 1), merging adjacent positive intervals.

We stress here that the introduction of the spatial somewhere oper-
ator is not merely syntactic sugar, for two reasons. First, its defini-
tion can be applied also to countable discrete spaces, and it can be
easily generalised to continuous spaces. Secondly, even assuming
a finite discrete space, expanding it as a disjunction would produce
a blowup of the formula size exponential in the nesting level of spa-
tial operators, and hence an exponential increase in the complexity
of the monitoring procedure.

5.2 Quantitative semantics
Given a formula ϕ, this algorithm computes the quantitative sat-
isfaction function ρ(ϕ, x⃗, t, �). Similarly to the Boolean seman-
tics, ρ is computed inductively on the formula structure, proceed-
ing bottom-up along the parse tree of the formula. For each node
of the tree, the algorithm maintains a real-valued satisfaction sig-
nal associated with the corresponding subformula, processing the
real-valued signals of the children nodes.

We recall that the primary signals xi(t, �), i = 0, ..., n, come from
the simulation of the model, via numerical integration or stochas-
tic simulation, returning a finite set of sample points. Note that
the number of primary signals xi,�(t) = x(t, �) is finite, as so is
the set of locations L. Furthermore, xi,�(t) are assumed to be
piecewise-affine functions, obtained by linear interpolation of the
finite set of sample points. Similarly, secondary signals y�(t) =
y(t, �), y(t, �) = f(x⃗(t, �)) with μ ≡ (f ≥ 0), can be also seen
as piecewise-affine functions. We need to assume that y� is right-
continuous and admits everywhere a right-derivative

dy�+
dt

(t) ∶= lim
ε→0

y�(t + ε) − y�(t)
ε

.

These secondary signals are then completely represented by the se-
quence (ti, y�(ti), dy�(ti))i<ny�

, with a final or cut-off time tny .

Furthermore, they can be extended to t ∈ [0,∞) by assuming
y�(t) = y�(t1) for all t < t1 and y�(t) = y�(tny) for all t > tny .

Treating also in this case the location as a fixed coordinate, the com-
putation of the signals associated with the negation (¬), disjunction
(∨), and until (U[a,b]) will be the same as in the monitoring algo-
rithm described in [15]. Due to the complexity of such algorithm,
especially for the temporal operator, we refer the reader to [15] for
a comprehensive description.

Here we limit ourselves to describe the monitoring procedure for
the spatial somewhere operator �[w1,w2]. From Definition 4.2,

ρ(�[w1,w2]ϕ, x⃗, t, �) = max
�′∈B�

(ρ(ϕ, x⃗, t, �′)),

where B� = {�′ ∈ L∣(�′, �) ∈ E∗, �′ /= �,w1 ⩽ w(�′, �) ⩽ w2} is
a finite subset of locations. Let us fix two locations �1 and �2 in
B�, and denote by (ti, y�1(ti), dy�1(ti))i<ny�1

and (ti, y�2(ti),
dy�2(ti))i<ny�2

the sequences representing the signals ρ(ϕ, x⃗, �1)
and ρ(ϕ, x⃗, �2), which are assumed known by induction. We now
build the sequence of time points (ri)i<nz , containing the sorted
sampling times of y�1 and y�2 and the time points in which the
corresponding piecewise affine functions intersect. Note that nz ⩽
4×max{ny�1

, ny�2
} because there can be at most n�1 +n�2 inter-

sections and no more than n�1 +n�2 unique sampling instants. For
all i < nz, we let

z(ri) =max(y�1(ri), y�2(ri)).

and

dz(ri) =max(dy�1(ri), dy�2(ri)).

Now, if ∃�′ ∈ B� s.t. �′ /= �1 and �′ /= �2, we apply the same
algorithm to (ti, y�′(ti), dy�′(ti))i<ny�′

, the sequences represent-

ing the robustness signal ρ(ϕ, x⃗, �′) and the sequence (ri, z(ri),
dz(ri))i<nz obtained from the previous computation, iterating this
process until all the locations in B� have been considered. The re-
sulting sequence (ri, z�(ri), dz(ri))i<nz�

represents

ρ(�[w1,w2]ϕ, x⃗, t, �) as a piecewise affine function.

6. STOCHASTIC SEMANTICS
We discuss now how to extend the definition of the semantics of
SSTL to a stochastic system, following [6]. Each SSTL formula
ϕ is interpreted over a trajectory x⃗ = x⃗(t, �). Let us denote by D
the space of all possible trajectories of a CTMC X⃗(t, �) associated
with a patch-based population model (M,G,V). The standard
cylindric construction [9] turns this set into a metric measurable
space. The CTMC X⃗(t, �), in turn, induces a probability measure
on D. Furthermore, we can interpret the boolean and the quantita-
tive semantics of ϕ as functionals on the space D, assigning to each
trajectory x⃗ its corresponding truth value according to the boolean
semantics or its satisfaction degree according to the quantitative se-
mantics. In the boolean case, such a functional is Iϕ ∶ D → {0,1},
such that Iϕ(x⃗) = 1 if and only if x⃗ ⊧ ϕ, hence it identifies the
subset of trajectories of D that satisfy the formula ϕ. It follows that

P (ϕ) = P{x⃗ ∈ D ∣ Iϕ(x⃗) = 1} = P{x⃗ ∈ D ∣ x⃗ ⊧ ϕ}.

An analogous construction allows us to extend the robustness of
SSTL to PCTMC models: given a trajectory x⃗(t, �) of the PCTMC,
its robustness ρ(ϕ, x⃗,0) can be seen as a functional Rϕ from the
trajectories in D to R. It can be proved that Rϕ is measurable
(with respect to the Borel σ-algebra of the standard topology of D)
[6]. From this assumption, we can define the real-valued random
variable Rϕ = Rϕ(X⃗) with probability distribution:

P (Rϕ(X⃗) ∈ [a, b]) = P (X⃗ ∈ {x⃗ ∈ D ∣ ρ(ϕ, x⃗,0) ∈ [a, b]}) .

More details about this definition can be found in [6]. Applying
this definition to a stochastic model, we obtain a distribution of ro-
bustness degrees which can be summarised by the average robust-
ness degree of this distribution, E(Rϕ), giving a measure of how
strongly a formula is satisfied. This means that the satisfaction is
more robust when this value is higher.
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Figure 1: The graph of the population spatial distribution /lo-
cations distribution. Note that this is not the graph of the patch-
PCTMC model but just the graph of the locations. The nodes
�1, ..., �7 represent the different communities; the edges repre-
sent the connection between the communities through the water
basin, with the verse of the rows chosen in agreement with the
river flow. The red numbers correspond to the probability pi,j
to go from �i to �j and the green numbers correspond to the
values w of the distance between locations.

Numerical methods to compute the satisfaction probability or the
average robustness of a STL formula are not available, hence we
resort, as in [6], to statistical estimation, leveraging the monitoring
routines presented in the previous section. In particular, we use a
Bayesian statistical model checking approach to estimate the satis-
faction probability [25], and classic statistical tools for the average
robustness degree [6].

7. CASE STUDY
We consider a model of an epidemic of cholera, an infection of the
intestine caused by the bacterium Vibrio cholerae and a prominent
example of a waterborne disease [8, 29]. Typically, the infection is
transmitted by contaminated food or water. An explicit modelling
of the hydrological space where the infection spreads is therefore a
crucial aspect to understand and analyse this kind of disease. For
this reason this example is very suitable to show the potentiality of
this logic, in particular we will see how our logic can easily de-
scribe elaborated spatio-temporal behaviours by means of the spa-
tial operators. We represent space as a weighted oriented graph,
shown in Figure 1. The nodes represent the human communities
and the edges describe the links between water basins of different
areas. The idea is to analyse the diffusion of an epidemic along the
communities that live close to a river, so that edge directions are
chosen according to the direction of the water flow. There are two
agent classes: the bacteria and the individuals. The bacteria have
only one state (B) but they can be transported to different nodes
via the river. An individual, instead, can be in three different states:
susceptible (S) infected (I) and recovered (R), but cannot change
location. Ignoring human mobility is a simplification justified by
the fact that our focus here is to illustrate the logic at work, rather
than presenting a fully realistic model. Extension to more com-
plex scenarios, however, are relatively straightforward [29], and
can be easily described within our formal framework, so that anal-
ogous or more complex spatio-temporal logical properties can still
be checked.

The model of this system has state variables XS ,XI ,XR,XB ,
counting the number of susceptible, infected, and recovered indi-

viduals, and the concentration of the bacteria in each location. Dis-
crete space is described by the graph in Figure 1, which is equipped
with a weight function w ∶ E → R that returns the cost of each
edge. In this specific case, we will interpret the cost w(�i, �j) of
an edge between nodes �i and �j as the distance between them.
Recall that if two locations are not directly connected, w is equal
to the sum of costs of a shortest path between the two locations;
for example, in Figure 1, w(�1, �5) = w(�1, �2) + w(�2, �5) = 9.
The movement of bacteria from a location �i to a directly con-
nected location �j is specified by the inter-patch transitions νmov =
(mov,B, gmov). Here gmov(X(t, �), �i, �j) = lpijXB(t, �i) is
the rate function, where l is the total water flow (assumed equal for
all nodes) and pij is the fraction of water flowing out of node �i
which reaches node �j . Such a rate function describes the bacteria
mobility as a passive mobility due to the water flow. The sum of
the values pij associated with the outgoing edges of each location
has is equal to one, i.e ∑k ∣ (�i,�k)∈E

pik = 1, except for the loca-
tions �6 and �7 where is less than one to capture the continuation
of the river. The other transitions describe the change of the in-
dividual state, according to a model similar to the SIR epidemics
introduced in Example 2.1, with the notable difference of the in-
fection rate, which now depends on the concentration of bacteria
in water and not directly on the number of infected individuals. We
also consider transitions describing decrease or growth of the bac-
terium population.

The patch population model is thus ((S,X,T ),G,V), where S =
{S, I,R,B} is the set of states, X = (XS ,XI ,XR,XB) is the
state vector, G = ({�1, ..., �n},E,w) is the graph as in Figure 1,
V = {(mob,B, gmob)} is the set of inter-patch transition, as de-
scribed above, and T is the set containg the following intra-patch
transitions. More specifically:
⋆ τinf is the infection transition: S+B → I+B with rate finf(X) =
β(�) XB

K+XB
XS , where K is the half saturation constant, β(�) rep-

resents the site-dependent rate of exposure to contaminated water,
⋆ τSnat is the natality transition: ∅ → S, with rate fSnat(X) =
μH(�), where μ is the human mortality rate and H(�) is the size
of the community in location �,
⋆ τSmort is the mortality of a susceptible individual: S → ∅, with
rate μ,
⋆ τImort is the mortality of a infected individual: I → ∅, with rate
μ + α, where α is the mortality rate due to cholera,
⋆ τrec is the recovery transition: I → R, with rate γ,
⋆ τBdeg is the degradation transition: B → ∅, with rate μB ,
⋆ τBgrowth is the bacterial growth transition: ∅ → B, with rate
function fSnat(X) = p

W
XI , where p is the rate at which bacteria

are produced by one infected person and W is the volume of the
contaminated water.

We implemented this model in Matlab, both as a set of differen-
tial equations and as a stochastic process. In order to compute the
boolean and the quantitative semantics of SSTL formulae, we ex-
ploited the routines provided by the Breach toolbox [14], adapt-
ing them to check SSTL formula. ODEs describing the dynam-
ics of the systems, obtained from the prescriptions of Section 2,
have been numerically integrated using a Matlab built-in solver.
The stochastic interpretation of the population model, instead, has
been analysed by a dedicated Java implementation integrated
within Breach, combining standard Monte Carlo simulation (by
the Gillespie algorithm [22]) and Bayesian statistical model check-
ing [25].

The first spatio-temporal behaviour that we consider is how the epi-
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(a) Mobility rate vs Robustness

(b) Robustness distribution

Figure 2: (a) Dependency of the robustness degree on the mo-
bility rate (for the ODE interpretation of the model). (b) Em-
pirical robustness distribution of the formula 3 with w1 = 12
and w2 = 15 and Tinf = 5, obtained from 1000 simulation runs.

demic propagates along the river. The idea is to consider a model
that starts with the infection in just one location, �1, and then to
check if the infection has propagated at a certain distance from �1
after a certain time. This behaviour can be captured by the SSTL
formula:

ϕ1 = F[0,Tinf ]
�[w1,w2] (XI > cinf ), (3)

verifying it in location �1. The exact meaning of the formula is:
eventually, in less than Tinf unit time, the number of infected in-
dividual becomes more than cinf in a location � with w(�1, �) ∈
[w1,w2], i.e. at a distance from location �1 equal or greater than
w1 and equal or less than w2.

We analyse a system with 7 locations, all with the same size, with
distance between locations w(�i, �j), in agreement with the green
integer values labelling the edges in Figure 1. As initial variables
we set, for all the locations apart �1, the same number of suscep-
tible individuals, XS = 500, and we start with zero infected indi-
viduals, XI = 0; instead, for �1 we set 100 infected individuals and
400 susceptible. There are no recovered individuals at the begin-
ning. We set also the bacterium concentration equal to zero in all
the locations except �1. The parameters of the model have been
set as μ = 0.0005,H(�i) = 500, β = 1,K = 5, γ = 0.2, α =
0.0004, μB = 0.228, p = 0.2,w = 50, l = 0.5 while the matrix
(pij)i,j≤7 has as non-zero entries those specified in Figure 1. For
the formula parameters, we set w1 = 12 and w2 = 15, cinf = 150
and Tinf = 5 unit times.

In Figure 2, we show some results of the monitoring of this for-
mula. In the top panel, we consider the ODE interpretation and
show how the robustness score increases as a function of the mo-

bility rate. In the bottom panel, we show the empirical distribution
from 1000 runs of the robustness degree from the stochastic model,
with vertical lines denoting the average (red lines) and conditional
averages on the formula being false/ true (green lines). Changing
the mobility rate in the stochastic model from 0.3 to 0.6, the sat-
isfaction probability varies from 0.397 to 0.975, while the average
robustness score varies (monotonically) from -16.93 to 52.72. We
stress here how the robustness score can be used for system design
purposes, trying to robustly match spatio-temporal SSTL specifica-
tions, following e.g. [6].

In order to illustrate in more detail the expressive power of this
logic, we discuss now two additional properties, using the follow-
ing building blocks:

ψ1 = F[0,Tstart](�[0,wnear](XI > cinf )))

ψ2 = (F[Tstart,Tstart+DT ] �[wfar,dmax] (XI > cinf ))

The first one is �[0,dmax](ψ1 �→ ψ2) , stating that a large in-
fection (with at least cinf individuals) happening at some time
t ∈ [0, Tstart] and localised within distance wnear from a given
reference point, will spread further away, at a location at distance
between wfar and dmax, at some time t′ ∈ [Tstart, Tstart +DT ].
Furthermore, this is true for every reference point (say at distance
at most dmax from �1). Checking this formula on 1000 runs of
the stochastic model, with parameters wnear = 3, wfar = 13,
dmax = 15, Tstart = 1 and DT = 4, we obtain a satisfaction prob-
ability of 0.9220± 0.0085 (all results reported at 95% confidence),
and an average robustness degree of 42 ± 0.8771. The robustness
score for the ODE interpretation, instead, is 30.26.

The other formula we consider is ψ2 �→ ψ1, stating that a high
infection level at a far-away location at a late time must have been
high at a nearer location some time before, i.e. that the current ref-
erence point is close to the epicentre of the epidemic. In this case,
with the same parameters of the previous formula, verifying it in
location �2, we obtain a satisfaction probability of 0.997 ± 0.0017,
an average robustness score of 55.48 ± 0.5677 and a robustness
score of the ODE model of 58.08.

In general, we can observe how the ODE interpretation generates
robustness scores that are in agreement to the ones of the stochas-
tic model, at a much cheaper computational price. This may be
the effect of some convergence theorem at work, and may be ex-
ploited for system design purposes, as numerically solving ODEs
is in general computationally cheaper than analysing or simulating
stochastic models.

8. DISCUSSION
In this paper we presented Signal Spatio-Temporal Logic, an ex-
tension of Signal Temporal Logic with spatial operators. First we
formalized the definition of patch-based population model, embed-
ding a “classic” homogeneous population model into a discrete
space, represented as a weighted graph, and specifying movements
by dedicated inter-patch transitions. Then, we introduced SSTL,
gave it both a boolean and a quantitative semantics, and extended
the definition and the monitoring algorithms presented in [15, 28].
As a case study, we discussed an epidemic scenario of the spreading
of cholera among neighbouring communities, where space plays a
crucial role, showing how our logic is suitable to describe spatio-
temporal behaviour as the epidemic propagation along the river.
In this specific example we worked only with few patches, but the
same type of analysis can easily be applied to more complex spatial
structures, even with thousands of nodes. Furthermore, the same
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logics can be applied to more general notions of weighted graphs,
not necessarily representing a physical space. For instance, the
graph may represent sensors connected in a network, with weights
representing the energy cost of transmission.

As for future work, we want to apply our approach to transport net-
works in the context of smart cities, in particular to bike sharing
and bus transport networks. Another direction to investigate is the
extension of the semantics over a continuous space. In this case,
instead of Patch-CTMC or an ODE system we have to work with
spatio-temporal point processes or PDE systems. The main chal-
lenge is the design of efficient monitoring algorithms, as we cannot
rely anymore on simple extensions of those for STL. Another pos-
sible improvement is to consider a richer spatial operator like the
spatial until, which describes bounded regions, extending its inter-
pretation with metric constraints [13]. Finally, we plan to release an
implementation of the monitoring algorithms, extending the system
design procedures of [6] to spatio-temporal properties. We will also
consider the problem of learning spatio-temporal formulae satisfied
by a model with high probability, or effectively discriminating two
models, combining ideas of [7] with the spatio-temporal machine
learning tools of [33].
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