
PETFEN: A Performance Evaluation Tool for Flow-Level
Network Modeling of Ethernet Networks

Fabien Geyer1,2 Stefan Schneele1 Georg Carle2

1Airbus Group Innovations 2Technische Universität München
Dept. TX4CP Institut für Informatik, I-8

D-81663 München, Germany D-85748 Garching b. München, Germany
{fabien.geyer, stefan.schneele}@airbus.com carle@in.tum.de

ABSTRACT
We present in this paper PETFEN, a Performance Evalua-
tion Tool for Flow-level network modeling of Ethernet Net-
works. Flow-level network models are a useful tool to di-
mension and predict various performances of networks with
TCP and UDP flows, providing information such as mean
flow bandwidths, link utilizations or queue sizes. While the
literature on flow-level network models is extensive, there is
still a lack of tools for numerical evaluations on user pro-
vided topologies. In this paper, we describe the three com-
ponents of PETFEN: (i) an effective domain specific lan-
guage used for algorithmically describing topologies, (ii) a
mathematical toolbox for the numerical evaluation of flow-
level network models on the provided topologies, (iii) mod-
ules for the evaluation of the topologies with external tools.
Via various numerical evaluations, we compare the results
of PETFEN with results of SimGrid, another tool based on
flow-level network models, as well as results of the discrete
event simulator OMNeT++.

Categories and Subject Descriptors
I.6 [Computing Methodologies]: Simulation and Model-
ing; C.2 [Computer Systems Organization]: Computer-
Communication Networks

General Terms
Theory, Measurement, Performance

Keywords
Flow-level network modeling, Network traffic modeling, Per-
formance evaluation

1. INTRODUCTION

While tools for performance evaluation of networks with
TCP or UDP flows are abundant, they are generally based
on packet-level discrete event simulation, with only a few
tools using flow-level network models. The use of flow-level

models has risen with the recent need of scalability for the
evaluation of large networks, where traditional simulators
are too slow to cope with the large number of nodes, such as
for instance grid networks. Mathematical models of network
also enable research to better understand, adjust and opti-
mize the behavior and performance of network protocols.

We propose here a tool with the following goals: (i) provide
a convenient way to describe Ethernet topologies and flows
which is human writable and readable, while enabling re-
searchers to perform parameter studies in the most flexible
way; (ii) evaluate those topologies with the so-called flow-
level network mathematical modeling framework described
later in Section 3, (iii) provide a convenient way to compare
numerical evaluations of mathematical models with other
tools, such as discrete event simulators or emulators. This
paper presents PETFEN, our solution for achieving those
goals. PETFEN was programmed in Java, and uses a special
Lisp-based domain specific language to describe and gener-
ate network topologies and flows procedurally.

This work is structured as follows. In Section 2, we present
related work. Section 3 presents partially the mathematical
models used by PETFEN. Section 4 gives an overview of the
internal architecture of the tool. With Section 5, we present
the main interface of PETFEN, namely its dedicated domain
specific language for describing topologies. In Section 6, we
compare PETFEN with another similar tool as well as the
results of the discrete event simulator OMNeT++. Finally
Section 7 summarizes and concludes our work.

2. RELATED WORK
We present here the few tools using flow-level network mod-
els. To the best of our knowledge, there are no other avail-
able tool using similar mathematical models for modeling a
network.

OptorSim [5] is a tool designed to study data replication
on grids, where communications are modeled using a flawed
fair bandwidth sharing. As noted by the authors themselves,
and documented in the BUGS file of the OptorSim distri-
bution, the implemented bandwidth sharing give too pes-
simistic results on networks with more than one bottleneck.

SimGrid [8] is a more general tool for the study of grids.
Various mathematical models of flow-level networks can be
used, the default one being a modified max-min bandwidth
sharing fitted to grid networks [19], which supports the effect

While tools for performance evaluation of networks with
TCP or UDP flows are abundant, they are generally based
on packet-level discrete event simulation, with only a few
tools using flow-level network models. The use of flow-level

Tool Mathematical Model Results Par. study Cr. traff. Sched. Int. w/ other tools

OptorSim [5] Fair sharing with bug Traces No flex. � � �
SimGrid [8] B:[15] (max-min), D:[19] Traces Some flex. � � GTNetS, ns3
fs [18] B:[7, 16] Traces No flex. � � �
PETFEN B:[7, 17], D:[10, 11] Mean perf. High flex. � � OMNeT++, ns2, mininet

Table 1: Comparison of existing tool using flow-level network modeling. Abbreviations used: “perf.” = per-
formances, “B:”= Base model, “D:”= Detailed model, “Par. study”= Parameter study, “flex.”= flexiblility,
“Cr. traff” = Cross traffic modeling, “Sched.” = Packet scheduling modeling, “Int. w/” = Interaction with.

of cross-traffic on TCP. Results of SimGrid for the evalua-
tion of TCP flows were shown to be accurate in [19]. Like
PETFEN, it also includes modules for interacting with ex-
ternal tools (ns3 and GTNetS).

fs [18] was proposed more recently, with the goal of gener-
ating representative flow export records of various applica-
tions, with also a focus on scalability. While using a similar
approach than ours, fs requires the user to predefine the
packet drop probability of flow, which in case of Ethernet
networks is not straightforward.

While those tools propose some interesting features, we found
that they do not meet all of our requirements for the study of
Ethernet networks, namely: (i) no tool supports packet-level
scheduling, nor the evaluation of queue sizes in switches,
(ii) parameter studies are often not flexible enough and re-
quire computer generated configuration files to be really effi-
cient, (iii) those tools can be viewed as simulators, meaning
that the results they produce are based on traces of prede-
fined or pseudo-random events, while we aim at having mean
performances. Table 1 summarizes the comparison between
the various tools.

3. FLOW-LEVEL NETWORK MODELING
We present in this section the underlying mathematical mod-
els used and implemented in PETFEN. We give here only
a brief overview of how to model an Ethernet network with
switches supporting a drop-tail policy, and with long-lived
TCP flows. We refer to [10] for more details on the mathe-
matical modeling.

Flow-level modeling is based on previous efforts on TCP
packet-level models, where the throughput of a TCP connec-
tion is defined as a function of loss probability and round-trip
time (RTT). The two prominent packet-level models are the
so-called square-root formula [16], and the PFTK formula
[17]. Using those packet-level models, flow-level models have
been developed using fixed point evaluations in order to eval-
uate the steady-state throughput of multiple TCP flows. We
refer to [4, 6, 9, 12] for early work on the subject.

We target the performance evaluation of networks where
entities communicate using standard Ethernet. Computers
are connected through switches and communicate with each
other either by using protocols on top of TCP, or by using
fixed rate flows (streaming) which is considered here to be
UDP based. For the scope of this paper, we consider that all
communications are unicast and that the routing is static.

The network is composed of Ethernet switches functioning

on the principle of store-and-forward. Links between nodes
of the network are standard Ethernet cables, and can have
different link speed. As we study Ethernet LANs with low
latencies, meaning networks where queuing delay has a large
influence on end-to-end delays, we do not neglect queuing
delay in switches. When discussing packet size and flow
throughput in the rest of the paper, we consider them from
the Ethernet point of view.

3.1 Flow-level network model
Our flow-level network model consists of servers, which rep-
resent queues of the network, as well as flows, which repre-
sent communications between the nodes of the network.

We define a server as an entity receiving packets and for-
warding them on a link. A server, noted here sk with k ∈ N,
is defined by the following parameters: Ck is the maxi-
mum output bandwidth, Dk is an additional delay (which
can be used to model propagation and processing delay),
Fk = {fn}k is the set of flows going through this server,
Qk the buffer size of the server as the result of the func-
tion HQ

k (F) depending on a set of flows F , pk the drop
probability of the server as the result of the function Hp

k (F)
depending on a set of flows F . Details about the functions
HQ

k and Hp
k depend on which model to use. The case of a

drop-tail queue is addressed in Section 3.3.

We define a flow as a sequence of packets sent from a par-
ticular source to a particular unicast destination of a spe-
cific transport connection or media stream. A flow, noted
here fi with i ∈ N, is defined by the following parameters:
Si = {sn}i the path of servers traversed by the flow from
source to destination, and ri the bandwidth of a flow at its
source as the result of the function ρi(S) depending on the
path of servers S. The definition of ρi for infinite TCP flow
is addressed as an example in Section 3.2. We also define
the throughput of a flow as the rate of successful messages
delivered to the destination. According to this definition,
if a protocol is specified by requests and replies, two flows
have to be used. We also define Si as the path which will
be used for the reply packets of fi.

Based on those parameters, we describe the behavior of a
network using the axioms presented hereafter.

Axiom 1. The end-to-end drop rate e2ep of the path of
servers S is defined by:

e2ep(S) = 1−
∏
k∈S

(1− pk) (1)

Axiom 2. The aggregated ingress bandwidth of server sk
is defined by the sum of bandwidth of the set of flows Fk

traversing the server:

Binp
k =

∑
i∈Fk

[ri · (1− e2ep(U(Si, sk)))] (2)

where U(Si, sk) corresponds to the set of servers the flow i
traverses before reaching sk.

Axiom 3. The egress bandwidth of server sk is equal to:

Bout
k = (1− pk) ·Binp

k (3)

and must satisfy the constraint:

Bout
k ≤ Ck (4)

Axiom 4. The end-to-end delay e2eD of a frame of size
M along the set of servers S is defined by:

e2eD(S,M) =
∑
k∈S

((M +Qk) · Ck +Dk) (5)

We account in Equation (5) for the forwarding time of the
frame (M ·Ck), the time needed to process the queue (Qk·Ck)
as well as propagation and processing delay (Dk).

Axiom 5. The round-trip delay time for a flow with a
request frame of size Mreq and a reply size of Mrsp is:

RTT (S,Mreq,Mrsp) = e2eD(S,Mreq)+e2eD(S,Mrsp) (6)

3.2 Long-lived TCP flow model
For this small overview, we consider here that TCP is used
to transfer large data, meaning that we only account for the
congestion avoidance phase, and we call this type of flows
long-lived TCP flows.

We propose to use here a well-known TCP model based on
TCP Reno. Other congestion-avoidance algorithms may be
included following the same methodology. We define W as
the maximum window size of a TCP connection, in number
of packets.

Axiom 6. In case of a network without loss (e2ep(S) =
0), the average bandwidth of TCP is limited by:

ρe2ep(S)=0(S) =
MSS ·W

RTT (S,MSS,MACK)
(7)

with MSS the maximum segment size, W the maximum
windows size and MACK size of a TCP ACK packet.

In case of packet loss, we use the bandwidth model devel-
oped in [17], also known as the PFTK formula which mod-
els the bandwidth of the TCP Reno protocol. We use here
the approximated version of the PFTK formula, where the
bandwidth of TCP connection is defined as the minimum of
Equations (7) and (8).

MSS

RTT
√

2bp
3

+ T0 min

(
1, 3

√
3bp
8

)
p(1 + 32p2)

(8)

with p the drop probability, T0 the sender timeout delay,
and b the number of packets that are acknowledged by a
received ACK.

We note that while fs uses a model similar to Equation (8),
it lacks the part presented in Equation (7). For an increased
accuracy, the bandwidth of the flow of acknowledgments has
also to be taken into account. We refer to [10] for how to
model such behavior. This approach has also been used in
SimGrid, but not in fs.

3.3 Drop-tail First-In-First-Out queue
With a drop-tail FIFO queue, packets are served in their
order of arrival. When the queue has no more space avail-
able for storing arriving packets, packets are simply dropped.
The bandwidth available to the queue is noted CQ.

3.3.1 Packet drop function Hp(F)
We consider here that the queue drop packets as soon as
the incoming bandwidth is superior to the allowed output
bandwidth.

Axiom 7. The packet drop function of a drop-tail FIFO
queue is expressed as followed:

Hp(F) =

[
Binp − CQ

]+
Binp

(9)

with [x]+ = x if x ≥ 0, and 0 otherwise.

Equation (9) guarantees that Bout ≤ CQ as defined in Equa-
tion (4).

3.3.2 Queue size function Hq(F)
We model the queue size as follows:

Axiom 8. The queue size function of a drop-tail FIFO
queue is expressed as followed:

Hq(F) =

{
MQ if Binp > CQ

max
{
q
∣∣Bout(q) = maxBout

}
otherwise

(10)

The queue is considered to be full (and equal to the maxi-
mum buffer size MQ) when the incoming bandwidth is su-
perior to the allowed output bandwidth. This is modeled
by the first case of Equation (10). When the queue is not
full, the queue size will depend on how many packets may
be transfered by the flows. The queue size corresponds then
to the maximum number of bits that has no impact on the
bandwidth of the flows going through the queue. This is
modeled by the second case of Equation (10).

3.4 Solving the model
As presented by our axioms previously listed, we have the
following relation: flows react on network changes by ad-
justing their packet sending rate, while the network reacts
on flows by queuing and dropping packets.

The performance evaluation of the system is equivalent to
finding the values Qk, pk and ri of the different servers and

flows which lead to an equilibrium or fixed point of the sys-
tem described by the different axioms previously enumer-
ated.

Algorithm 1 describes the procedure to find the equilibrium
of the system. We distinguish two parts in the algorithm.
The first part (lines 1 to 5) initializes the variables Qk, pk
and ri to 0. The second part (lines 6 to 13) evaluates the
functions until the fixed point is reached.

While a proof of existence of an equilibrium point was al-
ready given in [4], we define a safeguard function in order to
avoid an infinite loop (line 12) in case an equilibrium can-
not be reached. The simplest function to achieve this is to
limit the number of iteration of the loop (line 6 to 13). An
alternative way is to look at the evolution of Qk, pk and ri,
and determine if an equilibrium is reachable.

Algorithm 1 Equilibrium algorithm

Require: Set of servers S
Require: Set of flows F
1: for all k = 0 : |S| do
2: Qk ← 0
3: pk ← 0
4: for all i = 0 : |F | do
5: ri ← 0

6: while equilibrium not reached do
7: for all k = 0 : |S| do
8: Qk ← HQ

k (Fk)
9: pk ← Hp

k (Fk)
10: for all i = 0 : |F | do
11: ri ← ρi(Si)
12: safeguard() � Function to avoid infinite loop
13: end while

4. PETFEN GENERAL ARCHITECTURE
PETFEN is a Java based tool for the numerical evaluation
of networks, using the mathematical tools and axioms pre-
sented in Section 3. Its architecture can be divided into
four parts, as presented in Figure 1. Classes for describ-
ing an Ethernet topology and its attributes form its base:
computer, network card, queue and scheduler. A topology
corresponds to a graph of those classes. Additionally, there
are classes for TCP and UDP flows, which use this graph
for the routing. A topology can be created either directly
by using the available Java API, or via a domain specific
language as detailed later in Section 5.

This graph of objects representing the various elements of
the network is used by the flow-level network modeling tool-
box, which is our implementation in pure Java of the results
presented in [10, 11], and briefly summarized in Section 3.

The graph is also used by various modules for interacting
with external tools. Namely we developed modules for ns2
[3], OMNeT++/INET [2, 1], as well as experimental mod-
ules for mininet [14] and SimGrid [8]. The modules handle
the following tasks: (i) export of the topology and configu-
ration of the flows sources and destinations for the external
tool, (ii) execution of the external tool with the specified
topology, (iii) import of the results of the tool for easier

External
tool export
and results
import

External tool
(ns2, mininet,
OMNeT++,
SimGrid)

Lisp-based
Domain
Specific
Language

PET
FEN

Topology description base classes

Flow-Level
Network
Modeling
Toolbox

Figure 1: Architecture of PETFEN

comparison with the results of the mathematical toolbox.
This enables us to easily validate and compare the numeri-
cal results from the mathematical toolbox against other well
established methods and tools.

5. PETFEN DSL AND SCRIPTING
In order to describe the studied topologies, tool creators
generally use one of the following solutions: (i) a Graphi-
cal User Interface (GUI), (ii) a markup language (ex: XML,
JSON, CSV), (iii) a dedicated Application Programming In-
terface (API), (iv) a Domain Specific Language (DSL). One
important aspect of a tool is to enable so-called parameters
studies, meaning that having a base network, researchers are
generally interested into how it behaves when parameters
change (ex: number of users using the network, or latency
of a link). While the first two solutions can offer such capa-
bility, they generally lack in term of flexibility. This is why
we focused on the two last solutions for PETFEN.

As PETFEN is written in Java, we can take advantage of the
Java Virtual Machine (JVM) and its interoperability with
a variety of languages for defining a DSL. We chose to use
Clojure [13] for this task, a functional Lisp dialect. Being a
Lisp dialect, it enables us to have: (i) a compact programing
and markup language which is easily understood and used,
as shown in Section 5.1; (ii) the ability to define and use
functions and macros, giving us great flexibility when doing
parameters studies, as shown in Section 5.2.

5.1 Basic commands
PETFEN DSL is based on a few number of Clojure functions
for describing a network topology and its flows.

1: (node <name> <opt .>)
2: (l ink <node 1> <node 2> <speed> <opt .>)
3: (tcpflow <name> <source> <de s t .> <opt .>)
4: (udpflow <name> <source> <de s t .> <opt .>)
5: (queue <opt .>)
6: (scheduler <t ype> <queue 1> . . . <opt .>)

Thanks to Clojure’s named keywords, options can be easily
specified (noted opt. in the previous list). For example, for
defining a drop-tail FIFO queue with a maximum number
of 50 packets and a weight of 2, we have:

1: (queue : qtype DROPTAIL :K 50 :W 2)

We describe below a small example of a dumbbell topology,
as illustrated in Figure 2.

1: (node Cl i ent1) (node Cl i ent2)
2: (node Server1) (node Server2)

Cli2

SW1 SW2

Srv1

Srv2

Cli1 TCP Flow F1

TCP Flow F2
Variable

latency

Figure 2: Dumbbell topology

3: (node S1) (node SW2)

5: (l ink SW1 SW2 (Mbps 100))
6: (l ink Cl i ent1 SW1 (Mbps 100))
7: (l ink Cl i ent2 SW1 (Mbps 100))
8: (l ink Server1 SW2 (Mbps 100))
9: (l ink Server2 SW2 (Mbps 100))

11: (tcpflow Flow1 Cl i ent1 Server1)
12: (tcpflow Flow2 Cl i ent2 Server2)

5.2 Parameter studies and scripting
Thanks to the use of a full programing language for de-
scribing the topologies, parameter studies can be easily done
with PETFEN. Topologies can be procedurally constructed
using any standard Clojure function. The example below
describes the same dumbbell topology, but with a variable
number of client/server pairs. With lines 1 to 12, we first
write a function which generates a topology according to
N , the desired number of clients and servers. Lines 6 to
11 correspond to the loop generating the N clients, servers
and flows. On line 12 that we trigger the evaluation of the
generated topology, either with mathematical models or via
external tools. Then with lines 14 and 15, we evaluate this
function against the desired values of N , here from 1 to 100.

1: (defn generateTopology [N]
2: (newTopology (str ”Topology N=” N))

4: (node SW1) (node SW2)
5: (l ink SW1 SW2 (Mbps 100))
6: (dotimes [i N]
7: (let [c l i (node (str ”C l i en t ” i))
8: s rv (node (str ”Server ” i))])
9: (l ink c l i SW1 (Mbps 100))

10: (l ink s rv SW2 (Mbps 100))
11: (tcpflow (str ”Flow” i) c l i s rv))
12: (performAnalysis))

14: (doseq [N (range 1 100)]
15: (generateTopology N))

6. EVALUATION
We present here an evaluation of PETFEN across various
Ethernet topologies. As noted in Section 2, there are only
a few tools to compare it with. We decided to focus on
SimGrid1, as it is the only tool which also models the ef-
fect of cross-traffic on TCP, and hence the one which is the
most likely to give the most accurate results out of the other
tools. In order to have a reference to which we can compare
the analytical results of the two tools, we used the discrete
event simulator OMNeT++/INET [2, 1]. We focus here on

1SimGrid 3.11.1 (2014-06-02 07:47), C version

OMNeT++ PETFEN SimGrid

0

25

50

75

100

2.5 5.0 7.5 10.0 2.5 5.0 7.5 10.0 2.5 5.0 7.5 10.0
Latency between SW1 and Srv2 (ms)

T
h
ro

u
gh

p
u
t

(M
b
p
s)

Flow

F1

F2

PETFEN SimGrid

0.0

0.5

1.0

20

40

60

2.5 5.0 7.5 2.5 5.0 7.5
Latency between SW1 and Srv2 (ms)

R
el

at
iv

e
er

ro
r

(%
)

Flow

F1

F2

Figure 3: Bandwidth sharing between the two flows
with different round-trip times and relative error
with OMNeT++ as a reference

standard switched Ethernet networks, where switches use a
drop-tail policy. We used the default values for SimGrid and
created a scenario where large messages are sent, following
the example located in the folder examples/msg/gtnets of
the SimGrid distribution.

We first look at the dumbbell topology presented in Figure 2,
where the latency between SW2 and Srv2 varies between
1ms and 10ms. The results of the evaluation are presented
in Figure 3. As expected, this topology is a good exam-
ple to illustrate the unfairness of TCP regarding round-trip
times. As queue sizes are not modeled in SimGrid, it gives
large relative error compared to the simulations, as queue
sizes largely influence round-trip times in Ethernet. PET-
FEN, which models queue sizes, gives accurate results with
a relative error between 0 and 1.5%.

We then proceed to evaluating four randomly generated tree
topologies as illustrated in Figure 4. The number of nodes
and their links are taken randomly between two extremal
values. Each node will then establish TCP communications
with at least one random destination. Details about how
those topologies were generated can be found in [10]. The
results are presented in Figure 5, where we look at the rela-
tive error between the analytical results and the OMNeT++
simulations. Those errors are comparable with the ones of
the dumbbell topology. PETFEN gives results with a rela-
tive error below 6% for all flows of the topologies. SimGrid
gives error of up to 100%, leading us to the conclusion that
SimGrid is more adapted to topologies where queuing delays
can be ignored.

7. CONCLUSION
We presented in this paper PETFEN, a Performance Evalu-
ation Tool for Flow-level network modeling of Ethernet Net-
works. While there are already some tools using flow-level
modeling, PETFEN is the first one focusing on Ethernet
networks and its particularities, such as taking into account
queuing delays and packet-level scheduling algorithms.

16

8

13

11
8 14

7

15

16

9

10

99

7

13

13

16

13

7

22

11

7

31

11

10

15

44

8

11

12

11

14

8

Figure 4: Four randomly generated topologies. The
width and the label of the edges represent the num-
ber of TCP flows (for edges with more than 5 flows).

PETFEN SimGrid

0.01

1.00

1

10

100

0 20 40 60 0 20 40 60
Flow ID (ordered by increasing relative error)

R
el

at
iv

e
er

ro
r

(%
)

Topology 0 1 2 3

Figure 5: Relative error between the tools and OM-
NeT++ on the tree topologies of Figure 4

We presented in this paper the mathematical framework be-
hind PETFEN and its general architecture. Its domain spe-
cific language based on a functional Lisp dialect was pre-
sented, allowing researchers to perform parameter studies in
a flexible and efficient way. PETFEN was then set side by
side to SimGrid on some topologies, highlighting the advan-
tage of PETFEN compared to SimGrid for the evaluation
of Ethernet networks. We refer the readers to [10, 11] for
further numerical evaluations of PETFEN.

We would like to extend PETFEN in order to work with
more advanced traffic patterns, such as web or video stream-
ing traffic. Finally we wish to perform an intensive compari-
son between PETFEN and emulations or real testbed evalu-
ations. PETFEN is still under active development, and will
be released soon under an open-source license.

8. REFERENCES
[1] INET Framework for OMNeT++/OMNEST.

http://inet.omnetpp.org/, Accessed 01.08.2014.
[2] OMNeT++ 4.5 Network Simulation Framework.

http://www.omnetpp.org, Accessed 01.08.2014.

[3] ns-2, Network Simulator (ver. 2.35).
http://nsnam.isi.edu/nsnam/index.php/Main Page,
Accessed 04.04.2014.

[4] E. Altman, K. Avrachenkov, and C. Barakat. TCP
Network Calculus: The case of large delay-bandwidth
product. In Proceedings of INFOCOM 2002, volume 1,
pages 417–426. IEEE, June 2002.

[5] W. H. Bell, D. G. Cameron, A. P. Millar, L. Capozza,
K. Stockinger, and F. Zini. OptorSim – A Grid Simulator
for Studying Dynamic Data Replication Strategies.
International Journal of High Performance Computing
Applications, 17(4):403–416, Nov. 2003.

[6] T. Bu and D. Towsley. Fixed Point Approximations for
TCP behavior in an AQM Network. In ACM
SIGMETRICS Perform. Eval. Rev., volume 29, pages
216–225. ACM, 2001.

[7] N. Cardwell, S. Savage, and T. Anderson. Modeling TCP
Latency. In Proc. of INFOCOM 2000, volume 3, pages
1742–1751. IEEE, Mar. 2000.

[8] H. Casanova, A. Legrand, and M. Quinson. SimGrid: a
Generic Framework for Large-Scale Distributed
Experiments. In Proceedings of the Tenth International
Conference on Computer Modeling and Simulation,
UKSIM ’08, pages 126–131, Washington, DC, USA, 2008.
IEEE Computer Society.

[9] V. Firoiu, I. Yeom, and X. Zhang. A Framework for
Practical Performance Evaluation and Traffic Engineering
in IP Networks. In IEEE International Conference on
Telecommunications, 2001.

[10] F. Geyer, S. Schneele, and G. Carle. Practical Performance
Evaluation of Ethernet Networks with Flow-Level Network
Modeling. In Proc. of the 7th International Conference on
Performance Evaluation Methodologies and Tools
(VALUETOOLS), pages 253–262. ICST, ACM, Dec. 2013.

[11] F. Geyer, S. Schneele, and G. Carle. Towards Stochastic
Flow-Level Network Modeling: Performance Evaluation of
Short TCP Flows. In Proc. of the 39th IEEE Conference
on Local Computer Networks (LCN), pages 462–465. IEEE,
Sept. 2014.

[12] R. Gibbens, S. Sargood, C. Van Eijl, F. Kelly,
H. Azmoodeh, R. Macfadyen, and N. Macfadyen.
Fixed-Point Models for the End-to-End Performance
Analysis of IP Networks. In ITC specialist seminar, 2000.

[13] R. Hickey. The Clojure Programming Language. In
Proceedings of the 2008 Symposium on Dynamic
Languages. ACM, July 2008.

[14] B. Lantz, B. Heller, and N. McKeown. A Network in a
Laptop: Rapid Prototyping for Software-Defined Networks.
In Proceedings of the 9th ACM SIGCOMM Workshop on
Hot Topics in Networks, Hotnets-IX, pages 19:1–19:6.
ACM, Oct. 2010.

[15] L. Massoulié and J. Roberts. Bandwidth Sharing:
Objectives and Algorithms. IEEE/ACM Trans. Netw.,
10(3):320–328, 2002.

[16] M. Mathis, J. Semke, J. Mahdavi, and T. Ott. The
Macroscopic Behavior of the TCP Congestion Avoidance
Algorithm. ACM SIGCOMM Comput. Commun. Rev.,
27(3):67–82, June 1997.

[17] J. Padhye, V. Firoiu, D. F. Towsley, and J. F. Kurose.
Modeling TCP Reno Performance: A Simple Model and Its
Empirical Validation. IEEE/ACM Trans. Netw.,
8(2):133–145, Apr. 2000.

[18] J. Sommers, R. Bowden, B. Eriksson, P. Barford,
M. Roughan, and N. Duffield. Efficient Network-wide Flow
Record Generation. In Proceedings IEEE INFOCOM 2011,
pages 2363–2371, Apr. 2011.

[19] P. Velho and A. Legrand. Accuracy Study and
Improvement of Network Simulation in the SimGrid
Framework. In Proceedings of the 2nd International
Conference on Simulation Tools and Techniques,
SIMUTOOLS. ICST, Mar. 2009.

