
A Model Transformation Tool: PMIF+ to QNAP

Catalina M. Lladó, Pere Bonet
Universitat de les Illes Balears

Dep. de Ciències Matemàtiques i Informàtica
Palma de Mallorca, Spain

cllado@uib.es, pere.bonet@gmail.com

Connie U. Smith
Performance Engineering Services

PO Box 2640
Santa Fe, NM 87504-2640 USA

www.spe-ed.com

ABSTRACT
An extension to the Performance Model Interchange Format
(PMIF+) to move models among tools has been recently in-
troduced. The original PMIF was limited to models solv-
able with efficient, exact solution methods such as mean
value analysis and product form solutions. The extensions
allow models with features that require simulation or ana-
lytical approximation solutions, such as passive resources,
workloads that fork into multiple concurrent workloads, etc.
This paper presents a tool for the automated transformation
from PMIF+ to Qnap, and explains some of the challenging
transformations required by the new PMIF+ features.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—performance
measures; C.4 [Modelling Techniques]: Experimentation

General Terms
Performance, Experimentation

Keywords
Interchange Format, Performance Models, Model Driven Per-
formance Engineering, SPE, Tool interoperability.

1. INTRODUCTION
The Performance Model Interchange Format (PMIF) is a
common representation of input required by all tools that
provide Queueing Network Models (QNM) solutions [7]. More
generally, MIFs (Model Interchange Formats) provide the
basis for easily transferring the model information among
modeling tools with either one import/export interface per
tool, or by an automated transformation from the MIF to
a tool’s input language. The QNM models may be created
by translating design models into performance models [1, 6].
They may be created by a tool that provides a graphical user
interface for specifying the model topology and parameters
then creates model interchange files. They may also be ex-

ported by one modeling tool in order to compare results to
other modeling tools.

The original PMIF was limited to models that could be
solved by efficient, exact algorithms (e.g., mean value and
product form solutions) to focus on the feasibility of the
model interoperability approach. Once feasibility was es-
tablished, PMIF+ [2] extended the scope to allow analytical
approximations or simulation solutions. Qnap [4, 5] is one
of the few modeling tools that solves models with all of the
features in PMIF+.

Some of the new features can be quite challenging to repre-
sent in QNM, such as workloads that fork into multiple con-
current workloads, and requests for passive resources that
may require queueing for the resource but no active service
from it. Demonstrating the viability of PMIF+ requires cre-
ating and solving models with these complexities. This pa-
per presents a tool that transforms models from PMIF+ to
Qnap’s input format and illustrates how to transform models
with these complex features. This information is also use-
ful for anyone who would like to create an import/export or
transformation for other modeling tools.

The PMIF+ meta-model is specified using the Eclipse Mod-
elling Framework (EMF) which allows for Model-to-model
(M2M) and Model-to-Text (M2T) transformations. The
PMIF+2Qnap transformation is developed using Acceleo [3]
which is a code generator based on templates that imple-
ments the OMG’s M2T specification.

2. PMIF+
The PMIF+2Qnap transformation tool’s input is a PMIF+
[2] model. PMIF+ extends the scope of PMIF supported
models to include features, such as

1. Fork/Split/Join Workload - A workload may Fork or
Split into one or more child workloads that execute
concurrently. Forked workloads later Join; the parent
workload waits until all child workloads Join, then the
parent workload resumes execution. Split workloads
do not join, they eventually complete and leave the
system.

2. Call/Accept/Return Synchronization Point - A work-
load may Call another workload and wait for the called
workload to signal that it has completed the request;
the called workload Accepts the request and Returns



Figure 1: PMIF+ meta-model

to the waiting workload.

3. Allocate/Deallocate Resource - When access to a pas-
sive resource is restricted, a workload may request ac-
cess and wait in a queue until the resource is Allocated.
When access to the resource is no longer needed the
workload Deallocates the resource. A scheduling pol-
icy determines the next workload to receive the Allo-
cation.

4. Wait/Queue/Set Event - An Event may be Set or
Cleared. Workloads may Wait or Queue for an event
to be Set. When an event is Set, all waiting workloads
and one queued workload may proceed.

Items 2-4 are examples of features that use PassiveEntities:
resources that are required for execution but provide no ac-
tive service themselves.

A broader set of arrival and service distributions as well as
queue scheduling disciplines, including priorities, is included.
The complete list is defined and represented in the PMIF+
meta-model in [2]. An excerpt presenting the new PMIF+
features is shown in Fig 1. The elements that are added for
PMIF+ are yellow in the figure (or not shaded gray if viewed
in black and white), some of the original PMIF elements are

shown in green (or shaded grey) for the comprehension of
the diagram, others are missing due to lack of space. We
describe a few of the new features in detail in this section as
background for the description of the transformation in the
next section.

A QueueingNetworkModel now has zero or more PassiveEn-
tities in addition to Nodes, Workloads and ServiceRequests.
There is a new Node called ForkJoin to handle Fork and Join
operations. When willJoin = T , it is a Fork and the parent
waits for all children (ForkWorkloads, see below) to complete
and return to the same node for Join. When willJoin = F ,
it is a Split; the parent continues execution and the children
workloads exit the system upon completion. The Server has
an extended schedulingPolicy as shown in Fig. 1. There is
also a new type of Workload, ForkWorkload that represents
a child workload with a maximum population that is created
by its parent at a ForkJoin node.

A new ServiceRequest, ServiceRequestPlus, specifies a com-
bination of active and passive service requests that can be
made at any node with an optional sequenceNumber which
specifies their order of execution when ordering is required
(sequence numbers are increasing but need not be consecu-
tive).



ActiveService requests specify a service time similar to the
TimeServiceRequest. They may use a special Probability-
Distribution or a load dependent service time. The latter is
specified as a string which will be interpreted by the tool.
PassiveService requests specify the command, the quantity,
and reference the PassiveEntity. Table 1 shows the types of
PassiveEntity and the commands associated with each.

Note that PassiveService does not normally block the server,
it only blocks the workload. It has an optional attribute,
blocksServer which is set to True when the server needs also
to be blocked.

Pas. Entity Commands
timer start/stop
event wait/queue/set/clear
mailbox send/receive
buffer get/put/create/destroy
resource allocate/deallocate
memory allocate/deallocate/add
token wait/queue/create/destroy
syncpoint callreturn/accept/return

Table 1: ServiceRequestPlus attribute options

3. COMPLEX TRANSFORMATIONS
The PMIF+2Qnap tool (Fig. 2) uses the Eclipse Modeling
Framework (EMF). The tool takes a model that conforms
to the PMIF+ meta-model and transforms it into the Qnap
input language. The transformations are implemented with
Acceleo [3] which is a code generator based on templates
that implement the OMG’s M2T specification. Acceleo is
also fully integrated in the EMF framework. Therefore the
transformation specification is created as a file with exten-
sion mtl. Fig. 2 shows how to execute a transformation with
Acceleo, with part of the mtl specification file for the trans-
formation also on the screen.

The ServiceRequestPlus is the key element that extends the
scope of supported models. The ForkJoin and ForkWorkload
are key to synchronization features of models. Therefore,
these two transformations are described next.

3.1 ServiceRequestPlus
A ServiceRequestPlus (SRP) can contain several Service el-
ements which can be active or passive. The PassiveService
elements can also be blocking or non-blocking (which is an
attribute). Figure 3 summarizes the main steps of a Ser-
viceRequestPlus transformation.

The way that Qnap can implement a PassiveService is using
an extra station for each server where the customers will go
while the PassiveService occurs. A PassiveService is the
execution of a Command on a PassiveEntity. Table 1 shows
the types of PassiveEntity and the commands associated
with each of them. Table 2 shows how Qnap can implement
the different passive entities and commands and so the way
it is implemented by the transformation.

In order to develop a correct transformation, several ap-
proaches were studied. Fig. 4 shows the final approach. The
transformation generates two Qnap stations for each Ser-
viceRequestPlus, one for the active services and one for the

Figure 3: ServiceRequestPlus transformation steps

Figure 4: SRP transformation approach

passive services. The active station always receives the in-
coming workload. If the first service is passive, the workload
receives no service and it is routed to the passive station as
shown in Fig. 4. However, there is still a problem: how
to treat sequences of services in which after an active ser-
vice multiple passive services block the server, and this may
occur multiple times. The solution adopted groups the con-
secutive services that are either active or passive with the
attribute blocksServer true and they are performed in the
active station whereas the passive services with blocksServer
false are performed one by one in the passive station. In
other words, in the resulting structure of the transformation
the transitions (transits in Qnap) between the active station
and the passive station are determined by the presence of
non-blocking passive services as shown in Fig 5. Therefore
sequences of services (either active services or passive ser-
vices that are blocking) on the same server are grouped for
them to happen sequentially.

3.2 ForkJoin
For a ForkJoin node, the transformation generates (as shown
in Fig. 6):

1. a splitter station, where the Qnap SPLIT command is
performed,

2. a router station for each type of customer created with
the splitter station, and

3. a fork station to model the exit of the ForkJoin. When
the WillJoin attribute is true, a Qnap MATCH oper-
ation is performed at the fork station. If WillJoin is



Figure 2: Execution of a transformation with Acceleo

Passive Entity Qnap entity Commands in Qnap
timer timer SETTIMER:ABSOLUTE/SETTIMER:CANCEL
event flag WAIT/WAIT/FREE/RESET
mailbox Resource (Multiple) + Flag V/P
buffer Semaphore (Multiple) PMULT/VMULT/VMULT/PMULT
resource Semaphore (Multiple) P/V
memory Semaphore (Multiple) PMULT/VMULT
token Semaphore (Multiple) WAIT/WAIT/VMULT/PMULT
syncpoint Semaphore (Multiple) P+ FREE + WAIT/V + WAIT/FREE

Table 2: Passive entities implementation in Qnap

Figure 6: ForkJoin transformation (WillJoin = F)

false, each son exits the system after its itinerary has
ended and the original client is sent directly from the

splitter station to the fork station.



Figure 5: Service grouping for ServiceRequestPlus

4. CONCLUSIONS
This paper presents the PMIF+2Qnap transformation tool
which has been developed using the Acceleo Model to Text
(M2T) transformation tool with Eclipse EMF. It demon-
strates how to convert the complex extensions for passive
resources and fork-join of workloads for those who would
like to interface their tool(s) with PMIF+. Models with the
PMIF+ extensions have been transformed and solved with
Qnap thus establishing the viability of the extensions. The
complete specification of the PMIF+ meta-model as well as
the tool source code and some examples can be found at
www.mifs.cat/pmif+/. A short tutorial on how to use Ac-
celeo with Eclipse EMF can also be found at the same url.

Acknowledgments
Smith’s participation was sponsored by US Air Force Con-
tract FA8750-14-C-0152, approved for public release with
clearance number 88ABW-2014-4880.

5. REFERENCES
[1] S. Balsamo and M. Marzolla. Performance evaluation of

UML software architectures with multiclass queueing
network models. In Proc. of the Fifth International
Workshop of Software and Performance (WOSP), July
2005.

[2] C. M. Lladó and C. U. Smith. Pmif+: Extensions to
broaden the scope of supported models. In Computer
Performance Engineering LNCS 8168. Proc. of the 10th
European Workshop, EPEW 2013, 2013.

[3] OBEO. Acceleo. www.eclipse.org/acceleo/.

[4] D. Potier and M. Veran. Qnap2: A portable
environment for queueing systems modelling. In
D. Potier, editor, First International Conference on
Modeling Techniques and Tools for Performance
Analysis, pages 25–63. North Holland, May 1985.

[5] Simulog. QNAP2 9.3: Reference Manual, 1996.

[6] C. U. Smith, V. Cortellessa, A. Di Marco, C. M. Lladó,
and L. G. Williams. From uml models to software
performance results: An SPE process based on XML
interchange formats. In Proc. of the Fifth International
Workshop on Software and Performance (WOSP),
pages 87–98, July 2005.

[7] C. U. Smith, C. M. Lladó, and R. Puigjaner.
Performance Model Interchange Format (PMIF 2): A
comprehensive approach to queueing network model
interoperability. Performance Evaluation, 67(7):548 –
568, 2010.


