
PerfCenterLite: Extrapolating Load Test Results for
Performance Prediction of Multi-Tier Applications

Varsha Apte
∗

Nadeesh T. V.
Department of Computer Science and Engineering

Indian Institute of Technology - Bombay,Mumbai 400 076, India
varsha,nadeeshtv@cse.iitb.ac.in

ABSTRACT
Performance modeling is an important step in the lifecycle of
a typical Web-based multi-tier application. However, while
most practitioners are comfortable carrying out load tests on
a Web application on a testbed, they find sophisticated per-
formance modeling tools difficult to use because many inputs
required by them are difficult to obtain. Chief among these
is the service times of various types of requests at various
resources in the multi-tier system (e.g. CPU execution time
required at the Web server by a “Login” request). In this
paper, we present PerfCenterLite, a tool focused on ease of
use for practitioners of performance analysis. The tool (a)
provides a spread-sheet template for describing the appli-
cation architecture and (b) accepts standard performance
metrics obtained from load testing of the application. Per-
fCenterLite then uses mathematical estimation techniques
and transforms this input into a full-fledged performance
model as required by a sophisticated performance modeling
tool. Validation experiments show that performance metrics
predicted using PerfCenterLite match well with measured
values.

Categories and Subject Descriptors
H.4 [Performance of systems]: Modeling Techniques

General Terms
Simulation Tool

Keywords
Performance modeling, load test results

1. INTRODUCTION
Performance analysis remains an important step in the re-

lease cycle of an Internet application. A multi-tier Internet

∗This work was supported by Tata Consultancy Services
under the aegis of the TCS-IIT Bombay Research Cell.

.

application is called as such, because it typically comprises
of “tiers” such as Web Tier, Application Tier and Database
Tier. A load-testing effort which consists of deploying the
application in a testbed environment and generating syn-
thetic load on it using load-generation tools is the most
common method of characterizing the performance of an ap-
plication, and identifying system bottlenecks. Load testing
provides application performance metrics such as response
time and throughput, and server metrics such as CPU uti-
lization, at a particular load level.
Load testing results are, however, specific to the testbed

and workload for which they have been produced. But it is
often the case that the environment on which an application
is to be deployed (the target) is different from the testbed
environment. For example, the Web server host machine in
the target environment could be an 8-CPU machine while
the testbed host had only two CPUs.
Thus performance modeling is an important step in the

process of performance analysis of the application. Perfor-
mance models are typically queuing models of the various
resources that make up the application software and hard-
ware [6]. However, queuing models need to be parameterized
- i.e. the values of the various parameters required by queu-
ing models need to be determined before the model can be
evaluated. A specific input required for building a queuing
model of a resource - say the CPU of a machine, is the service
time of each of the various classes of requests that come to
the CPU. In case of a multi-tier application, a request may
visit various servers in the various “tiers”multiple times be-
fore it is completed. In such a case the service time at every
visit at every tier is required as an input to the underlying
queuing model.

There are many modeling tools that will accept as input,
detailed application software and hardware descriptions with
quantified parameters (such as service times), then evaluate
the model and provide estimates of performance metrics for
these parameters. However, practicing performance analysts
find such tools overly detailed and complex to use. E.g. they
find it tedious to provide the message flow for each request
class using the typical formalisms of existing modeling tools.
They further find it daunting (or may not have the required
technical skill) to measure per-request service times at re-
sources at each tier [10]. We believe that the widespread
adoption of performance modeling techniques has been hin-
dered by these problems.

In this paper, we present a performance modeling tool
called PerfCenterLite which addresses these problems by
abiding by a “less-is-more” design principle. It works with

minimal load-testing results, minimal hardware and software
description and either mathematically estimates or makes
judicious assumptions about missing details, and proceeds
to create and evaluate a model of the application on the
target environment.

PerfCenterLite input is accepted in the form of a spread-
sheet template that must be filled by the performance an-
alyst. The tool then carries out several transformations to
create input specification that is accepted by a richer tool
called PerfCenter [3] that we use as the“modeling engine”of
PerfCenterLite. Some of these transformations are straight-
forward syntactic mappings, some require judicious practi-
cal assumptions, and some require the use of mathematical
estimation.

The novelty and contributions manifested in PerfCenter-
Lite are as follows:
• While methodologies for service demand estimation have
been studied to great depth [4, 7], to our knowledge, Perf-
CenterLite is the only tool for application performance mod-
eling that applies one such method. This allows it to work
exclusively with metrics obtained from load-testing such as
request throughput and server resource utilization to quan-
tify parameters of the underlying performance model.
• PerfCenterLite’s input constructs have been carefully cho-
sen to be simple and appealing to a practitioner - we use
a spreadsheet template to describe the model, and allow
the user to describe the “testbed” and the “target” hardware
environment, so that the question of performance “extrapo-
lation” from the testbed to the target is directly answered.
•We have done away with the requirement of detailed per-
request message sequence charts (or activity diagrams) - in-
stead we accept a simple default flow expressed in terms of
the “tier” names.
• We validated predictions made by our tool by comparing
them with measured results of the application performance
metrics, and found the match to be well within acceptable
error limits.

The rest of the paper is organized is follows: in Section 2
we introduce PerfCenterLite input format and our algo-
rithms for transforming this input and generating a model
specification file for PerfCenter [3]. Section 3 discusses the
validation experiments and Section 4 describes related work.
We conclude the paper in Section 5.

2. PERFCENTERLITE
PerfCenterLite was designed with three main requirements

in mind: (a) The user should not need to learn a new “spec-
ification language” or even a new GUI; (b) the user should
not have to specify detailed message sequence charts (MSC)
for each request and (c) the user should be able to provide
standard load testing results as input; specifically, the user
should not have to estimate individual request service de-
mands.

Thus, PerfCenterLite accepts the model description in the
form of a comma-separated-values (csv) file (Figure 1). The
user can edit the file in any spreadsheet tool and simply
enter the model description and parameter values in the
relevant cells. Figure 1 shows the file which specifies the
performance model of an application called WebCalendar,
which is a standard two-tier Web application for calendar
management.

This file is processed by PerfCenterLite (which is imple-
mented in python) and an input file for PerfCenter [3], which

is an advanced performance modeling tool, is generated.
PerfCenter is then invoked on this input file and the pre-
dicted performance metrics are displayed back in “csv” form
by PerfCenterLite1.
Before using PerfCenterLite, one must first carry out load

tests of the application for various scenario (i.e. request)
probability mixes, and record the client-side metrics such as
throughput and response time, and additionally record the
corresponding server resource utilizations. The user must
additionally know basic details regarding the software and
hardware architecture of the application.
We first describe PerfCenterLite model specification, and

then describe how this is mapped to a PerfCenter model
description file.

2.1 PerfCenterLite Input Specification
PerfCenterLite input is divided into sections and subsec-

tions (prefixed by “##” and “#” respectively) as shown in
Figure 1, which then consist of a list of descriptive labels
(which are not to be edited) whose values are entered in
neighboring cells. Many sections are self-explanatory. We
elaborate here on a select few:
• Software Architecture. In this section, we first simply list
the tiers (tier details), and then in the Scenario details sec-
tion, the message sequence for each request can be described
simply in terms of these tiers. Note that a “scenario” in Per-
fCenterLite (and PerfCenter) is short for “use case scenario”
and refers to a request type.
In case of WebCalendar, the structure of the message flow

for all three requests is the same (Figure 2) and thus a “de-
fault flow” is described as: Web→DB→Web for all the re-
quests.
• Performance Testing Data from Measurement Testbed. We
expect data from multiple load tests, carried out with dif-
ferent scenario mixes to be entered here. Thus, the dif-
ferent scenario mixes are first declared and then the sce-
nario probability values for each mix are specified. Then
the performance metrics measured for each mix are specified.
The blocks scenario metrics, disk usage, network usage and
CPU utilization are specified separately for each mix.
• Target Environment Hardware Architecture is similar to
the testbed hardware description. Here, the user may want
to directly specify a speed-up expected of the target host rel-
ative to the testbed host (e.g. based on some benchmarks),
in which case the CPU frequency specification is ignored.
PerfCenterLite transforms this specification to the input

accepted by PerfCenter, as described next.

2.2 PerfCenterLite transformations
Many of the transformations done by PerfCenterLite (e.g.

hardware architecture) are straightforward syntactic trans-
formations. However, some are not, and we describe only
those here.

2.2.1 Software servers and Scenarios
A PerfCenterLite “tier” maps to a PerfCenter “server” [3]

almost trivially. We only note here that although PerfCen-
ter requires as input the number of threads in each server,
PerfCenterLite does not. We instead assume that the server

1Installation and running instructions for Per-
fCenterLite are provided on the website:
www.cse.iitb.ac.in/panda/perfcenterlite. A template
csv file is provided as part of the download.

Figure 1: PerfCenterLite Input File of WebCalendar Created Using Load Test Results

(a) Login scenario (b) ViewDay scenario (c) ViewWeek scenario

Figure 2: Message sequence charts of WebCalendar requests (scenarios)

threads will never be a bottleneck. We implement this as-
sumption by setting the number of threads in each server
in PerfCenter to be equal to the maximum number of si-
multaneous users in the system, as specified in the workload
parameters section of PerfCenterLite.

In PerfCenter terminology, each visit to a server by a re-
quest is called a “task”, and these tasks need to be specified
per server in its input file. Scenarios in PerfCenter are also
described in terms of these tasks. Furthermore, PerfCenter
expects specification of service times on each device for each
of these tasks.

PerfCenterLite creates this task list for each server by
parsing the message sequence flow given in terms of the tier
names (scenario details) as follows: every visit to a tier re-
sults in the generation of a different server “task”. This task
is given a unique name of the following format:

task n < scenarioname > < servername >

The scenario message flow in PerfCenter syntax is then
created using these auto-generated task names. The task
service times are estimated using the load testing data, and
testbed and target hardware specifications. We describe this
estimation in the next section.

2.2.2 Service Demand Estimation
PerfCenterLite takes scenario throughputs and per-process

CPU utilization values of each host to estimate the CPU ser-
vice demand, by applying the Utilization Law [6], on mul-
tiple load test results. A system of equations with the ser-
vice demands as “unknowns” is generated and solved using
known methods [5]. This gives us the service demands of
the requests on the testbed hardware. The disk and network

Experiment Description Testbed Hardware Target Hardware
1 Target machine has more

cores, at higher fre-
quency (same processor
architecture)

Web server: 2-core machine with 1.4GHz
Intel Xeon E5 processors (“IntelXeon”).
DB Server: 2-core machine with 2.26
GHz Intel I3 processors (“IntelI3”)

Web server: 8-core Intel
Xeon@1.7GHz. DB Server: same
as testbed

2 Testbed has only one
machine, Target has two

Web server & DB server on the same ma-
chine:: “IntelXeon”

Web server: 8-core machine with 1.4
GHz Intel Xeon. DB Server: “IntelI3”

3 Target has different pro-
cessor architecture

Web server: IntelXeon, DB Server: In-
telI3

Web server: AMD 8-core processors,
1.4 Ghz. DB Server: same as testbed

4 Application has software
bottleneck

Web server: One Intel Xeon E5@1.2GHz.
DB server: IntelI3

Web server: Intel Xeon E5, 2 cores
@1.6GHz. DB server: IntelI3

Table 1: Testbed and Target Hardware Descriptions of all Experiments

usage (bytes written and read) per request is also estimated
similarly.

Note that if a request makes multiple visits to a server,
the service demands estimated in this manner correspond
to the total of the per-visit service times. However we are
required to estimate per-visit service times on the testbed,
and then extrapolate them to the target machine. Our esti-
mation proceeds as follows.

First, we simply divide the estimated service demand of
a request from a particular scenario by the number of visits
to a server to get per-visit service time.

Then, we use the following rules for extrapolating the
testbed task service times to the task service times on the
target hardware:
• If “CPU speed-up” specified is 1, the CPU service time
is scaled linearly with the target CPU frequency setting
specified, and is assumed to not change with number of
cores. Thus if τtestbed is the estimated CPU service time
of a task on the testbed, ftestbed is the CPU frequency
of the host on which this task runs in the testbed, and
ftarget is the CPU frequency of the target host on which
this task will run, then the scaled task service time is sim-
ply: τtarget = τtestbed

ftestbed
ftarget

.

• If a cpu-speedup, r, not equal to 1 is specified, the fre-
quencies are ignored, and this speed up is used directly to
estimate the service time as: τtarget =

τtestbed
r

.
• Disk service time is scaled linearly according to the disk
speeds provided and is assumed to not change with the num-
ber of disks.

3. VALIDATION
We validate the accuracy of performance metrics predicted

by PerfCenterLite by comparing the predicted values with
measured values on the target platform. We used two appli-
cations for validation: WebCalendar, and “DellDVD” which
is an online e-commerce store benchmark.

Table 1 describes all the validation experiments. Exper-
iments 1-3 are on WebCalendar, and Experiment 4 is on
DellDVD.

The WebCalendar deployment consisted of 5000 user ac-
counts populated with hundred events each. In the vali-
dation experiments we focused only on three WebCalendar
scenarios: Login, ViewDay and ViewWeek (Figure 2).

We used AutoPerf [8] for load testing of the application
in this test bed. Three different load tests were carried out
(each load test is at one load level), with three different
scenario mixes. The scenario mixes used are shown in the
PerfCenterLite input file (Figure 1). The load testing re-

sults obtained from this test are also shown in that figure
for mix1. Similarly, results from the load tests correspond-
ing to mix2 and mix3 were also specified (not shown in the
figure). We specify a different scenario mix in the target
load parameters (as shown in Figure 1). These mixes are
the same for Experiments 1-3.
In Experiment 3, CPU micro-benchmarks suggested that

although the CPU frequencies were the same, a speed up
factor of two was observed in the execution time on the AMD
machine as compared to the Intel machine. This speedup
was used in the PerfCenterLite model specification.
In Experiment 4, the DellDVD user session consisted of

ten different request types (scenarios). We carried out only
three different load tests with different mixes.
Figures 3-6 show the comparison of measured vs predicted

values of average request response time, average request
throughput and Web server CPU utilization, for Experi-
ments 1-4.
We can see that for Experiments 1-3 there is a good match

between measured and predicted values for all the metrics,
up to a fairly high CPU utilization level. The values diverge
only after 80% CPU utilization.
In Figure 6 (the DellDVD validation) we can see that for

up to a load level of 50, the measured and predicted values
match well, even though we used only three load tests for
estimating ten transactions’ service demands. However, af-
ter that, there is a drastic divergence. The measured Web
CPU utilization flattens out at 0.4, while the model predicts
a steady increase. Similarly, measured throughput flattened
out, while the model predicted an increase. We eliminated
other possibilities of hardware bottlenecks and came to the
conclusion that this exposes a “software bottleneck” in the
DellDVD implementation. Since PerfCenterLite is designed
to assume no software bottlenecks, it is not able to predict
the metrics accurately when load reaches close to the soft-
ware bottleneck’s capacity. This is also the likely reason for
the divergence of metrics in Experiments 1-3 after utilization
level of 80%.

4. RELATED WORK
There are various tools available for performance modeling

of multi-tier applications. Many are very rich in features and
in terms of the behaviours of multi-tier applications that
they can capture. All are based on queuing networks or
similar stochastic models which can model contention for
resources.
LQNSolver [11] is a generic solver for Layered Queuing

Networks (LQNs) and can be used to model multi-tier appli-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 40 80 120 160 200 240 280 320

R
e
s
p
o
n
s
e
 T

im
e
 (

S
e
c
)

Load Level

Measured

 PerfCenterLite (Model)

 0

 20

 40

 60

 80

 100

 0 40 80 120 160 200 240 280 320

T
h
ro

u
g
h
p
u
t

Load Level

Measured

PerfCenterLite (Model)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 40 80 120 160 200 240 280 320

W
e
b
 S

e
rv

e
r

C
P

U
 U

ti
liz

a
ti
o
n

Load Level

Measured

 PerfCenterLite (Model)

Figure 3: Measured vs Modeled Performance Metrics Validation for increased number of cores and higher frequency (Experi-
ment 1)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 40 80 120 160 200 240 280 320

R
e
s
p
o
n
s
e
 T

im
e
 (

S
e
c
)

Load Level

Measured

 PerfCenterLite (Model)

 0

 20

 40

 60

 80

 100

 0 40 80 120 160 200 240 280 320

T
h
ro

u
g
h
p
u
t

Load Level

Measured

PerfCenterLite (Model)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 40 80 120 160 200 240 280 320

W
e
b
 S

e
rv

e
r

C
P

U
 U

ti
liz

a
ti
o
n

Load Level

Measured

 PerfCenterLite (Model)

Figure 4: Measured vs Modeled Performance Metrics Validation for scale-out deployment (Experiment 2)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 80 160 240 320 400 480 560 640

R
e
s
p
o
n
s
e
 T

im
e
 (

S
e
c
)

Load Level

Measured

 PerfCenterLite (Model)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 80 160 240 320 400 480 560 640

T
h
ro

u
g
h
p
u
t

Load Level

Measured

PerfCenterLite (Model)
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 80 160 240 320 400 480 560 640

W
e
b
 S

e
rv

e
r

C
P

U
 U

ti
liz

a
ti
o
n

Load Level

Measured

 PerfCenterLite (Model)

Figure 5: Measured vs Modeled Performance Metrics Validation for different processor architecture (Experiment 3)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 10 20 30 40 50 60 70 80 90

R
e
s
p
o
n
s
e
 T

im
e
 (

S
e
c
)

Load Level

Measured

 PerfCenterLite (Model)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 10 20 30 40 50 60 70 80 90

T
h
ro

u
g
h
p
u
t

Load Level

Measured

PerfCenterLite (Model)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90

W
e
b
 S

e
rv

e
r

C
P

U
 U

ti
liz

a
ti
o
n

Load Level

Measured

 PerfCenterLite (Model)

Figure 6: Measured vs Modeled Performance Metrics Validation for Software Bottle Neck (Experiment 4)

cations as LQNs. LQNSolver is rich in its “modeling power”
- one can model various scheduling mechanisms, forking and
joining of parallel executions and a post-remote call execu-
tion phase.

PerfCenter [3] on which PerfCenterLite is based, is more
directly geared towards server application modeling, and it
is easier to specify application architecture in its input lan-
guage.

SPE*ED [9] is another tool that offers a complete “pack-
age” for modeling “software performance”. SPE*ED is a
commercial tool, and has graphical specifications and out-
put visualizations.

Palladio-Bench [1] is sophisticated simulator for “software
architecture”, and uses Eclipse for graphical specification
of the system. Palladio offers the capability to create and
reuse component models. For practitioners willing to use
advanced tools with a rich set of capabilities, Palladio is a
compelling offering.

All of the above tools require message sequence charts or
an equivalent formalism for every request of the application,
and they also require the all-important service demand of
every task on every resource in the hardware infrastructure.

The specific problem of obtaining resource demands for
parameterizing such models of multi-tier applications has
also been addressed. E.g. a measurement tool called Au-
toPerf [8] has been specifically built to obtain per-request
service demands at all tiers.

Various methods have been proposed to solve the prob-
lem of deriving service demands from resource utilizations
and request throughputs [2, 4, 7, 12]. They all essentially
formulate the problem as that of fitting a multi-variate lin-
ear function relating the request throughputs to the resource
utilizations. However, to our knowledge no tool exists that
implements these approaches.

While the tools and methods described above are no doubt
rich and sophisticated, our claim is that this richness itself
becomes a drawback in the use of sound and rigorous model-
based performance engineering in practice. PerfCenterLite
therefore adopts a minimalist approach towards model cre-
ation. We have done away with detailed specification of
use-case scenarios and resources demands used by tasks in
such scenarios, and reduced it to specifying default tier in-
teractions. We take as input aggregates of all resource uti-
lizations, and throughputs - which are standard measure-
ments resulting from a load test. Finally, we offer a spread-
sheet template, which should be trivial for anybody to fill in.
These ideas distinguish our approach sharply from existing
approaches and tools.

5. SUMMARY AND CONCLUSIONS
In this paper, we presented PerfCenterLite, which is es-

sentially a wrapper tool to convert a lightweight specifica-
tion of the workload, hardware and software architecture of
an application to a detailed model specification file of the
tool PerfCenter. The tool directly addressed the concern
of a typical performance analysis team namely: “We have
the load testing results of this application - how do we ex-
trapolate these to estimate application performance in a dif-
ferent environment?” Furthermore, input specification was
designed carefully to be in the “familiarity zone” of practic-
ing performance engineers.

We carried out validation experiments for various predic-
tion scenarios of the WebCalendar application and found

that predictions match measured values very well.
Future improvements in PerfCenterLite will attempt to

increase its modeling power, e.g. to capture power-managed
devices, virtualized deployments - while still keeping the
data collection and specification requirement very simple.
The tool can also aim to give better feedback to the user
e.g., whether there is software bottleneck in the system.

Acknowledgements
The authors would like to thank Manoj Nambiar and Sub-
hasri Duttagupta of Tata Consultancy Services, Mumbai for
their valuable critiques of PerfCenter.

6. REFERENCES
[1] S. Becker, H. Koziolek, and R. Reussner. The palladio

component model for model-driven performance
prediction. Journal of Systems and Software,
82(1):3–22, 2009.

[2] M. Courtois and M. Woodside. Using regression
splines for software performance analysis. In 2nd
international workshop on Software and performance,
pages 105–114. ACM, 2000.

[3] A. Deshpande, V. Apte, and S. Marathe. Perfcenter: a
performance modeling tool for application hosting
centers. In 7th International Workshop on Software
and performance, pages 79–90, 2008.

[4] A. Kalbasi, D. Krishnamurthy, J. Rolia, and
S. Dawson. Dec: Service demand estimation with
confidence. Software Engineering, IEEE Transactions
on, 38(3):561–578, 2012.

[5] C. L. Lawson and R. J. Hanson. Solving least squares
problems, volume 15 of Classics in Applied
Mathematics. SIAM, Philadelphia, PA, 1995.

[6] E. D. Lazowska, J. Zahorjan, G. S. Graham, and
K. C. Sevcik. Quantitative system performance:
computer system analysis using queueing network
models. Prentice-Hall, Inc., 1984.

[7] G. Pacifici, W. Segmuller, M. Spreitzer, and
A. Tantawi. CPU demand for web serving:
Measurement analysis and dynamic estimation.
Performance Evaluation, 65(6):531–553, 2008.

[8] S. S. Shirodkar and V. Apte. Autoperf: an automated
load generator and performance measurement tool for
multi-tier software systems. In 16th international
conference on World Wide Web, 2007.

[9] C. U. Smith and L. G. Williams. Performance
engineering evaluation of object-oriented systems with
spe· ed tm. In Computer Performance Evaluation
Modelling Techniques and Tools, pages 135–154.
Springer, 1997.

[10] Private Communication with Performance Engineering
Teams of Industry Sponsors., Sept 2013.

[11] M. Woodside. Tutorial Introduction to Layered
Modeling of Software Performance. Carleton
University, RADS Lab,
http://www.sce.carleton.ca/rads/lqns.

[12] Q. Zhang, L. Cherkasova, and E. Smirni. A
regression-based analytic model for dynamic resource
provisioning of multi-tier applications. In Autonomic
Computing, 2007. ICAC’07. Fourth International
Conference on, pages 27–27. IEEE, 2007.

