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ABSTRACT
We present in this paper a framework to model informa-
tion diffusion in social networks based on linear multivariate
Hawkes processes. Our model exploits the effective broad-
casting times of information by users, which guarantees a
more realistic view of the information diffusion process. The
proposed model takes into consideration not only interac-
tions between users but also interactions between topics,
which provides a deeper analysis of influences in social net-
works. We provide an estimation algorithm based on non-
negative matrix factorization techniques, which together with
a dimensionality reduction argument is able to discover,
in addition, the latent community structure of the social
network. We also provide several numerical results of our
method.

Categories and Subject Descriptors
L.6 [Science and Technology of Learning]: Learning
networks

General Terms
Algorithms, Theory

Keywords
Social networks, Hawkes processes, nonnegative matrix fac-
torization

1. INTRODUCTION

There has been a steady increase of interest in point pro-
cesses for modeling information diffusion in networks (see
[16, 25, 29, 31, 32]). Information diffusion is a phenomenon
in social networks where users broadcast information to oth-
ers in the network; for example on Twitter, users can ”tweet”.
By tweeting, users broadcast information to the network;
however only those capable of receiving these tweets can
retrieve the information, i.e., you must follow the user in

question to be able to see his tweets. These sequence of
broadcasts by users is called an information cascade.

Following this principle, in this paper we model the infor-
mation diffusion in a social network by a linear multivariate
Hawkes process (see [10, 17]). A Hawkes process is a point
process that increases its intensity when an event occurs,
hence allowing one to decouple two very different phenom-
ena: the information diffusion due to the willingness of users
in propagating their information and the viral network effect
of receiving the information from neighbours and retrans-
mitting it; one can think of a group of people participating
in a webchat: even though everyone has an intrinsic willing-
ness to discuss, post and interact, if at a given time someone
posts a comment over a subject, this comment increases the
chance that others will also comment over the same subject,
and so on (see for example [4]).

A different reason for the use of point processes in infor-
mation diffusion models is that they take into consideration
the broadcast times of users, whereas standard information
cascade models consider time to be discrete, i.e., time only
evolves when events occur.

Our motivation comes from information cascade models (see
[7, 8, 19, 20, 26, 30]), where one studies the propagation of
information in a social network as a cascade of broadcast-
ing by its users. For example: In [29], Yang and Zha study
the dissemination of memes in social networks with linear
Hawkes processes and couple the point process with a lan-
guage model in order to estimate the memes. They provide a
variational Bayes algorithm for the coupled estimation of the
language model, the influence of users and their intrinsic dif-
fusion rates; however, they do not take into consideration the
influence that memes may have on one another; moreover,
they propose the estimation of the entire social network,
not taking into consideration the eventual lack of commu-
nication between users. In [19], Myers and Leskovec study
the variation of the probability in retransmiting information
due to previous exposure to different types of information;
they found that, for Twitter, the retransmission probabili-
ties change drastically; however, the approach of Myers and
Leskovec does not take into consideration the time between
broadcasts of information and the topology of the network.
And in [20], Myers et al. study the influence of externali-
ties from other nodes on information cascades in networks;
they use a point process approach, from which the times of
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infection are essential for the estimation of parameters, but
the topological properties of the network are of secondary
concern in their work.

In this paper, we first model information dissemination by
linear Hawkes processes using the full information of the
broadcast times and we derive not only the influence of users
on each other, but also the influence of different types of
topics on each other, as in [19, 29].

We follow the ideas in [23, 24] to derive a nonnegative matrix
factorization (see [6, 13, 14]) cyclic estimation for the system
parameters - the influence of agents, the influence of topics
and the intrinsic diffusion rates.

2. LINEAR HAWKES PROCESSES
A multivariate linear Hawkes process (see [10, 17] for more
details) is a self-exciting orderly point process Xt, t ∈ [0, τ ],
in R

R with an intensity for the rth coordinate of the form

λr
t = μr+

∑
r′

(
φr,r′ ∗dXr′)

t
= μr+

∑
r′

∫ t−

0

φr,r′(t−s)dXr′
s ,

(1)
where φr,r′ , r, r′ ∈ {1, 2, · · · , R} are positive kernel func-
tions responsible for the temporal decaying of all the in-
teractions which happened in the past and μr ≥ 0 is the
intrinsic (baseline) intensity of the point process for the rth

coordinate. In our framework, for example, each coordinate
Xr

t of the Hawkes process could represent the countnumber
of broadcasts by user r until time t.

The use of self-exciting processes here enlightens the neces-
sity of a theory that can model the interaction between peo-
ple having a conversation or exchanging messages: imagine
two people messaging each other through SMS. Normally
each one would have its own rhythm of messaging (this is
modelled by the intrinsic rate μ in Eqn. (1)), but due to
the self-excitation among these people, they will text faster
than they would normally do, in order to answer each other;
one can model this effect with the temporal kernel φr,r′ in
Eqn. (1).

By orderly, we mean that almost surely Xt does not have
more than one jump occurring simultaneously (see [5] for a
more formal definition). By the standard theory of point
processes (see [5]) we have that an orderly point process is
completely characterized by its intensity, which in this case
is also a stochastic process.

Throughout this paper we consider kernels of the form

φr,r′(t) = Kr,r′φ(t), (2)

where Kr,r′ ≥ 0 are entries of the R × R interaction ma-
trix K, which represents the interaction of the coordinate r
and the coordinate r′. In other words, the kernels φr,r′ are
all of the same time-decaying function and the interactions
between different coordinates differ only in intensity, not in
type.

Remark: Two very common time-decaying functions are
φ(t) = ωe−ωt.I{t>0} a light-tailed exponential kernel (see

[23, 24, 29]) and φ(t) = (b−1)(a+ t)−b.I{t>0} a heavy-tailed
power-law kernel (see [4]). Although not mentioned here,

expectation-minimization (EM) algorithms can be derived
in order to estimate the parameters ω in the exponential
case (see [9, 15]) and a, b in the power-law case.

3. INFORMATION DIFFUSION BY LINEAR
HAWKES PROCESSES

After a brief introduction to linear Hawkes processes we be-
gin the cornerstone of our paper, information diffusion. As
mentioned before, information diffusion over social networks
is to be interpreted as the broadcasting of messages by users.
These messages are assumed to have a specific topic, it can
be politics, sports, religion, films, etc...

The broadcasting of messages can be done in various ways,
depending on the application: measuring tweets or retweets,
checking the history of a conversation in a chat room, etc...
but they all have one thing in common: messages are broad-
casted by a set V of users in a social network.

In our context, the network will be a generic social network,
defined as a communication graph G = (V,E), where V is
the set of users with cardinality �V = N and E is the edge
set, i.e., the set with all the possible communication links
between users. We assume this graph to be directed and
unweighted, and coded by an inward adjacency matrix A
such that Ai,j = 1 if user j is able to broadcast messages to
user i, or Ai,j = 0 otherwise. If one thinks about Twitter,
Ai,j = 1 means that user i follows user j and receives the
news published by user j in his or her timeline.

We also assume a hypothesis that messages are of a specific
content or topic. Meaning that one can discern the message’s
major topic and label it within K different topics. These
topics could be economics, politics, religion, sports, music,
cinema, etc...

In light of these explanations, we model the number of mes-
sages broadcasted by users as a linear Hawkes process Xt,
where Xi,k

t is the cumulated number of messages of topic
k broadcasted by user i in the time interval [0, t]. In other
words, our Hawkes process is a R

N×K point process.

We define our temporal kernel functions as φ(i,j),(c,k)(t),
which measures the temporal influence of a broadcast of
a message about topic c by user j on the broadcast of a
message about topic k by user i.

3.1 Intensity
Having explicitely defined the basic assumptions and using
the machinery of linear Hawkes processes, we factorize our
kernel functions in two parts: the influence of users on other
users (given by the N × N matrix J) and the influence of
topics on other topics (given by the K ×K matrix B). We
thus have the full form of our kernel functions

φ(i,j),(c,k)(t) = Ji,jBc,kφ(t),

where Ji,j ≥ 0, Bc,k ≥ 0 and φ(t) ≥ 0 satisfies ||φ||1 =∫∞
0

φ(t)dt < ∞. This allows one to use N2+K2 parameters

instead of N2K2.

Given the full form of our kernel functions, here is the final



form of our intensities

λi,k
t = μi,k +

∑
c

∑
j

Bc,kJi,j

∫ t−

0

φ(t− s)dXj,c
s ,

which in matrix form can be seen as

λt = μ+ J(φ ∗ dX)tB. (3)

As said before, not all users can communicate among them-
selves. Hence one must take into consideration the inward
adjacency matrix A given by the underlying structure on the
social network. This is done by the relation

Ai,j = 0 ⇒ Ji,j = 0,

which gives us

λi,k
t = μi,k +

∑
c

∑
j�i

Bc,kJi,j

∫ t−

0

φ(t− s)dXj,c
s . (4)

In vector form, we have

v(λt) = v(μ) + (BT ⊗ J)(φ ∗ v(dX))t, (5)

where v(λ) is the vectorization of a matrix λ and ⊗ is the
Kronecker product.

3.2 Parameter estimation by cyclic descent
After defining our model in Eqn. (4), we proceed to the es-
timation of the user-user influence parameter J , the topic-
topic influence parameter B and the intrinsic rates μ, fol-
lowing [23]:

Let (tj,cn )n be the jump times of the point process Xj,c
t . De-

fine δmin = min(i,k,n′) �=(j,c,n) |ti,kn′ − tj,cn | as the minimum
elapsed time between jumps of Xt in [0, τ ] and fix δ < δmin.

We divide [0, τ ] into T = � τ
δ
	 time bins such that we do

not have more than one jump of Xt in each bin, in order to
preserve the orderliness property of Xt.

Let Y be theNK×T matrix such that Yl,t =
v(Xtδ)l−v(X(t−1)δ)l

δ
,

i.e. the row l = i+(k−1)N of Y contains the jumps of Xi,k
t

at each time bin ((t− 1)δ, tδ].

Define also the NK × T matrices λ, μ and φ such that
λi+(k−1)N,t = λi,k

(t−1)δ, μi+(k−1)N,t = μi,k, φi+(k−1)N,t =

(φ ∗ dXi,k)(t−1)δ, which gives us

λ = μ+ (BT ⊗ J)φ. (6)

3.2.1 Maximum likelihood estimation and nonnega-
tive matrix factorization

With the Hawkes intensity discretized, we proceed to the
maximum likelihood estimation of the Hawkes parameters.
We begin by showing that maximizing the Riemann-sum
approximation of the log-likelihood of X is equivalent to
minimizing the Kullback-Leibler (KL) divergence between
the jumps of X and the intensity λ.

Lemma 1. If
∫ τ

0
log(λi,k

t )dXi,k
t and

∫ τ

0
λi,k
t dt are approx-

imated by their respective Riemann sums, then maximizing

the approximated log-likelihood of Xt in [0, τ ] is equivalent
to minimizing

DKL(Y |λ) =
∑
l,t

dKL(Yl,t|λl,t), (7)

where dKL(x|y) = x log(x
y
) − x + y is the Kullback-Leibler

divergence of x and y.

Proof. We have that the log-likelihood of X is given by
(see for example [5, 21])

L =
∑
i,k

(∫ τ

0

log λi,k
t dXi,k

t −
∫ τ

0

λi,k
t dt

)
.

Approximating the integrals in L by their Riemann sums we
get

L ∼
∑
i,k

∑
t

(
log λi,k

(t−1)δ(X
i,k
tδ −Xi,k

(t−1)δ)− δλi,k
(t−1)δ

)
,

thus maximizing the approximation of L is equivalent to
minimizing

−L/δ ∼
∑
l

∑
t

(
λl,t − Yl,t log λl,t

)
.

With Y fixed, this is equivalent to minimizing

DKL(Y |λ) =
∑
l,t

dKL(Yl,t|λl,t).

Following Eqn. (6), we have that λ is a linear combination
of several matrices with positive entries, hence the mini-
mization of Eqn. (7) can be solved by nonnegative matrix
factorization (NMF) algorithms (see [6, 14]).

Unfortunately, NMF algorithms are not convex on the en-
semble of matrices. Nevertheless, they are convex (due to
the convexity of the Kullback-Leibler divergence in this case)
on each matrix, given that all others are fixed. It can be
shown (see [6, 11, 14]) that estimating each matrix given
the rest fixed in a cyclic way produces nonincreasing values
for Eqn. (7), thus converging to a local maximum of the
approximate log-likelihood.

Due to the overwhelming number of user-user interaction pa-
rameters Ji,j in real-life social networks (where we have N ∼
108), we factorize J into FG, such that F ∈ MN×d(R+) is
a N×d matrix and G ∈ Md×N (R+) is a d×N matrix, with
d � N . This method is similar to clustering our social net-
work communication graph into different communities (see
[12]).

Since a composition of a linear function and a convex func-
tion remains convex, we have that

DKL(Y |λ) = DKL(Y |μ+ (BT ⊗ FG)φ)

is still convex as a function of one matrix if the rest remains
fixed, and the NMF updates still converge to a local mini-
mum of DKL.



Lemmas 2, 3, 4 and 5 give us the exact form of the NMF
multiplicative estimation updates for the Hawkes parame-
ters J = FG, B and μ.

3.2.2 Estimation of F
We now proceed to the estimation of the first user-user in-
fluence matrix factor F by NMF techniques. It is also ex-
tremely desirable to uphold the constraint of Ai,j = 0 ⇒
Ji,j = (FG)i,j = 0, i.e., we must estimate F and G such
that we keep the communication graph unaltered.

This is a very difficult problem, since the NMF updates de-
stroy this relashionship, and the only other way to do so is
to estimate each coordinate separately. Since Ai,j ∈ {0, 1},
we can circumvent this problem using a convex relaxation
of this constraint of the form1 η × g(〈1 − A,FG〉), with
g : R+ → R+ a convex function and η ≥ 0 a penalization
parameter.

Choosing for example g a linear function we have the follow-
ing penalization ηF 〈1 − A,FG〉, with derivative ∇F ηF 〈1 −
A,FG〉 = ηF (1−A)GT .

Lemma 2. Let ρ = (I⊗G)φ be an auxiliary dK×T matrix
such that λ = μ+(BT ⊗F )ρ and let the N×T block matrices

Y k, λ
k
, μk and the d×T block matrices ρk and ρk such that

Y k
i,t = Yi+(k−1)N,t, λ

k
i,t = λi+(k−1)N,t, μk

i,t = μi+(k−1)N,t,

ρki,t = ρi+(k−1)d,t and ρk =
∑K

k′=1 Bk′,kρ
k′
.

We have the following multiplicative2 estimates for F :

F ← F �
∑K

k=1

(
[Y

k

λ
k ](ρk)T

)
∑K

k=1 1(ρ
k)T + ηF (1−A)GT

, (8)

where ηF (1 − A)GT , with ηF ≥ 0, is a convex penalization
term responsible for Ai,j = 0 ⇒ (FG)i,j = 0, i.e., we do not
estimate interactions outside the underlying network struc-
ture.

Proof. First of all, we have that (BT ⊗ FG) = (BT ⊗
F )(I⊗G), thus λ = μ+ (BT ⊗ F )(I⊗G)φ.

Let Fi be the rows of F and ρt be the columns of ρ, with ρkt
the columns of the submatrices ρk. Then

(
(BT ⊗ F )ρ

)
i+(k−1)N,t

=

K∑
k′=1

BT
k,k′〈Fi, ρ

k′
t 〉

= 〈Fi,

K∑
k′=1

Bk′,kρ
k′
t 〉 = (Fρk)it.

1From now on we denote by 1 any vector of matrix with
entries equal to 1. The dimension of 1 will be clear in the
context.
2For two matrices A and B of same dimensions, we denote A

B
their entrywise division and A�B their entrywise product.

Hence

DKL(Y |λ) =
∑
j,t

dKL(Yjt|λjt)

=
∑
t

∑
i

∑
k

dKL(Yi+(k−1)N,t|λi+(k−1)N,t)

=
∑
k

(∑
t

∑
i

dKL(Y
k
i,t|μi,k + (Fρk)i,t)

)

=
∑
k

DKL(Y
k|μk + Fρk) = DF

KL(F ).

One can see that, since DF
KL is a sum of convex functions,

it is still a convex function and we can use the multiplica-
tive update rule for F given by [6, 14]. We have thus the
following multiplicative update rule

F ← F �
∑K

k=1

(
[Y

k

λ
k ](ρk)T

)
∑K

k=1 1(ρ
k)T

,

Since the penalization term ηF (1−A)GT has all its entries
nonnegative, it is added to the denominator of the NMF up-
dates, as in [6]. Following [6], we can rewrite the multiplica-
tive updates with the linear penalization as Eqn. (8).

3.2.3 Estimation of G
We now proceed to the estimation of the second user-user
influence matrix factor G using the same ideas applied to
the estimation of F . Again we must use a convex relaxation
of the constraint Ai,j = 0 ⇒ Ji,j = (FG)i,j = 0. The
derivative of this relaxation with respect to G takes the form
ηGF

T (1−A).

Unfortunately, since F anf G act as a product, there is a po-
tential identifiability issue of the form FG = FMM−1G =
F̃ G̃ where M is any scaled permutation and the pair F̃ =
FM , G̃ = M−1G is also a valid factorization of J (see [13,
18, 23]). We deal with this issue normalizing the rows of G
to sum to 1 (see [13, 23]). This normalization step involves
the resolution of a nonlinear system for each row of G to
find the associated Lagrange multipliers.

Our constraint thus becomes G1 = 1, for which the Karush-
Kuhn-Tucker (KKT) conditions are written in matrix form

as ηG =
∑d

i=1 ηG,iei1, with ηG,i ∈ R the Lagrange multi-
pliers solution of the nonlinear equation G1 = 1 after the
update.

Lemma 3. Let φ
k
be the N ×T matrices such that φ

k

i,t =

φi+(k−1)N,t and Φ
k
=

∑
k′ Bk′kφ

k′
be an auxiliary N × T

matrix such that λ
k
= μk + FGΦ

k
.

We have the following multiplicative updates for G:

G ← G�
∑K

k=1 F
T
(
[Y

k

λ
k ](Φ

k
)T

)
∑K

k=1 F
T 1(Φ

k
)T + ηGFT (1−A) + ηG

, (9)

where ηG is a d×N matrix composed by Lagrange multipliers
solution of the nonlinear equation G1 = 1 and ηGF

T (1−A),
with ηG ≥ 0, is responsible for Ai,j = 0 ⇒ (FG)i,j = 0.



Proof. Firstly, we have that

DKL(Y |λ) =
∑
j,t

dKL(Yjt|λjt)

=
∑
i,t,k

dKL(Y
k
i,t|μi,k + 〈

K∑
k′=1

Bk′kFi, Gφ
k′
t 〉)

=
∑
k

(∑
i,t

dKL(Y
k
it |

(
μk + FGΦ

k)
i,t
)

)

=
∑
k

DKL(Y
k|μk + FGΦ

k
) = DG

KL(G).

Using the same arguments as with F , we have the update
rule for G given by Eqn. (9).

3.2.4 Estimation of B
For the estimation of the topic-topic influence matrix B, one
may also notice that we still need to normalize the rows of
B to sum up to 1, for the same reasons as in G, since B
appears multiplying J = FG in Eqn. (5).

Lemma 4. Let ζi be K×T matrices such as ζik,t =
(
Jφ

k)
i,t
.

Let Y i, μi and λi be K × T matrices such that Y i
k,t =

Yi+(k−1)N,t, μ
i

k,t
= μi+(k−1)N,t = μi,k and λi

k,t = λi+(k−1)N,t =

μi,k +
(
BT ζi

)
k,t

.

We have the following multiplicative updates for B:

B ← B �
∑N

i=1 ζ
i[ (Y

i)T

(λi)T
]∑N

i=1 ζ
i1 + ηB

, (10)

where ηB is a matrix composed by the Lagrange multipliers
solution of the nonlinear equation B1 = 1.

Proof. Firstly, we have

D(Y |λ) =
∑
j,t

dKL(Yjt|λjt)

=
∑
i,t,k

dKL(Y
i
k,t|μi,k +

∑
k′

BT
kk′ζik′,t)

=
∑
i

(∑
i,t

dKL(Y
i
k,t|

(
μi +BT ζi

)
k,t

)

)

=
∑
i

DKL(Y
i|μi +BT ζi) = DB

KL(B
T ).

By the same principle as in the estimation of F and G, the
updates for B are given by Eqn. (10).

3.2.5 Estimation of μ
Applying the same techniques, we can estimate the users
intrinsic rates matrix μ.

Lemma 5. We have the multiplicative updates for μ:

v(μ) = v(μ)� [Y
λ
]1

〈1, 1〉 = v(μ)� [Y
λ
]1

T
. (11)

Proof. By the same token, it is easy to see that

D(Y |λ) =
∑
j,t

dKL(Yjt|
(
v(μ)1 + (BT ⊗ J)φ

)
jt
)

=
∑
j,t

dKL(Yjt|
(
v(μ)1

)
jt
+

(
(BT ⊗ J)φ

)
jt
)

= Dμ
KL(Y |μ),

giving us the multiplicative updates in Eqn. (11).

3.3 Complexity
NMF factorization techniques are multiplicative updates,
using only entrywise operations and matrix products, which
is fast and can be performed in a distributed fashion very
easily. Hence, at each step of the cyclic descent procedure,
we have the following complexity for the updates, written
in terms of the number of users N , the number of topics
K, the factorization dimension d and the number of time
discretization steps T :

• The complexity of updating F is O(dKNT + dKN2).

• The complexity of updating G is O(dK2NT +dKN2).

• The complexity for the numerator and denominator
updates of B is O(K2NT ).

• The complexity for μ is O(dKNT ).

For the complexity of G and B, we also have to take into
consideration the calculation of the Lagrange multipliers ηG

and ηB . These multipliers are calculated using convex op-
timization techniques3. However, the complexity of these
calculations is not greater than the complexity of the multi-
plicative updates for G or B.

3.3.1 Total complexity of the updates
The complexity of each cyclic updating step (updating F
with the rest fixed, updating G with the rest fixed, updating
B with the rest fixed and updating μ with the rest fixed) is
thus

O(
dNK2T + dN2K

)
= O(dNK2T )

if N � T , which is normally the case (we usually have con-
siderably more messages than users).

Thus, we achieve a linear complexity on the dataset - which
is basically dictated by N and T since K � N , K � T and
d � N .

3.3.2 Complexity for J without the factorization FG
Following the same calculations as for the complexity of F
using Eqn. (8), we get that the complexity for J is K ×
O(N2T ) = O(KN2T ).

By the same token, every time we factorize J = FG to
compute the other multiplicative updates for B and μ, we
have to calculate λ, which has a complexity of O(dKNT ). If
we cannot factorize J , the complexity becomes O(KN2T ),
which is much larger than O(dKNT ) since d � N .

3Since we need to find the zero of the function h(η) = 1
a+η

.



This proves that the dimensionality reduction J = FG is
crucial to obtain a linear complexity in the data.

3.4 Additional remarks
Our estimation method - based on the maximum log-likelihood
of the point process Xt and on nonnegative matrix factor-
ization techniques - requires the NMF parameter d. This
parameter is ad-hoc and must be learned beforehand. How-
ever, Tan and Févotte derive an automatic way of finding
the optimal d during the NMF updates in [27]. They do so
by considering the NMF procedure for the β-divergence (for
which the KL divergence is a particular case) as a Bayesian
estimation of an underlying probabilistic model.

One known setback in the NMF framework is the conver-
gence to local minima of the cost function, which means
that the initial condition is crucial for a good estimation.
There are results that illustrate how to achieve a better es-
timation by constructing an improved initial condition (see
[1, 3, 28]), but they do not work here: our cost function is
with respect toDKL(Y |μ+(BT⊗FG)φ) and the frameworks
in [1, 3] do not apply if we consider finding good initial con-
ditions for J = FG, B and μ at the same time. Moreover,
we do not know the true value of J = FG, our only proxy is
the adjacency matrix A, which is binary (Ai,j ∈ {0, 1}) and
make it very hard to use the methods in [3, 28]. We use ran-
dom initial conditions for B and μ, and we factorize A into
A = FAGA, with FA ∈ MN×d(R

+) and GA ∈ Md×N (R+),
and use FA as the initial condition for F and GA as the
initial condition for G.

If estimating parametric kernels φ of exponential or power-
law type (see section 2), the convolution φ ∗ dX must be
calculated at each NMF update, which increases consider-
ably the running time of the algorithm, since calculating
φ ∗ dX is costlier than the NFM updates. However, for the
exponential kernel we could calculate φ ∗ dX only up to a
fixed lag L, as in [29], which speeds up the algorithm.

There are also attempts to derive nonparametric estimation
of kernels for Hawkes processes, as in Bacry and Muzy [2].
The problem with nonparametric kernel estimation is the
high dimension of our Hawkes processes, i.e., N � 1 and
T � 1; since these methods are quadrature-based methods
for the convolutions, they are much slower than parametric
alternatives.

4. NUMERICAL SIMULATION
This section is dedicated to the estimation of our model pa-
rameters F,G,B and μ using synthetic Hawkes processes
simulated following the thinning algorithm4 developed by
Ogata in [22]. We used for figures 1, 2, 3 and 4 the param-
eters N = 100, K = 10 and an exponential temporal kernel
of the form φ(t) = e−10t.I{t>0}.

Figures 1, 2, 3 and 4 are from a network composed of two

4The thinning algorithm simulates a standard Poisson pro-
cess Pt with intensity M >

∑
i,k λ

i,k
t for all t ∈ [0, τ ] and

selects from each jump of Pt the Hawkes jumps of Xi,k
t

with probability
λ
i,k
t
M

, or no jump at all with probability
M−∑

i,k λ
i,k
t

M
.

cliques of size 50 with uniform random weights. We sim-
ulated our Hawkes process until time τ = 250, and used
d = 51 for our factorization J = FG, with a linear penaliza-
tion (as in lemma 2) with constants ηF = ηG = 103. We did
not use cross-validation techniques to find optimal penaliza-
tion parameters ηF and ηG, since the algorithm is robust
enough with respect to them.

Figure 1 is the heatmap of J = FG, where the left heatmap
is the estimated J = FG and the right heatmap is the true
value for J . One can clearly see that our algorithm retrieves
quite well the structure behind the true J , i.e., two distinct
cliques.

Figure 2 is the heatmap of the squared difference of the true
J and its estimation J̃ , i.e., for each true entry Ji,j and
estimated entry J̃i,j we have ploted the differences (Ji,j −
J̃i,j)

2 and (Ji,j − J̃i,j)
2/J2

i,j (when Ji,j is nonzero).

Figure 3 refers to the squared difference of B and its esti-
mation and figure 4 refers to the squared difference of the
true μ and its estimation, as in figure 2.

Figures 5 is, again, related to a 2-clique network with cliques
of size 10, random edge weights following an uniform distri-
bution, K = 1 (only one content), and a simulated Hawkes
process until τ = 20. We compare our estimation choos-
ing d = 10 with the estimation algorithm in [29] (with the
obvisouly simplification of K = 1 and no language model);
one can see that our algorithm (on the left) outperforms the
algorithm in [29] not only on the estimation of μ, but also
on the estimation of J , retrieving the community structure
when the algorithm in [29] did not. Moreover, the algorithm
in [29] needs an ad-hoc parameter ρ to control the sparsity
of the network, which is not needed in our case.

Figure 1: Heatmap of J = FG for 2-clique network
of 100 nodes.

5. CONCLUSIONS
We presented in this paper a general framework to model
information diffusion in social networks based on the theory
of self-exciting point processes - linear multivariate Hawkes
processes - and use nonnegative matrix factorization tech-
niques to derive our estimation algorithm.

The model studied here exploits the real broadcasting times
of users - a feature that comes with no mathematical over-
head since we do so in the framework of point processes (see



Figure 2: Heatmap of L2 differences (absolute and
relative) between entries of true J and estimated J.

Figure 3: Heatmap of L2 differences (absolute and
relative) between entries of true B and estimated B.

Figure 4: Heatmap of L2 differences (absolute and
relative) between entries of true μ and estimated μ.

[5]) - which guarantees a more realistic view of the informa-
tion diffusion cascades. Also, the model takes into consid-
eration not only interactions between users (as in [29]) but
also interactions between topics (as in [19]), which provides
a deeper analysis of influences in social networks.

Another crucial advantage of this framework is that all the
parameters are versatile and allow for a variety of exten-
sions and adaptations for real-life situations: if one has pre-
defined labelled data, if one wants to discover the topics
broadcasted in the messages, if one wants to change the
shape of the temporal kernel in order to exploit a longer
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Figure 5: Left: our proposed estimation. Center:
estimation following [29]. Right: true J.

range of interactions, if one wants to model information dif-
fusion in more than one social network at the same time,
etc...

Nonnegative matrix factorization techniques are interesting
here for mainly two reasons: the multiplicative updates de-
rived from the optimization problem are easy to implement,
even in a distributed fashion - they are basically matrix
products and entrywise operations - and the complexity of
the algorithm is linear in the data, allowing one to perform
estimations in real-life social networks, especially if some of
the parameters are already known beforehand.

One can also notice that by performing a dimensionality
reduction J = FG during our nonnegative matrix factor-
ization estimation, we not only estimated the influence that
users have on one another but we also acquired information
on the communities of the underlying social network, since
we were able to factorize the hidden influence graph J . Here,
we used heavily the self-exciting model to retrieve the hidden
influence graph, which is different from other graphs gener-
ated by different methods; for example, one could weight
the communication graph A with the number of messages
from one user to its neighbours, but by doing so one looses
the temporal character. Moreover, the graphs found by per-
forming this kind of technique are under the assumption
that messages influence directly other users, which may not
be the case. In our Hawkes framework, the influence is a
byproduct of the interaction of users and information, and
therefore their influence is probabilistic - it may or may not
occur at each broadcast.
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