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Abstract—Cloud resource and its load have dynamic char-
acteristics. To address this challenge, a dynamic self-adaptive
evaluation method (termed SDWM) is proposed in this paper.
SDWM uses some dynamic evaluation indicators to evaluate re-
source state more accurately. And it divides the resource load into
three states — Overload, Normal and Idle by the self-adaptive
threshold. Then it migrates overload resources to balance load,
and releases idle resources whose idle times exceed a threshold
to save energy, which can effectively improve system utilization.
Experimental results demonstrate SDWM has better adaptability
than other similar methods when resources dynamically join or
exit. This shows the positive effect of the dynamic self-adaptive
threshold.
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I. INTRODUCTION

In cloud computing environment[1], many dynamic and
uncertain factors of resource and load can influence resource
availability and task scheduling, e.g., node load of resource
dynamically changing along with time, and the amount of
resource request changing with year, season and holiday.
Meanwhile, there are many changes in the resource itself, i.e.,
resources may join or exit at any time. These dynamic and
uncertain factors lead to a series of problems. For example,
if the load is too light, it causes a waste of resources. And
if the load is too heavy, it influences the performance of
services which are running on a node referring to a server.
Therefore, it is necessary to real-timely evaluate and manage
cloud resources and their load. Here, a node means a server.

There are some works on evaluating the resource load.
But most of them use some physical indicators, such as CPU,
bandwidth, memory and other information [2-6]. These static
indicators cannot meet the needs because it is difficult to
reflect the dynamic changes of cloud resources. Some current
researches divide the load status of resource by fixed threshold
when evaluating the resource load, but such fixed thresholds
are unsuitable for dynamic load environments.

To improve the situation discussed above, this paper pro-
poses a dynamic self-adaptive evaluation method (termed
SDWM). It evaluates resource state through leveraging three
dynamic indicators, and divides resource load into three states
by dynamic self-adaptive thresholds, which include Overload,
Normal and Idle. Then it releases the idle resources to
save energy and migrates overload resources to balance load

and improve system utilization. The main contributions are as
follows.

e  First, it uses three dynamic indicators (the number of
resource requests, resource service capacity, resource
service strength) to evaluate the usage of resources.
These dynamic indicators could describe the resource
state more accurately.

e  Second, it proposes a dynamic self-adaptive evaluation
method to evaluate the resource load states accurately.
It divides the resource load into three states by dynam-
ic self-adaptive thresholds, which include Overload,
Normal and Idle. Then it releases the idle resources
to save energy and migrates overload resources to
balance load and improve system utilization.

The rest of the paper is organized as follows. The related
work is introduced in section II, and the preliminary is shown
in section III. The SDWM is illustrated in section IV. The
experiment for SDWM is shown in section V, and the paper
is concluded in section VI.

II. RELATED WORK

The related work is reviewed from the following two
aspects: resource load evaluation and resource load evaluation
and energy.

A. Resource Load Evaluation

Currently, some static and physical indicators have been
used in resource load evaluation, such as CPU computing
power, memory and bandwidth. But in dynamic cloud envi-
ronment, these indicators have the uncertain and non-iconic
characteristic (that is to say, two CPUs are equal to computing
power value, but the actual processing speed is different). So it
is difficult for these static indicators to reflect the actual service
capacity of a resource. Hence, some research work (e.g., [7])
leverages the extended form of these indicators, such as CPU
utilization. But it is not accurate that the CPU utilization cannot
really reflect the actual CPU use state because it also includes
the memory latency. It is limited to judge resource load only by
the CPU extension indicator. For example, the paper [8] evalu-
ates and analyzes cloud resources data centers. It considers the
overload case, but it does not consider extreme idle resources.
The paper [9] evaluates the needs of the client and server
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computing power, then proposes an resource allocation method
aiming at client demand. But it does not evaluate the usage
of resources. Some researchers predict and self-adaptively
allocate resource by the use state to achieve dynamic and
proactive resource management, scheduling and planning for
interactive e-business applications [10]. A heterogeneity-aware
dynamic capacity provisioning scheme for cloud data centers
is proposed through considering the heterogeneity of both
workload and machine hardware and proposes [11]. But when
they evaluate the use state of resources they only deal with
the overload resources. Those idle resources are not taken into
account.

B. Resource Load Evaluation and Energy

Some researches integrate resource load evaluation with
energy. The virtual resources are also dynamically consolidated
by migration through an energy-aware model [12]. However,
it does not take into account the resource load state. A
heuristic method is used to set the overload threshold of host,
which is set to 85% of CPU utilization. Those resources are
determined to overload if their loads exceed this threshold
[13]. However, these static thresholds cannot meet need of the
dynamic resource load in cloud computing. Therefore, some
researchers determined overload by dynamically adjusting the
load threshold through a historical analysis [14] [15] [16], such
as Median Absolute Deviation (MAD), Interquartile Range
(IRQ), Local Regression (LR) and Local Regression Robust
(LRR). They expect to save energy by migrating or consol-
idating overload resources. But these methods do not divide
the state of resource in more detail, only judging overload.
Although there is an adjustable factor to set the threshold in
paper [7], it is used to balance energy and the Service Level
Agreements Violation (SLAV).

The paper [17] divides resources into three states—hot,
warm and cold spots based on resource utilization. Then it
migrates some hot resources to avoid overload and releases the
cold spot to save energy. This method of dividing resources
and saving energy is similar to the proposed in this paper.
But the evaluation threshold is fixed, and it does not test the
performance concerning energy saving.

From the above analysis, these current researches on re-
source load do not divide resource load in detail, and their
evaluation thresholds are fixed. So a more detailed method
is proposed to evaluate and divide resource load state in this
paper. Resource loads are divided into three states—Overload,
Normal and Idle by dynamic evaluation indicators and self-
adaptive thresholds. At the same time, the evaluation thresholds
are dynamic and self-adaptive, thus can meet the dynamic
needs of cloud resource loads.

III. PRELIMINARY

Now there are some existing evaluation methods. They
judge overload based on CPU utilization. The resource is
judged as overload when its CPU utilization exceeds a thresh-
old.

(1) MAD (median absolute deviation): For the set
X1,X2,...,.X,, (The method of calculating X is shown in
papers [15] [16]. Here, only the basic idea is shown.), take their
absolute values, and sort these absolute values in ascending

order to obtain the set X;,Xo,...
i.e.

,Xn, then take its midpoint,

MAD = median(Xy, Xo, ..., X,) ¢))

The upperbound threshold T;, is defined as follows.

T,=1-—s-MAD 2)

Where s € RT is a dynamic variable factor, while s is used
to balance energy and performance. When T, is lower, the
energy is less, but the SLAV is higher. The resource is judged
as overload when CPU utilization exceeds the threshold 7T,.

(2) IRQ (interquartile range): it takes advantage of the
quartile for ordered sets.

IRQ = Q3 — Q1 3)

Where ()1 is the quartile value of order sets, ()3 is three-
quarters of its value. The threshold 7, is defined as follows.

T,=1-s-IRQ )

Where the meaning of s is the same to MAD. Similarly, the
resource is judged as overload when CPU utilization exceeds
the threshold T,.

(3) LR (Local regression): it is a linear regression method.
It fits the distribution of CPU utilization by curve-fitting
techniques, then obtains the shortest distance line, y = f(x).
The fitting straight line is used to predict the future CPU
utilization. The resource is judged as overload when CPU
utilization exceeds the threshold P,,.

Pu =S- f(xn-i-l) (5)

(4) LRR (Local regression Robust): it is the advanced linear
regression method. It is the same as LR, but the weight of the
deviate value is changed for weakening the influence of outliers
on the fitted curve.

These existing evaluation methods only use CPU utilization
as the overall resource usage. However, in fact, CPU utilization
does not fully represent the state of resources. It also includes a
memory waiting time. Moreover, they only judge the overload
state of resource load and do not consider the long-term idle
or unavailable resources. Finally, they divide the resource state
by a fixed threshold, which does not meet the dynamic needs
of cloud resources nor reflect real-time information resources
accurately.

IV. DYNAMIC WEIGHTED LOAD MODEL BASED ON
SELF-ADAPTIVE ALGORITHM

This section proposes a novel dynamic self-adaptive load
evaluation method (termed SDWM).



A. Dynamic Evaluation Indicators

First, SDWM uses three dynamic evaluation indicators to
describe dynamic state of resource load accurately [18]. It
assumes that there are n resources in the set of cloud resources
U, which is U = U, U,,...,U,. These resources include
physical resources and VM resources.

(1) The number of resource requests, r: the average number
of service requests received by the resources per unit time.

If the number of resource request in each resource node
Ui(1 <i<mn)isr(l <i<mn), then the resource request
number of U is ry = > 1, 74

(2) The resource service capacity, h: the average number
of service requests which the resource completes per unit time.

A larger value of h indicates a stronger resource service ca-
pacity and the higher price of resources. Resource price is pro-
portional to h. Resource capacity of U is hy =n/ Y 1 | 7-.

(3) The resource service strength, ¢: the ratio of the average
time to complete a service request and their average time
interval.

The variable q reflects the relative relationship of resource
load strength and its available strength. ¢ = 7. In this
formula C is the parallel service strength. Resource strength
of Uis qn = rn/(hn - 307, Ci).

B. SDWM

Here, a dynamic weighted load evaluation algorithm is
proposed. Resource nodes periodically execute SDWM to
evaluate load state and calculate the normalized relative load
value L[i]. L[i] can reflect the performance difference among
resources and the potential load strength. L[i] is also used to
divide the resource load state by the dual thresholds A\; and
A2 (A1 < Ag). LJ[i] is defined as Formula 6.

if(ri = R,orh; > Hiorg; > Q;)

1
Ll = ’ )
[ {wl ;— + wo Z + w3 gg , Others ©)

Where r; and R; are current request amount and the
maximum request amount of the resource U;, respectively; h;
and H; are the current computing capacity and the maximum
computing capacity of the resource U;. ¢; and @Q; are the
current load strength and maximum load strength of the
resource U;. The ratios 1%, ;}—1, 5 are respectively described
as follows: r; for R;, h; for H;, q; for (); are normalized
value, whose range is [0,1].

The quantities 1%’ % and g) can change the adjustable
weighted value of three resource indicators to L[i] by dynami-
cally adjusting w;, so it is named “dynamically weighted load
evaluation algorithm.” The weighted value w; is dynamically
and self-adaptively adjusted by the Formula 7 in every evalu-

ation cycle.

w; = wo + p(wr — wo) 7

Here wg and w; are constants, which are in the range of
[0, 0.5] and [0, 1], and wo > w;. The value p is a random

number in range of [0,1]. The formula 7 makes the adjustable
weighted value of %, 1}}1 and (% change randomly in [wg,w1].

And it follows the formula 8.

S =1 ®)

1

The resource load state is divided into three states —
Owverload, Normal and Idle, based on L[i] by dual thresholds
A1 and Az (A1 < A2). The term w; needs to be updated in every
evaluation cycle.

The A\; and A, are calculated through the subtraction and
addition of the system average load strength and the standard
deviation.

M=Q-o0 €))

M=Q+0o (10)

While @ is the average load strength of all resources in
cloud computing system, the o is the standard deviation of
system load.

Q= %ZQk (1)
k=0
o= %Z(Qk—c» (12)
k=0

While @y is the average load strength of resource k, n is the
number of resource in the cloud data center.

1 n
Qr=—)> a (13)
n s

Here gy, is the load strength of resource node Uy (1 < k <
n)

The process of updating and adjusting thresholds A; and
Ao is shown in Algorithm 1.

Algorithm 1 Dynamic Self-adaptive Threshold Updating Al-
gorithm

Input:
<ri,hi,q;i >
Output:
A1, A2
1: FOR i=1 to m

2: IF < ’I“i+1,h7;+1,qi+1 >#< i, hi,q; > THEN
3: Calculate @ as Formula 11;

4: Calculate o as Formula 12;

5: Calculate QQj, as Formula 13;

6: Calculate \; by Q — o3

7. Calculate A2 by Q + o;

8: ELSE

9: Break;

10: END IF

11: END FOR




Algorithm 2 Dynamic Self-adaptive Evaluation Algorithm

Input:

riyhi,qi, Ris Hi, Qi
Output:

Lii], Ustate, ¢, A >
1: e=0;

2: FOR i=l to n

3:  Calculate L] as Formula 11;

4 Algorithm 1;

5. IF Ty = Riorhi Z HiOT’qi Z Q7 H L[’L] Z )\2 THEN
6: Ugtate = overload; Ay, = R; — r;;

7: ELSE IF L[i] < A1 THEN

8 Ustate = Idle; c = c+1;

9

: ELSE
10: Ustate = Normal;
11: END IF
12: END IF
13: IF r;41 # rijorThenumberofV Mchanges THEN
14: Update A\jandXs;
15: ELSE
16: Break;
17: END IF
18:  Update wy;
19: END FOR

The implementation process of dynamic self-adaptive load
evaluation is shown in Algorithm 2.

Where c is the idle time, and Ay is the migration amount
of overload resources.

V. EXPERIMENTS

The experiment is designed to evaluate the performance
and dynamic adaptability of evaluation method.

A. Experiments Setup and Metrics

The experiment is performed by the Cloudsim [19]. The
experiment uses the workload in the paper [7]. RAM is
4096MB, hard disk capacity is 1TB, and the bandwidth is
1Gbit / s. The average request number follows a Poisson
distribution.

The system resource utilization L (the average utilization
of the system in all nodes) is used to evaluate the performance
of every method. L is calculated as follows.

Zivzl L;

L =
N

(14)

MAD, IRQ, LR and LRR are compared with SDWM. Their
parameters using the MMT of the paper [7]: MAD-MMT-2.5,
IRQ-MMT-1.5, LR-MMT-1.2 and LRR-MMT-1.2. Besides,
two more methods are compared with SDWM to demonstrate
its effect of the self-adaptive threshold. One uses the fixed
threshold which is the first evaluation threshold, and no longer
changes. The other is Non-evaluation, which does not evaluate
and consolidate resources. In order to clearly show these
methods in figures, SDWM, Fixed threshold, Non-evaluation,
MAD, IRG, LR, LRR are marked with the uppercase letters
ABCDEFG, respectively.

B. The Dynamic Self-adaptive Effect of the SDWM

This subsection demonstrates the dynamic self-adaptive
effect of all methods along with resources changing. The
experiment randomly selects 0-200 resources to exit or join.
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Fig. 1. Energy with resource joining or exiting.
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Fig. 2. Average response time with resource joining or exiting.
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Fig. 3. Resource utilization with resource joining or exiting.

The amount of resource requests is 80 per second. Task
scheduling uses Min-Min algorithm [20]. The targets are
energy, the response time, and resource utilization for all
methods. Experiments are carried out 30 times and obtain the
average of each case.

Fig. 1 shows the average energy. The average energy of
SDWM is lower than other methods with resources joining
or exiting. The range of decreasing is from 15.4% to 26.8%.



Moreover, the dynamic range of SDWM is less than other
methods. The reason is that SDWM periodically monitors
resources and dynamically updates the threshold.

Fig. 2 shows that the average response time of SDWM
is also lower than other methods. The range of SDWM
decreasing is from 11% to 66.1% relative to other methods.
The dynamic range of SDWM is the least (100ms) when
resources dynamically change. Other methods are bigger than
200ms. Thus prove that the dynamic changes of resources
greatly impact the response time of task scheduling. SDWM
shows better adaptability than other methods, so it is more
suitable for cloud computing.

Fig. 3 shows the resource utilization. It is obvious that SD-
WM is much higher than other methods. There is an increase
of 20% to 58.3%. The resource utilization of other methods
changes along with resources joining or exiting significantly,
but SDWM only has little difference.

The above results show that SDWM has great self-adaptive
performance. The reasons are as follows: resources are real-
timely consolidated. Resource load is balanced timely, and
extreme idle resources are released. As a result, it saves energy
and improves system resource utilization.

VI. CONCLUSION

The dynamics of cloud resource makes that the tradi-
tional static evaluation indicators cannot describe resource
state accurately. Therefore, this paper uses three dynamic
evaluation indicators (i.e., the amount of resource request,
resource computing capacity and resource load strength) to
evaluate the resource load state. A dynamic self-adaptive
algorithm is proposed to evaluate the resource load. It divides
the resource load state into overload, normal and idle. The
overload resources are migrated to balance load, and the idle
resources are released to save energy if their idle time exceeds
a certain threshold. With regard to the dynamics of cloud
resources and loads, two self-adaptive thresholds are proposed.
These two dynamic thresholds A; and A, are dynamically
impacted by the dynamic evaluation indicator (resources load
strength). They are updated and adjusted periodically. The
experiment show that SDWM has a very great advantage
in terms of response time and system resource utilization
when resources are dynamically joining or exiting. It is same
to energy saving. The maximum of saving energy is nearly
31.5%.
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