
EAI Endorsed Transactions on
Cloud Systems

01-02 2015 | Volume 1 | Issue 1 | e2

EAI Endorsed Transactions
on Cloud Systems Research Article

1

BETaaS platform – a Things as a Service Environment

for future M2M marketplaces

Bayu Anggorojati1,*,Sofoklis Kyriazakos1, Neeli Prasad 1, Carlo Vallati2, Enzo Mingozzi2, Giacomo

Tanganelli2, Novella Buonaccorsi3, Nicola Valdambrini 3, Belén Martínez4, Francisco Nieto De-Santos5,

Nikolaos Zonidis6, George Labropoulous6, Alessandro Mamelli7 and Davide Sommacampagna7

1 Center for TeleInfrastructure, Aalborg University, Denmark
2 Department of Information Engineering, University of Pisa, Italy
3 Intecs S.p.A., Italy
4 Tecnalia Research & Innovation, Spain
5 ATOS Research & Innovation, Spain
6 Converge ICT Solutions & Services S.A., Greece
7 Hewlett-Packard Italiana S.r.l., Italy

Abstract

Building the Environment for Things as a Service (BETaaS) is a novel platform for the deployment and execution of content-

centric Machine-to-Machine (M2M) applications, which relies on a local cloud of gateways. BETaaS platform provides a

uniform interface and services to map content with things in a context-aware manner. Deployment of services for the

execution of applications is dynamic and takes into account the computational resources of the low-end physical devices

used. To this aim, BETaaS platform is based on a suitable defined Internet of Things (IoT) model, allowing the integration of

the BETaaS components within the future Internet environment. In this paper we present the BETaaS concept, the high level

platform architecture and application scenarios that extend the state-of-the-art in M2M communications and open the horizon

for future M2M marketplaces.

Keywords: IoT, M2M, Local cloud, TaaS.

Received on 16 December 2014, accepted on 20 January 2015 , published on 23 February 2015
Copyright © 2015 Bayu Anggorojati et al., licensed to ICST. This is an open access article distributed under the terms of the Creative

Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and reproduction in

any medium so long as the original work is properly cited.

doi: 10.4108/cs.1.1e2

*Corresponding author. Email:ba@es.aau.dk

1. Introduction

Marketplaces of applications became a trend over the

past years within this decade and this trend is a game-

changer by providing a different business model. The

app marketplaces are gaining more popularity thanks

to the massive developments and usage of mobile

apps. But mobile apps world is not the only place

where app marketplaces exist. Recently, computer’s

operating systems make use of such models, for

instance Mac App Store† and Ubuntu Software

Center‡. Even TV manufactures use this ‘channel’ to

differentiate from the competitors in the smart TVs

world.

M2M communication which implies the elimination

of the human in the loop is not only a trend, but is the

natural evolution of application marketplaces. The IoT

† http://www.apple.com/osx/apps/app-store/
‡ https://apps.ubuntu.com/cat/applications/software-center/

that integrates objects into the Internet has opened new

horizons in the M2M communications and we consider

this as a unique opportunity to come up with a Things-

as-a-Service environment that will increase the

spectrum of M2M applications.

In order to make such idea to happen in the M2M

world, several critical requirements need to be put in

place. First of all, there needs to be an open and

generic set of Application Programming Interfaces

(APIs) to expose the services provided by the smart

objects or things connected in the platform to the

applications. However, creating such common

programming interface in a M2M platform is not a

trivial thing considering the heterogeneity of the M2M

system. For the sake of simplicity, the term smart

object that refers to the M2M physical devices, such as

sensors and actuators, will simply be referred as things

throughout this paper.

It leads to a necessity of unifying the way things are

represented within the platform. Moreover, the vertical

and closed approach that is currently adopted in the

http://creativecommons.org/licenses/by/3.0/
http://www.apple.com/osx/apps/app-store/
https://apps.ubuntu.com/cat/applications/software-center/

EAI Endorsed Transactions on
Cloud Systems

01-02 2015 | Volume 1 | Issue 1 | e2

Bayu Anggorojati et al.

2

M2M system implementation, limits the types of

application that can be delivered to the end users.

Apart from the aforementioned technical requirements

and issues, other requirements, such as security and

privacy, big data, context awareness and Quality of

Service (QoS), need to be provided as well in order to

create a complete M2M platform that enables M2M

marketplace.

BETaaS aims at overcoming such limitations

through creating a horizontal runtime platform of

M2M system. Although several horizontal M2M

platforms have been recently designed and developed,

BETaaS platform distinct itself from the other

horizontal M2M platforms in its architecture that is

based on a distributed runtime environment consists of

a so-called local cloud of gateways, allowing access to

things connected to the platform regardless of their

technologies and physical location. The benefit of such

architecture is that not only it enables the deployment

of private and isolated platforms, but also allows

applications to run close to the physical M2M things

deployment, which is a critical factor for M2M

applications that require short response time and fresh

information from the things. This closeness also helps

BETaaS platform to efficiently manage the context of

things, being this context a key element for the

creation of applications.

In this paper, our technical approach in BETaaS to

enable M2M marketplaces will be further discussed. In

section 2, the requirements of M2M applications and

IoT as well as the approaches currently used by the

existing platforms will be presented, which will lead to

gap analysis between the requirements and existing

approaches. In section 3, the approach as well as the

technical detail, particularly the high level architecture

and the Things as a Service model, of BETaaS

platform will be elaborated. In section 4 we focus on

M2M applications that can be available in future

marketplaces, requiring the flexibility offered by

BETaaS approach. Finally, in the conclusions section

we focus on the next step and the vision of BETaaS in

the IoT and M2M world.

2. M2M applications and marketplace

2.1. Technical requirements

First and foremost, an M2M marketplace needs an

open platform that allows both the things to be easily

connected to the platform and the application to be

developed on top of the platform. Connecting things

into a single platform is a big challenge due to its

heterogeneous nature. There are literally wide ranges

of things’ types, capabilities, and access technologies;

from the sensors and actuators powered with (or

without) battery which are using Bluetooth, ZigBee,

ZWave, and others as their access technologies; to

Radio Frequency Identification (RFID) that requires no

battery power. The standards and communication

protocols also varies from the ETSI M2M [2],

Constrained Application Protocol (CoAP) [3], and

Message Queue Telemetry Transport (MQTT) [4], just

to name a few, and even some proprietary standards.

To this end, a layer that provides common interfaces to

the higher layer component in the platform regardless

of the underlying M2M technologies at the physical

level is certainly required. It is definitely one of the

critical point in order to reach broader scope of M2M

applications using whatever types of M2M devices.

On top of that, a contextual management of the

information that characterizes the connected things

should also be part of the platform. For instance, the

platform should be able to identify the type of thing

(e.g. sensor or actuator), the type of provided

information (e.g. temperature, humidity, presence,

GPS coordinate, etc), its location, its battery level, and

other necessary information coming from the

heterogeneous M2M system at the lower layer. It thus

allows an application to request for information

according to its requirements no matter who (i.e. any

particular things) provides them.

As earlier mentioned, the platform needs to provide

a set of common interfaces for external application to

access the platform. In this regard, the interface needs

to be application developer “friendly”. For instance, it

needs to be based on RESTful interface, as this is the

most popular method used by the web and mobile

developers – which are the most potential markets for

the M2M applications. On the other hand, the platform

should also provide other types of interfaces to give

more choice to the application developers.

Apart from the specific requirements of M2M

marketplace, other technical requirements from the

point of view of the M2M applications need to be

fulfilled too. In addition to heterogeneity, IoT and

M2M applications are also characterized by mobility,

high number of nodes, and some may require low

latency. To this end, a platform with distributed

architecture as the opposite of the centralized cloud

computing approach that is adopted by most – if not all

– of the prevalent M2M platforms nowadays.

2.2. Current approaches

The most common approach in developing M2M

application is the vertical isolated approach, meaning

that the application is developed upon particular

EAI Endorsed Transactions on
Cloud Systems

01-02 2015 | Volume 1 | Issue 1 | e2

BETaaS platform – a Things as a Service Environment for future M2M marketplaces

3

software and hardware that allows no cooperation with

each other to share things capabilities for efficiency.

Another common practice in M2M application

development is that each infrastructure serves a single

M2M application, excluding any interoperability

pattern between other systems, applications or things.

Thus, when new M2M applications are needed,

providers have to re-create M2M communication

platforms and data representation formats. Typically it

is a custom made application for a specific M2M

application, developed by smart object manufacturers

or system integrators. Certainly, this approach hinders

the participation of software developers that have little

to no knowledge on the specific M2M technologies,

and thus hinders the penetration and widespread of

M2M system usage.

To break out from such common M2M application

development pattern, several horizontal M2M

platforms have recently been developed. For instance,

OpenIoT§ project delivered an open source middleware

based on cloud environments for IoT and offering

utility-based (i.e. pay-as-you-go) IoT services.

COMPOSE** project aims at integrating, publishing

and sharing data from Internet-connected objects (i.e.

IoT) into services and applications to create an open

marketplace. A number of horizontal cloud-based

M2M platform are also commercially available, for

example Xively††, Libelium‡‡ and ThingWorx§§. In

2013, ThingWorx launched the first marketplace for

the Internet of Things that enables developers,

hardware and software providers, and system

integrators to build value-added IoT/M2M components

and make them available to broad range of companies

[5].

Even though similar vision of creating M2M

marketplace built on top of horizontal M2M platform

has recently existed, they are based on centralized

cloud architecture, which is difficult to cope with the

M2M characteristics such as high mobility, high

number of nodes, and low latency in some of M2M

applications. In response to this challenge, a novel

approach towards a geographically distributed

architecture has been defined recently. This novel

architecture referred as Fog Computing [6], provides

the computing, storage, and network services between

end devices and centralized cloud computing data

centers, typically, but not exclusively at the edge of the

network in order to efficiently support M2M

§ http://openiot.eu
** http://compose-project.eu
†† http://xively.com
‡‡ http://www.libelium.com
§§ http://thingworx.com

applications. Although decentralized approach is

acknowledged as the long-term evolution to support

M2M applications [7], only a few solutions have been

proposed in literature. However, they are usually

bounded on a specific technology, e.g. exploit the

CoAP protocol [8], or provide only the basic set of

functionalities to applications, e.g. focus only on

interoperability and integration [9].

3. BETaaS platform

3.1. Concept and architecture

BETaaS is providing a new vision about the way to

expose and manage things in the Internet of Everything

environment through distributed runtime architecture,

i.e. local cloud of gateways, and exploiting semantic

technologies to support content-centric M2M

applications execution and context awareness for

heterogeneous M2M systems. BETaaS platform

seamlessly integrates existing heterogeneous M2M

systems composed of different things by means of

adaptors within a gateway. Each gateway runs the

BETaaS run-time environment that forms a logical

overlay. The logical federation of networks forms a

local cloud in which each gateway shares the

functionalities offered by the things of its M2M

systems with the rest of the network. The term local

cloud referring to the set of gateways hosting the

platform has been adopted to highlight the locality of

such deployments, often physically confined in space,

and because of some inherent characteristics of the

general cloud systems that are incorporated in the

BETaaS platform, such as resource pooling (i.e.

physical things providing required services based on

context information and are transparent to the

application), rapid elasticity (i.e. high scalability and

ability to handle burst request thanks to distributed

architecture), and measured service (i.e. service

execution based on the current status of physical

devices hosting the gateways). On top of that, the run-

time platform running on each gateway provides M2M

applications connected to any of the BETaaS gateways

a common interface to access their respective things,

irrespective of location and underlying M2M

technology. At this point, the external application sees

BETaaS platform as a single instance in a form of local

cloud, i.e. seamless integration of heterogeneous M2M

system as well as the network of gateways. To clearly

understand the BETaaS concept, please refer to the

right hand side of Figure 1.

The BETaaS high level architecture (see the left

hand side of Figure 1 and [1] for more details) reflects

http://openiot.eu/
http://compose-project.eu/
http://xively.com/
http://thingworx.com/

EAI Endorsed Transactions on
Cloud Systems

01-02 2015 | Volume 1 | Issue 1 | e2

Bayu Anggorojati et al.

 4

the previously mentioned concept by means of

equivalent layered structure. Such structure guarantees

the proper level of abstraction to applications at the top

and the flexibility necessary to integrate different

system characterized by different technologies at the

bottom. At the bottom level, BETaaS integrates

heterogeneous M2M systems at the Physical layer into

a unified M2M system thanks to the Adaptation layer.

The Adaptation layer allows plugins to be dynamically

added and deployed into the platform to accommodate

different M2M systems, e.g. ETSI M2M, CoAP, and

even proprietary systems, within the platform. The

plugins provide interfaces to the higher layer

components and convert the request from the later into

their respective M2M systems. On top of the

Adaptation layer, Things-as-a-Service (TaaS) layer is

there to provide an abstract and uniform description of

the underlying M2M systems regardless of the

technology, communication protocol, and physical

location. The TaaS paradigm defines for each thing

connected to the platform, a thing service is created to

represent the basic service(s) that can be exposed to

applications in a content-centric manner. In order to

allow the application to transparently access thing

services irrespective of the gateway providing physical

thing connection, TaaS layer is implemented in

distributed fashion to cooperatively share resources

among gateways, thus achieving the local cloud

concept as earlier mentioned.

On top of TaaS layer, Service layer is put forward in

the platform, defining the platform interface to the

external applications. In general, Service layer exposes

all of the available thing services in the platform as

basic services allowing applications to interact with

the things connected to the platform. In addition to

basic services, this layer also allows dynamic

deployment of custom services, called extended

services, from a third party. Extended service can be

used to extend or combine the functionalities of the

basic services provided by the platform through

implementation of complex logic tailored to a specific

running instance of BETaaS platform. Not only the

support of extended service deployment in the

platform allows wide range of applications

endorsement through customization in the platform,

but also opens the opportunity to establish a

marketplace of extended services that can be installed

on demand by the end users.

In order to illustrate the distributed nature and

flexibility of the platform, the left hand side part of

Figure 1 shows a number of gateways forming a local

cloud. Further, it shows gateways with different

BETaaS components (and not) already equipped and

how to make them BETaaS enabled. The first three

gateways, i.e. GW1 – GW3, are called BETaaS-Aware

because they have at least one BETaaS layer

implemented. GW1 has all the BETaaS layers thus it is

BETaaS enabled by default, while GW2 and GW3

Figure 1. BETaaS concept and high level architecture

EAI Endorsed Transactions on
Cloud Systems

01-02 2015 | Volume 1 | Issue 1 | e2

BETaaS platform – a Things as a Service Environment for future M2M marketplaces

5

only implement TaaS+Adaptation layers and

Adaptation layer respectively which require them to

install the missing BETaaS layers components to make

them BETaaS enabled. On the other hand, GW4 and

GW5 are both BETaaS-Unaware, thus installing all the

BETaaS layers components are needed. Here we can

see an example of two gateways with different

Adaptation layer components. GW5 only has one kind

of Adaptation layer component meaning that it can

only accommodate a corresponding M2M system,

while GW4 can support different M2M systems

because it is equipped with several corresponding

Adaptation layer components.

The advantage of such approach over the centralize

cloud approach from the perspective of system

deployment and marketplace is that any people,

community, or organization can have their own

BETaaS local cloud (with the option to connect to

centralize cloud). It is thus increasing the range of

application types to be developed and promoted in the

marketplace. Furthermore, it also allows stakeholders

to join the ecosystem; not only the external application

developers but also device vendors, things developers,

and extended service developers.

3.2. Platform features

Additional to the novel concept and architecture,

BETaaS platform is equipped with advance features

embedded by design. Such features will be described

in the following sub-sections.

3.2.1. Context-aware support
The BETaaS platform is content-centric in the sense

that it provides services that depend on the type of data

that they provide and on the context in which that data

is used. The circumstances that are considered in

BETaaS as part of the context of a thing are its battery

level, its available computing capacity, the

communication protocol used and its location. BETaaS

uses semantic technologies and natural language

processing to unify the information that comes from

heterogeneous things, to infer new knowledge from

raw data in a context-aware fashion, and to generate

unique thing services for each of the things connected

to the platform.. Following the purpose of unifying

information, an ontology has been built: the BETaaS

ontology. Thishe ontology is built upon a network of

ontologies which is created by reusing ontologies that

are relevant in their domains and model the BETaaS

scenarios. In particular, the following ontologies have

been used: SSN***, OWL-Time[2]†††, CF[3]‡‡‡,

Phenonet§§§, MUO****, FIPA†††† and GeoNames‡‡‡‡.

When a new thing is connected to the BETaaS

platform, all the information related to that thing (e.g.

type of thing, contextual data, etc.) is inserted in the

BETaaS ontology. To promote standardization in the

IoT field, the BETaaS ontology is populated by means

of common vocabularies whenever possible. More

precisely, we have taken advantage of the significant

efforts in standardization and interoperability made by

WordNet,§§§§. a lexical database that groups English

words into sets of synonyms (synsets). Whenever

possible, the information related to things is translated

to WordNet sysnsets before storing it in the ontology.

WordNet organization is based on the semantic

relationships between synsets (hypernymy, hyponymy,

holonymy and meronymy). All synsets inserted in the

BETaaS ontology are stored following these

relationships, through SKOS*****, which offers a

common data model to organize classifications in a

hierarchical way. The relationships between the terms

are used as a mechanism of knowledge inference.

Inference can be applied at the time of the execution of

applications: e.g. if an application demands the

temperature at home, a temperature sensor installed in

the kitchen is valid (kitchen is meronym of home).

Inference can also be applied when registering things

in the BETaaS ontology: e.g. a new thing described as

moistness sensor, would be added to a family in the

ontology described as humidity sensors (moistness and

humidity belong to the same WordNet family). The

contextual information associated to each of the things

connected to a gateway allows the platform to create a

thing service for each of those things, following the

nomenclature setLocationType/getLocationType (e.g.

getKitchenTemperature).

3.2.2. QoS management
Support for heterogeneous QoS requirements is a non-
trivial challenge, considering the broad variety of
applications that can run on the BETaaS platform.
Classic approaches define a standard QoS model to
categorize QoS requirements into a pre-defined set of
service classes, e.g. [10]. Since at run-time
applications can only select one class with a fixed set

*** http://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628
††† http://www.w3.org/2006/time
‡‡‡ http://www.w3.org/2005/Incubator/ssn/ssnx/cf/cf-property
§§§ http://www.w3.org/2005/Incubator/ssn/ssnx/meteo/phenonet
**** http://purl.oclc.org/NET/muo/muo
†††† http://www.fipa.org/specs/fipa00091/PC00091A.html
‡‡‡‡ http://www.geonames.org/ontology/ontology_v3.1.rdf
§§§§ http://wordnetweb.princeton.edu
***** http://www.w3.org/2004/02/skos/intro

http://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628
http://www.w3.org/2006/time
http://www.w3.org/2005/Incubator/ssn/ssnx/cf/cf-property
http://www.w3.org/2005/Incubator/ssn/ssnx/meteo/phenonet
http://purl.oclc.org/NET/muo/muo
http://www.fipa.org/specs/fipa00091/PC00091A.html
http://www.geonames.org/ontology/ontology_v3.1.rdf
http://wordnetweb.princeton.edu/
http://www.w3.org/2004/02/skos/intro

EAI Endorsed Transactions on
Cloud Systems

01-02 2015 | Volume 1 | Issue 1 | e2

Bayu Anggorojati et al.

 6

of service parameters, supporting a wide range of
applications will increase dramatically the complexity.

In order to reduce the platform complexity, a simple
schema composed by three service classes has been
adopted: Real-time service (applications with hard
response time requirements), Assured service
(applications with soft response time requirements)
and Best-effort service (applications that do not require
any assurance). At the same time, flexibility is
guaranteed allowing applications to customize their
requirements through a dynamic negotiation procedure
within the selected service class. The negotiation is
performed at the time of the installation following a
two-stages procedure, as described in [11]: first the
application specifies the QoS parameters required for
the service, then the service negotiates with the TaaS
layer the QoS of the thing services required to fulfill
application requirements. For the sake of
interoperability, a standard Service Level Negotiation
(SLA) interface that allows complex developments is
adopted, the WS-Agreement Negotiation protocol,
which is the de-facto standard for SLA agreement
negotiating, establishing and managing for Web
Services.

Once the negotiation phase is performed a SLA is
established and applications could invoke thing
services with the negotiated QoS level. Specific
requirement of the proposed platform is the
exploitation of the possibilities offered by equivalent
things, things that can provide interchangeably the
same Thing Service according to context information.
As result of the integration of different systems, large
IoT networks are expected to be characterized by a
large number of equivalent things, which can
potentially provide the same services. In this context a
QoS framework that considers equivalent things in its
design can take full advantage of this variety is
included in the platform to allow efficient management
of resources. Such QoS framework is implemented in
the platform through a two-phase procedure, namely,
reservation and allocation. The reservation phase
performs admission control and, most importantly,
manages resource reservation by exploiting equivalent
thing services. The allocation phase, instead, performs
allocation of resources at time of thing service
invocation. The latter is implemented to optimize the
allocation by means of a number of parameters, e.g., in
terms of energy efficiency. For a more detailed
description of overall QoS framework included in
BETaaS, we remind the interested reader to [12].

3.2.3. Big data management
Data management is an important feature of BETaaS

platform due to the fact that a lot of data, both in

volume and frequency, is generated by things and

consumed by the applications. In order to manage

large amount of data, BETaaS platform provides

capabilities to manage data in distributed manner –

exploiting distributed architecture of the platform –

and across different layers. Such a strategy is

considered because a running BETaaS instance might

be composed of gateways with constrained and

unconstrained devices, i.e. different computational

power and storage capability, a gateway hosted in a

constrained device may have only data management

capability at the TaaS layer which is responsible to

collect data from things, perform simple adaptation of

data structure, and deliver it to gateway with more

advance data management capability or a dedicated

storage. On the other hand, more capable gateway can

have data management at the service layer which can

perform more advance tasks, such as scheduled

processing of data or real time query, i.e. when

resource is available, and provide them to the

applications. Additionally, some gateways can have

more storage capabilities where they can receive and

store data from more constrained gateways, and further

process large amount of data, thus enabling big data

management. Such gateways can also perform data

analytic functionalities upon large amount of collected

data in a form of real time query or batch processing.

The storage of data is based on a distributed file

system, so that replication, parallelism, and high

availability are guaranteed. The big data feature of the

platform is exposed to applications through a specific

module of big data manager that provides an interface,

named data task, which allows analytics deployment

and other tasks that were previously described.

3.2.4. Security management
Security management in BETaaS mainly deals with the

access control to the sensible data and trust evaluation

of things and gateways. A capability-based approach

for access control that includes access delegation

feature is used. The approach is coupled by a Public

Key Infrastructure (PKI), which is practically

implemented through digital certificates. With this

approach, an application developer will receive a

certificate signed by BETaaS’ trusted Certificate

Authority (CA) upon requesting to use BETaaS APIs

through a registration process.

During installation, as the application has obtained

the certificate, it acquires a capability or token which

states the access rights to the thing services, such as

access conditions, validity period, delegation

information, and digital signature. The platform

evaluates the access policies according to the required

thing services by application , which results in grating

a set of tokens to application. Every time a service is

invoked, the token is verified by validating the digital

signature, validity condition, delegation chain, and

relevant access rights and conditions. Complete

EAI Endorsed Transactions on
Cloud Systems

01-02 2015 | Volume 1 | Issue 1 | e2

BETaaS platform – a Things as a Service Environment for future M2M marketplaces

7

mechanism of BETaaS access control mechanism can

be reviewed in [13]

Relying on external systems manufactured and

maintained by independent third-parties can raise trust

issues. For this reason the BETaaS platform includes a

trust model to monitor things and gateways behavior

evaluating their reliability. The trust model takes into

account: the security mechanisms available for

interacting with entities, the QoS fulfillment,

dependability measures related to things and gateways,

scalability as interactions increase, expected

availability because of battery load, stability in data

generation and gateways reputation.

3.2.5. Virtualization management
Virtualization feature is included in the BETaaS

platform for two main purposes: to provide a way for

deploying applications locally (in an isolated

environment, protecting the core BETaaS platform)

and to enable scalability for the platform

functionalities (such as computation and storage for

big data analysis).

The platform exploits both local virtualization

capabilities provided by gateways and external cloud

resources provided by third parties. This is achieved by

providing a set of basic images that contain pre-

installed software depending on their purpose. BETaaS

provides an image for big data computation and

storage nodes, as well as an image with a Java web

container for web applications deployment. There is

also an image for virtualizing gateways.

3.2.6. Extended service support
As explained earlier, BETaaS allows deployment of

extended service as an extension of the basic services

provided in a specific running instance of the platform.

For example, extended service can leverage basic thing

services in a BETaaS instance deployed in a smart

home environment which consists of domotic system,

home security, smart meter or smart grid, and home

entertainment. It is implemented as a software bundle

that can be dynamically installed, run, updated,

disabled, and uninstalled at run time. At the operation

level, extended services may operate as automatic

process or can expose a set of new interfaces, i.e. in

addition to the basic thing services, that can be

exposed to external applications. The latter case

increases the possibility of more advance applications

to be developed even by software developers that have

limited knowledge about the platform itself, thus

exploiting the usage of M2M marketplace even more.

4. Application scenarios

In order to show what types of applications can be

developed on top of BETaaS platform, two application

scenarios, namely smart city and smart home

scenarios, will be presented in this section.

4.1. Smart city

The Smart City scenario is mainly focused on the

integration of Smart Things belonging to different

systems. This scenario shows how BETaaS can adapt

to different data sources, how it can be used to build a

complete system and how it can provide an added

value to existing ones.

4.1.1. Building blocks

The scenario is built upon:

 A smart lighting system that controls public lamp

posts in a parking lot

 A system to manage cars access to a restricted

area of the city based on the car’s positions

 A traffic system that receives data from traffic

sensors installed along a network of roads.

Figure 2. Smart city scenario deployment on BETaaS

platform

Figure 2 illustrates the building blocks of the smart

city scenario deployment on BETaaS platform. It

shows two different systems owned by different

organizations or entities and each of them has a

BETaaS GW connected with a set of smart things

through ETSI M2M standard. The second BETaaS

gateway at the parking lot implements smart lighting

system through a single BETaaS gateway connected to

ETSI-enabled devices: light intensity tuneable lamp

posts and infrared presence sensors. The lamp post

tunes its light intensity automatically depending upon

the presence of people at the parking lot (based on the

input from Passive Infra-Red (PIR) or presence sensor)

EAI Endorsed Transactions on
Cloud Systems

01-02 2015 | Volume 1 | Issue 1 | e2

Bayu Anggorojati et al.

 8

and the traffic data from different system. The first

BETaaS gateway, owned by the municipality, is in

charge of receiving users’ position through a GPS

receiver and matching them to the city map. It is

intended to implement a service to check the access to

Low Emission Zones (LEZ), making users to pay a fee

as they enter. The traffic system is a completely

independent system called SIMIS (Sustainable and

Intelligent Mobility Integrated System) [14]. It allows

checking the current status of roads and parking lots,

also providing traffic data to external applications, i.e.

the smart lighting system at the parking lot. In this

scenario it is shown how BETaaS can be easily

extended to receive data from it.

4.1.2. Integration through BETaaS

In this smart city scenario the two BETaaS gateways

described above are then used to make up a single

BETaaS instance. Once they are configured to join

each other, they start sharing their resources. Gateways

resources are mainly represented by the Thing Services

they created on top of the Things: lamp posts, presence

sensors, traffic sensors and cars’ GPS receivers.

BETaaS allows adding application logic inside the

instance through extended services. In this scenario

two extended services are included:

 The smart lighting extended service on the first

gateway. It not only exploits the presence sensors

directly connected to the gateway itself but it also

considers the traffic data provided by the other

gateway. Lamp light is then intensified or dimmed

also based on the current traffic density.

 The LEZ extended service not only uses the cars’

position to make users pay a fee once they enter

the restricted zone. It also exploits traffic data

coming from SIMIS to compute dynamic fees

based on the current roads congestion.

Extended services may also be accessed by BETaaS

users from their external applications. So in this case

users access the platform through mobile applications

from their cars, being notified about the current fee

that is currently applied, depending on their position

and traffic intensity. Figure 3 presents a screen shot of

LEZ BETaaS mobile apps which shows different rates

applied to the user/car traveling within the LEZ area in

different traffic intensity, i.e. high, medium, and low.

Figure 3. Screen shot of LEZ BETaaS mobile apps

4.2. Smart home

The smart home scenario is focusing on a typical need

of Smart Homes and Building Management Systems,

which is the exploitation of existing infrastructures.

BETaaS concept aims to prove through this scenario,

that it can extend proprietary systems in order to result

in integrated solutions with multiple services and

capabilities. The deployment of smart home scenario

application on BETaaS platform is shown in Figure 4.

Figure 4. Smart home scenario deployment on
BETaaS platform

In this scenario, the smart home consists of two

systems, namely home security system provided by

Vendor X and domotic system provided by Vendor Y.

Both systems are originally proprietary systems, but

they are made to be BETaaS enabled by installing

BETaaS components in their gateways. Once both

systems are BETaaS enabled, they can create a

EAI Endorsed Transactions on
Cloud Systems

01-02 2015 | Volume 1 | Issue 1 | e2

BETaaS platform – a Things as a Service Environment for future M2M marketplaces

9

BETaaS instance (i.e. local cloud) and share their

resources (things), e.g. CCTV, presence sensor, and

building access control from BETaaS gateway 1, and

temperature sensor, humidity sensor, and lamp from

BETaaS gateway 2, to enable richer sets of services

exposed to external applications. Then, the user needs

a watering system for his garden, so he bought an

additional valve and download “Watering App” from

BETaaS marketplace. The Watering App takes the

information from the thing services exposed by the

existing BETaaS instance in his home. Further, it

enables automatic garden watering based on the time

of the day, the temperature and humidity provided by

gateway 2 and presence of person at home provided by

gateway 1.

5. Conclusion

The paper presents the Things as a Service

environment for future M2M marketplaces, proposed

by BETaaS. The technical requirements and approach

of BETaaS are described, as well as the indicative

scenarios and applications. Unlike many IoT and M2M

approaches, BETaaS is a tangible platform that aims

become an open-source community to further develop

the platform, provide good documentations, transfer

the knowledge as well as technical support to the

community, and achieve the highest impact. We

strongly believe the clear advances of BETaaS

platform and some of the future works we consider,

such as establishing the community and partnerships

with all stakeholders, will create high influence in the

evolution of M2M applications and marketplace.

Acknowledgements.

This work has been carried out within the activities of

the project "Building the Environment for the Things

as a Service (BETaaS)", which is co-funded by the

European Commission under the Seventh Framework

Programme (grant no. 317674).

References

[1] Mingozzi, E.; Tanganelli, G.; Vallati, C.; Di Gregorio,

V., "An open framework for accessing Things as a

service," Wireless Personal Multimedia

Communications (WPMC), 2013 16th International

Symposium on , vol., no., pp.1,5, 24-27 June 2013.

[2] ETSI TS 102 921, "Machine to Machine

Communications (M2M); mIa, dIa and mId interfaces,"

European Telecommunications Standards Institute

(ETSI), 2012.

[3] Z. Shelby, K. Hartke and C. Bormann, "The

Constrained Application Protocol (CoAP)," Internet

Engineering Task Force (IETF), 2014.

[4] A. Banks and R. Gupta, Eds., MQTT Version 3.1.1,

OASIS Standard, 2014.

[5] S. Schwind, "ThingWorx Launches the First

Marketplace for the Internet of Things," 18 November

2013. [Online]. Available:

http://www.reuters.com/article/2013/11/18/pa-

thingworx-idUSnBw185503a+100+BSW20131118.

[6] F. Bonomi, R. Milito, J. Zhu and S. Addepalli, "Fog

computing and its role in the internet of things," in

MCC '12 Proceedings of the first edition of the MCC

workshop on Mobile cloud computing, New York,

2012.

[7] S. Abdelwahab, B. Hamdaoui, M. Guizani and A.

Rayes, "Enabling Smart Cloud Services Through

Remote Sensing: An Internet of Everything Enabler,"

Internet of Things Journal, IEEE, vol. 1, no. 3, pp. 276

- 288, June 2014.

[8] L. Mainetti, V. Mighali, L. Patrono and P. Rametta,

"Discovery and Mash-up of physical resources through

a Web of Things architecture," Journal of

Communications Software and Systems, vol. 10, no. 2,

2014.

[9] C. Sarkar , A. U. Nambi , R. V. Prasad and A. Rahim,

"A scalable distributed architecture towards unifying

IoT applications," in Internet of Things (WF-IoT), 2014

IEEE World Forum on, Seoul, 2014.

[10] Mef, Marie-Aurélie, et al. "Enabling QoS in the

Internet of Things." CTRQ 2012, The Fifth

International Conference on Communication Theory,

Reliability, and Quality of Service..

[11] Mingozzi, E.; Tanganelli, G.; Vallati, C., "A framework

for QoS negotiation in things-as-a-service oriented

architectures," Wireless Communications, Vehicular

Technology, Information Theory and Aerospace &

Electronic Systems (VITAE), 2014 4th Internationa.

[12] E. Mingozzi, G. Tanganelli, C. Vallati, A framework

for Quality of Service support in Things-as-a-Service

oriented architectures. Journal of Communication,

Navigation, Sensing and Services (CONASENSE),

Vol. 1, No. 2, May 2014..

[13] B. Anggorojati, N. R. Prasad and R. Prasad, "Secure

Capability-based Access Control in the M2M Local

Cloud Platform," in 3rd International Conference on

Wireless Communications, Vehicular Technology,

Information Theory and Aerospace & Electronic

Systems (VITAE), Aalborg, 2014.

[14] Intecs SpA, "SIMIS (Sustainable and Intelligent

Mobility Integrated System)," [Online]. Available:

http://www.intecs.it/pdf/SIMIS.pdf.

