Hardware Acceleration of Computer Vision and Deep Learning Algorithms on the Edge using OpenCL
DOI:
https://doi.org/10.4108/eai.5-11-2019.162597Keywords:
CNN, OpenCL, Computer Vision, Machine Learning, Industrial Automation, FPGA, OCR, Hardware AccelerationAbstract
Machine vision using CNN is a key application in Industrial automation environment, enabling real time as well as offline analytics. A lot of processing is required in real time, and in high speed environment variable latency of data transfer makes a cloud solution unreliable. There is a need for application specific hardware acceleration to process CNNs and traditional computer vision algorithms. Cost and time-to-market are critical factors in the fast moving Industrial automation segment which makes RTL based custom hardware accelerators infeasible. This work proposes a low-cost, scalable, compute-at-the-edge solution using FPGA and OpenCL. The paper proposes a methodology that can be used to accelerate traditional as well as machine learning based computer vision algorithms.
Downloads
Published
How to Cite
Issue
Section
License
This is an open access article distributed under the terms of the CC BY-NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original work is properly cited.