
An Investigation on Several Operating Systems
for Internet of Things

Fawwad Hassan Jaskani1,*, Saba Manzoor2, Muhammad Talha Amin3, Muhammad Asif2 and
Muntaha Irfan4

1Khawaja Fareed University of Engineering and Information Technology, Rahim Yar Khan
2Islamia University of Bahawalpur, Bahawalpur
3University of Lahore, Lahore
4National University of Science and Technology, Islamabad

Abstract
In the field of development, Internet of things (IoT) plays a crucial role in providing solution to various situations. A lot of
research has been conducted recently to model IoT based operating systems as standard UNIX, Windows and current real
time operating systems are unable to meet the demand of heterogeneous IoT applications. In this paper we will focus on
major OS features such as architecture, programming model, portability, memory management, real-time environment,
scheduling algorithm, hardware support, networking and energy efficiency. We will be focusing on the following six
operating systems which are as follows: Contiki, Tiny OS, RIOT, Zypher, Mbed and Brillo.

Keywords: Internet of things, Operating Systems, Contiki, Tiny OS, RIOT, Brillo, Zephyr.

Received on 30 October 2018, accepted on 19 December 2018, published on 30 January 2019

Copyright © 2019 Fawwad Hassan Jaskani et al., licensed to EAI. This is an open access article distributed under the terms
of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use,
distribution and reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/eai.13-7-2018.160386

1. Introduction

The Internet of Things (IoT) turns out to be an essential
feature in human life. The IoT devices are very dynamic
and heterogeneous in nature being used in smart vehicles,
remote sensing, smart car parking, smart phones,
electronic appliances, controlling and monitoring systems
etc. IOT integrated system provides broad services in a
connected network for exchanging information.

IoT works in embedded systems, which has wireless
sensors to enable connection and communication over a
network. IoT provides comprehensive data exchange
facilities in a linked network [1-2]. Normally, IoT devices
have less memory and energy resources. OS functions as a

resource manager that manages certain resources such as
CPU time, secondary storage such as hard disk, memory
and network throughput. An IoT OS is intended to operate
within the limitations of Internet of Things that include
size, memory, energy and processing capability [3].

These discrete features of IoT are required for portable,
efficient, flexible and light-weight system with small
memory tracks. Various operating systems such as Windows
8.1, ARM, and Linux etc. are in a serious competition to
design IoT based Operating Systems. The primary goal of
this paper is to provide a comparative study amongst the
terms which include architectural design, scheduling,
programming language model, memory management and
probability along with hardware support and a few inclusive
drawbacks [4]. Figure 1 shows the layout of different IoT
operating systems which have been discussed in this paper.
Table 1 depicts the comparison of

1

EAI Endorsed Transactions
on Creative Technologies Research Article

*Corresponding author. Email:Favadhassanjaskani@gmail.com

EAI Endorsed Transactions
on Creative Technologies

10 2018 - 01 2019 | Volume 6 | Issue 18 | e4

http://creativecommons.org/licenses/by/3.0/

 Fawwad Hassan Jaskani et al.

IoT operating systems. Rest of the paper is presented as
follows. Section II discusses the related work of different
researchers who have proposed different IoT based
Operating Systems. Section III discusses problem
statement. In Section IV different parameters are
discussed for IoT operating Systems. Section V highlights
the Operating System for IoT devices. Finally, Section VI
concludes the whole research and provides the future
direction in this area.

2. Literature Review

Many research studies have focused on the operating
system for IOT devices. Researchers have suggested
various IOT operating systems for different IOT devices.
They have conducted an experiment to study some
features of IoT which are carried out in the way of
development of ideal Operating System for IoT. Various
researches have been done to experiment the features and
strategies to be adopted by Operating systems to control
the functioning of IoT systems. [3]

Gaur and et al [4] have suggested general structure for an
IoT OS and provided a comparison of various existing
operating system like Contiki, RIOT, Tiny OS, Lite OS,
Free RTOS, Mantis OS, NutOS, SOS, Erika Enterprise,
OpenTag, uClinux, Nano-RK. He has concluded that there
are some special features of IoT devices as compared to
typical computer base devices. Therefore, the OS should
be designed in such a way that it must fulfil the
requirements of IoT base devices in the required
application area. Sabri and et al [2] have proposed
different OS and decided according to their usage and
newness in the domain of IoT for the past two years.

The chosen OSs such as Contiki OS and Tiny OS are most
recognized event driven model and Mbed OS, FreeRTOS
and RIOT Operating System as Real Time Operating
Systems. In his review he suggested seven significant
features for an IoT Operating System like architectural
design, scheduler, memory footprint, programming
language model, real time capabilities, hardware support,
energy efficiency and network connectivity. In [7] several
operating systems were compared. This work is different
from other in that the selection of Operating Systems is
comprised on the lasts three year’s surveys.

Many questions were asked about the most used IoT
operating system. The answer is not clear for some reasons.
First, OS for an IoT is a latest area of research however the
concept is old. Second, the Operating Systems are limited
and new because the discipline is new and the third reason is
that the experts for IoT are very small in number and most
researchers, developers and even some organizations are in
the starting phase of learning.

Mike and et al [28] provides an assessment on the IoT
devices suggesting their attributes with their appropriate
restrictions and use cases. There are multiple
contributions. First, the idea of the IoT devices and its
classification has been given with the aim to study
different devices on the Internet of Things. Second,
fundamental issues in the design of IoT devices have been
reviewed. Third, an extensive survey of latest embedded
devices and boards are carried out concentrating on main
characteristics such as processing and memory capacities,
safety characteristics, communication interfaces, size,
price, OS assistance, energy requirements, battery life and
projects for each device.

Chandra and et al [1] presents expositive review material
on operating systems presently accessible for most
emerging field IoT. Musaddiq and et al [12] has made an
effort to provide insight into the IoT Operating System
Resource Management Area of various proposed
approaches. His article offers the features of various IoT
OS protocols, their design procedures and their suitable
benefits and constraints.

In [14], the sensor network's Tiny OS is presented. It
described that Tiny OS is a completed system; it keeps
evolving and growing. It is very promising to use
language instruments for system-wide optimization.
Components follow implicit software protocols.

In [13], Contiki OS is described. It is a lightweight, open
source operating system developed for WSN. Then an
instance scenario was clarified step by step through Cooja
in Contiki OS and lastly a comparison was made with
other common operating systems like TinyOS and
LiteOS. If we look at Contiki OS, it is evident that it has
strong tools to build complex wireless communication
systems. Rime Network Stack is particularly important
because it features a lightweight network stack that is
very convenient for low-powered WSNs.

In [10], LiteShell subsystem is discussed that offers
sensor nodes with a command line interface such as
UNIX. This shell runs on the base station's PC side.
Consequently, it is a front-end interacting with the user.
In [8], RIOT OS is suggested. It seeks to bridge the gap
that has been observed between WSN operating systems
and traditional full-fledged operating systems presently
operating on internet hosts. It is comprised on design
goals including low memory footprint, energy efficiency,
modularity and uniform access to the API, regardless of
the hardware underlying it.

IoT consists of large applications with a broad range of
hardware systems relying entirely on distinct architectures. It
is extremely difficult to design one operating system that
fulfils all the requirements of IoT specific applications [2].
An operating system should be developed in such a way

2
EAI Endorsed Transactions

on Creative Technologies
10 2018 - 01 2019 | Volume 6 | Issue 18 | e4

An Investigation on Several Operating Systems for Internet of Things

that avoid redundant development and satisfy various
requirements. But neither the conventional operating
system for wireless sensor networks, nor any modern
developed operating systems are efficient to satisfy all the
needs of IoT devices. This research contributes a
comparative analysis centred on various IOT operating
systems and reveals the features of each operating system
to have an enhanced range in IoT particular applications.

3. Parameters for Selection of Suitable
IoT OS

An operating system (OS) is software that manages
computer hardware resources. It runs other program and
provide application software services. Generally, the OS
consist of kernel, system shell and utility software. The
kernel is the most important component of OS. It manages
the operations of the computer and the hardware
especially memory and CPU time. Antivirus software,
backup software, and computer instruments are examples
of utility programs. Below are the fundamental parameters
and specifications separating an IoT Operating system?
These parameters are:

3.1 Architecture

The essential part of an Operating System is the kernel.
The organization of the kernel consists of the OS structure
that impacts both the size of the application programs and
the manner in which it provides services. Some familiar
operating system architectures are monolithic, Modular,
microkernel and layered. Monolithic has a single huge
process. It runs solely in a single address space of memory
and it does not have any specific structure [5]. In this type
of architecture the services are applied separately and each
service presents an interface for others. The cost of
monolithic OS module is low therefore the system is
difficult to understand and maintain. Another problem of
monolithic kernel is that the code is too long and complex
therefore it is difficult to configure and understand.
Because this type OS architecture is unreliable so it’s not
a good choice for IOT devices.

The architecture of microkernel has a simple structure.
Microkernel architecture has separate process which is
known as server. Some servers operate in user-space while
others operate in kernel space. A microkernel is the best
choice for many embedded operating systems. It is due to the
tiny size of kernel and small number of context switches.
Due to minimum functionalities the kernel size is reduced
significantly. Moreover, this type of architecture offers
higher reliability, customization and ease of expansion. Since
most of the OS features such as time and memory server are
delivered via user-level servers.

The modular architecture is however much better than
monolithic, because a single module failure does not result
in a complete system crash. The layered architecture
method is less modular th an the microkernel method. It is
more stable and less complex than the monolithic kernel.

3.2 Programming Model

The programming model decides that how program can
be modelled by an application developer. Typical
programming models can be split into event-driven and
multithreaded schemes for IoT operating systems. An
external event like an interrupt must trigger each job in an
event-driven scheme.

A multi-threaded programming system offers the chance
to interact between the functions using an Inter Process
Communication (IPC) and to perform each job in its own
thread context. The programming language should be
developed in such a way that programmers can use the
system efficiently [2].The selection of programming
model is influenced by many variables.

Particularly parallelism, hierarchy of memory and
competition decide which model to use. The model of
programming in turn impacts the efficiency and
productivity of the scheme. Assembly language is the
finest hardware interface option, but high-level language
support is required to render it easy to create. However, it
is difficult to provide high-level languages on restricted
platforms.

3.3 Scheduling Policy

Scheduling strategy is the main factor that determines
system performance. The scheduling algorithm depends
on the latency (response time, turnaround time),
performance, energy efficiency, real-time capacities,
fairness and waiting time. Two kinds of schedulers are
available i.e. pre-emptive and cooperative. Pre-emptive
scheduler is the one that allocates CPU time to each task
while in cooperative model different jobs take different
CPU time [9]. Several applications exist with strict time
limits due to the variety of IoT tasks. The scheduler
should handle real-time tasks in order to fulfill the
deadlines and to complete the activities within certain
time limits. In addition the schedulers in IoT systems
should be multitasking and energy efficient.

3.4 Memory footprint

Memory management offers an idea of managing memory
allocation, de-allocation, caching, logical and physical

3
EAI Endorsed Transactions

on Creative Technologies
10 2018 - 01 2019 | Volume 6 | Issue 18 | e4

http://en.wikipedia.org/wiki/Operating_System

address mapping, memory security and virtual memory.
As devices are limited in number so an OS must have low
memory and processing requirements [13]. IoT devices
typically provide a few kilobytes of memory, millions of
times less than connected machines (smartphones, laptops,
tablets etc.)The amount of memory management
requirement relies on the type of application and the
underlying platform support. The distribution of memory
may be static or dynamic. Memory distribution is easier
through static method, but dynamic strategy can provide
flexibility in runtime memory acquisition.

3.7 Energy Efficiency

Energy efficiency becomes crucial for battery-powered IoT
systems and should be considered when developing an IoT
OS. Most IoT systems are resource-bound in nature [4].
Therefore, battery or other constrained energy sources are
used to operate it. Scenarios for IoT implementation are
varied, difficult and sometimes very distant. Humongous IoT
network size requires IoT OS to operate the IoT equipment
for many years to be power efficient.

3.5 Networking 4. Operating system for IoT devices

Connectivity of internet is a basic condition for IoT
devices. It should be possible for the IoT organizations to
communicate with low power consumption. OS supports
various protocols of connectivity, such as Wi-Fi, Ethernet,
BLE, IEEE 802.15.4, etc. IoT is not appropriate for
traditional TCP / IP stacks or WSN networking
technologies. While the previous expert’s fails to attain
the objectives of less memory, less complexity, and low
power, the latter requires intermediate proxies to allow
various communication platforms to talk to end to end
users. In addition, WSN protocols such as ZigBee,
Bluetooth, Wavenis, Z-Wave etc. comply with the specific
demands of smart systems, but do not meet IoT's broad-
based communication criteria [9]. To allow effective
seamless Internet communication, we need an open
standard. The IoT stack must be flexible in order to be
configured to satisfy the requirements of a broad spectrum
of IoT apps with minimal modifications. In IoT schemes,
support for Ipv6 is compulsory to have distinctive
identities in huge networks.

This section of paper presents some operating system for
IoT devices. These operating systems have been chosen
on the basis of a variety of requirements including
architecture, portability, hardware support, memory
requirement, energy efficiency and other exciting features
and characteristics.

3.6 Portability

OS separates applications from software specifics. OS is
usually ported to separate hardware devices and board
support package (BSP) interfaces in a conventional
manner. The operating system should be easily connected
to different hardware systems. The big range of hardware
architectures should be supported. The IoT micro-
controllers used variety between 8-bit and 32-bit.

The OS should be prepared to exploit the design that
underlies it [27]. In addition, IoT is a future with a broad
spectrum of apps in various fields. The OS should be
adaptable to the application's specific requirements and
provide sensible abstraction to the background
information. In addition, IoT is a future with a broad
spectrum of apps in various fields [22]. The OS should be
adaptable to the application's specific requirements and
provide sensible abstraction to the background
information.

Figure 1. Layout of Different Operating Systems

4.1 Contiki

Contiki is an open source, flexible and lightweight IoT
operating system. Open source implies the source is
accessible and will be obtainable all the time. Contiki can be
used without constraints in business and non-commercial
applications. Contiki is implementing a model of hybrid
protothread [11]. Protothread is a combination of event-
driven programming systems and multi-threaded ones. It is
fortified with strong, energy-efficient web communication
facilities that connect low-cost, power-restricted small
microcontrollers to the internet and run on various power-
restricted appliances. Contiki uses the cooperative or
preemptive based scheduling for the processes [15]. Contiki
is intended to use well-known and well-tested IPv4, IPv6,
and HTTP standards. The small memory demands create
Contiki suitable for systems with low energy constraints. It is
in C language. On daily basis

4

 Fawwad Hassan Jaskani et al.

EAI Endorsed Transactions
on Creative Technologies

10 2018 - 01 2019 | Volume 6 | Issue 18 | e4

Contiki developers test the important aspect in Cooja
simulator to ensure that Contiki code works as expected
using nightly regression tests. Cooja is written in java and
used as a single thread for simulation. Therefore, it cannot
take advantage of multi-core processors and it requires a
long time to complete the simulation for dense network
situations [18]. It supports many IoT equipment such as
wismote, sky and, z1.Contiki operates on a broad
spectrum of small platforms, varying from 8051-powered
-on-a-chip systems through the MSP430 and the AVR to a
variety of ARM devices. Contiki offers a lot of options for
support. Further, it needs to further develop to
accommodate newly available IoT hardware platforms.
Contiki operates on various hardware platforms and easily
portable to new device. [19].

 4.2 Tiny OS

Tiny OS is an open source and component based embedded
operating system. Design of this OS includes low powered
wireless system such as personal area networks (PANs),
universal computing, smart buildings and smart meters. It can
be used for further refinement for custom applications. It has
been installed over a dozen platforms and various sensor
boards [20]. It has been used by a large number of people to
simulate, develop and test various algorithms and protocols
of which is pretty clear from the number of downloads which
is more than ten thousands [21]. Tiny OS version 2.1 has
supportive TOS threads, i.e. if the CPU is not in use then it is
the responsibility of an application to provide the CPU
explicitly. Scheduler uses preemptive FIFO scheduling to
execute threads and schedules as a high priority thread. It
supports C programming language. As this is strongly related
to the Tiny OS component-based model so that’s why
accessing hardware will become quite easy. During compile-
time static memory allocation is used
[23]. Virtual memory ideas, feature pointers, heaps or
primarily static memory distribution ideas do not exist.

and tickles scheduler. For reduction of the inherent
drawbacks like code stack usage, inter-process messaging
and thread management overhead, multithreading is
designed [12]. Native is a hardware virtualizer or an
emulator which allows a user to run RIOT code as Linux
processes. Hence, it’s easier developing IoT software
without need of the actual hardware [27].

4.4 Zephyr

A small real-time operating system for resource-
constrained, connected, embedded devices (with emphasis
on the microcontrollers) and supports multiple
architectures and was released under Apache License 2.0
is Zephyr. Zephyr includes complete essential libraries
and components required in developing a complete
application like protocol stacks, device drivers, firmware
update and file systems, beyond its kernel. Zephyr,
originally developed by the Intel subsidiary Wind River,
provides microkernel for the less constrained devices of
IoT and Nano kernel for the constrained devices.

It support multithreading with priority-based, cooperative,
Earliest Deadline First (EDF), preemptive and non-
preemptive scheduling. Programs can be coded in
programming languages of C and C++. Zephyr provides with
the network stack support consisting of multiple protocols
[5]. Also, it supports the Bluetooth Low Energy (BLE) 5.0
[26]. Applications can be developed, build and tested by
using the port of native posix. Zephyr contains no loadable
kernel modules because the kernel is compiled statistically
into a single binary file. This makes Zephyr safe from
compile time attacks. Zephyr can run on a low memory
devices. Interconnectivity technology is the major need of
Zephyr which includes Wi-Fi, Bluetooth etc. ARM, ARC,
RISC-V architectures are supported by zephyr [17].

 4.5 Mbed OS
4.3 RIOT

RIOT is free, an open source operating system. The
operating system of RIOTS provides the developer with
friendly environment. It enables in evolving own IoT’s
applications for compact devices on internet. RIOT
contain few basic features such as multithreading, less
power consumption, real time capabilities, reliability,
small memory requirements, and constant API access.
RIOT usually supports most microcontroller architectures
(16-bit, 32-bit, 8-bit) and low-power IoT devices [25].

It purposes to implement the related open standards
supporting an Internet of the Things which is secure,
connected, privacy-friendly and durable. RIOT supports
the programming languages of C++ and C. Also, it
provides multithreading with preemptive, priority based

Mbed OS is an open-source embedded operating system.
It is designed explicitly for the devices in the Internet of
Things [24].Based on an on an Arm Cortex-M
microcontroller we can produce a product that contain
certain features such as connectivity, security and drivers
for some sensors and I/O devices. The Real Time
Operating System (RTOS) Mbed OS is created for
restricted IoT systems by Advanced RISC Machine
(ARM). It is designed specifically for ARM architecture
of 32 bit [19]. It provides preemptive scheduler and is
based on monolithic kernel. It supports development of C
and C++. Low memory demands and different hardware
support of Mbed OS make it appropriate for IoT based
research. It includes a set of connectivity protocol stack
drivers using, Cellular, Ethernet, ZigBee IP, Bluetooth,
ZigBee NAN, Wi-Fi, etc. radio communication.

5

An Investigation on Several Operating Systems for Internet of Things

EAI Endorsed Transactions
on Creative Technologies

10 2018 - 01 2019 | Volume 6 | Issue 18 | e4

4.6 Brillo

Brillos an android based operating system is developed by
google. It gives power to almost half of the world’s
smartphones. With at least 128 MB of ROM and 32 MB
of RAM, it can operate on constrained/ low-end devices.
The architecture of Brillo supports the processor of ARM,
Intel and MIPS. It supports development in both C and
C++ programming language. Built on top of the
monolithic kernel, it offers a reasonable scheduler [3].

Memory requirements for Android things make it not
suitable for IoT devices with low-end constraints rather
than for high-end IoT devices. Lack of interoperable
standards is one of the main problems of IoT devices. In
such situations, Brillo is found to be appropriate. It
provides a data synchronization protocol between devices
called ' ‘weave’.

The common standards communication layer of the Brillo
is called Weave. Common language is used to
communicate with sensors and devices. It can solve the
fragmentation problem in home automation [27]. Brillo
also offers device support to communicate over the
mobile, allowing customers to control devices easily.
Several intercommunication technologies such as Wi-Fi,
Bluetooth are supported by Brillo

Table 1. Comparison of different IoT Operating
Systems as referred in [10]

5. Conclusion

The review presents and selects different Operating
Systems according to their usage and newness in the field
of IoT for the last three years. Compared to conventional
computing systems, IoT has some unique characteristics
[4]. The OS should therefore be designed according to the
specific IoT device specifications and target application
regions. In this paper, we conducted a survey of IoT's
characteristics with an analysis of multiple attempts to
develop the perfect IoT OS. There are many challenges that

can motivate OS for IoT. Some challenges for kernel is that
it should be light in weight, should have compatibility to
handle Real-Time tasks and should have minimum energy
and power consumption. This paper would assist researchers
to know about Internet of Things, their traits of character,
and OSes ' strategies for managing smart real-time IoT
devices. There is no generic operating system that exists for
IoT devices. We can choose the best operating system
according to the requirement of IoT devices.

References

[1] T. Chandra, P. Verma and A. Dwivedi, "Operating Systems
for Internet of Things", Proceedings of the Second
International Conference on Information and
Communication Technology for Competitive Strategies -
ICTCS '16,

[2] Y. Zikria, S. Kim, O. Hahm, M. Afzal and M. Aalsalem,
"Internet of Things (IoT) Operating Systems
Management: Opportunities, Challenges, and Solution",
Sensors, vol. 19, no. 8, p. 1793, 2019.

[3] Y. Zikria, S. Kim, O. Hahm, M. Afzal and M. Aalsalem,
"Internet of Things (IoT) Operating Systems
Management: Opportunities, Challenges, and Solution",
Sensors, vol. 19, no. 8, p. 1793, 2019.

[4] P. Gaur and M. Tahiliani, "Operating Systems for IoT
Devices: A Critical Survey", 2015 IEEE Region 10
Symposium, 2015.

[5] M. Abdelsamea, M. Zorkany and N. Abdelkader, "Real
Time Operating Systems for the Internet of Things,
Vision, Architecture and Research Directions", 2016
World Symposium on Computer Applications & Research
(WSCAR), 2016.

[6] A. Musaddiq, Y. Zikria, O. Hahm, H. Yu, A. Bashir and
S. Kim, "A Survey on Resource Management in IoT
Operating Systems", IEEE Access, vol. 6, pp. 8459-8482,
2018.

[7] M. Silva, A. Tavares, T. Gomes and S. Pinto,
"ChamelIoT: An Agnostic Operating System Framework
for Reconfigurable IoT Devices", IEEE Internet of Things
Journal, vol. 6, no. 1, pp. 1291-1292, 2019.

[8] F. Javed, M. Afzal, M. Sharif and B. Kim, "Internet of
Things (IoT) Operating Systems Support, Networking
Technologies, Applications, and Challenges: A
Comparative Review", IEEE Communications Surveys &
Tutorials, vol. 20, no. 3, pp. 2062-2100, 2018.

6

 Fawwad Hassan Jaskani et al.

EAI Endorsed Transactions
on Creative Technologies

10 2018 - 01 2019 | Volume 6 | Issue 18 | e4

[9] Z. Zhang, M. Cho, C. Wang, C. Hsu, C. Chen and S.
Shieh, "IoT Security: Ongoing Challenges and Research
Opportunities", 2014 IEEE 7th International Conference
on Service-Oriented Computing and Applications, 2014.

[10] V. Vanitha, V. Palanisamy, N. Johnson and G.
Aravindhbabu, "LiteOS based Extended Service Oriented
Architecture for Wireless Sensor Networks", International
Journal of Computer and Electrical Engineering, pp. 432-
436, 2016.

[11] L. Farkas and L. Losonczi, "Communication Protocol for
Wireless Sensor Network, Dedicated for Real Time
Biosignal Acquisition, Implemented on Top of Contiki
OS", MACRo 2015, vol. 2, no. 1, pp. 105-111, 2017.

[12] I. Rasool, Y. Zikria, A. Musaddiq, F. Amin and S. Kim,
"RIOT-OS: FIRMWARE FOR FUTURISTIC INTERNET
OF THINGS", Far East Journal of Electronics and
Communications, vol. 17, no. 4, pp. 877-887, 2017.

[13] R. Rodriguez-Zurrunero, R. Utrilla, A. Rozas and A.
Araujo, "Process Management in IoT Operating Systems:
Cross-Influence between Processing and Communication
Tasks in End-Devices", Sensors, vol. 19, no. 4, p. 805,
2019.

[14] "Survey Paper for IOT, Capacity Planning and Cloud
Technologies", International Journal of Science and
Research (IJSR), vol. 5, no. 4, pp. 1812-1815, 2016.

[15] J. Gubbi, R. Buyya, S. Marusic and M. Palaniswami,
"Internet of Things (IoT): A vision, architectural elements,
and future directions", Future Generation Computer
Systems, vol. 29, no. 7, pp. 1645-1660, 2013.

[16] I. Skerrett, “IoT Developer Survey 2017,” LinkedIn
SlideShare, 18-Apr-2017. [Online].

[17] “IoT Operating Systems,” Arrow.com, 31-Sep-2016.

[18] N. Windpassinger, “Internet of Things - the complete
online guide to the IoT,” i-SCOOP. [Online].

[19] N. Windpassinger, “Internet of Things - the complete
online guide to the IoT,” i-SCOOP. [Online].

[20] A. Elvstam and D. Nordahl, “Operating systems for
resource constraint Internet of Things devices: An
evaluation,” MUEP, 2016. [Online].

[21] M. Ojo, S. Giordano, G. Procissi and I. Seitanidis, "A
Review of Low-End, Middle-End, and High-End Iot
Devices", IEEE Access, vol. 6, pp. 70528-70554, 2018.

7

An Investigation on Several Operating Systems for Internet of Things

EAI Endorsed Transactions
on Creative Technologies

10 2018 - 01 2019 | Volume 6 | Issue 18 | e4

