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Abstract 

This research depicts another artificial neural network (ANN) based digital differential protection scheme for generator 

stator winding protection. The scheme incorporates two feedforward neural networks (FNNs). One ANN is utilized for 

flaw recognition and the other is utilized for inward deficiency grouping. This structure utilizes current examples from the 

line-side and the unbiased end notwithstanding tests from the field current. Essential and/or second consonant present in 

the field current during an issue help the ANN, utilized for flaw location, to separate between generator states (typical, 

outside issue and interior deficiency states). Results demonstrating the performance of the protection scheme are displayed 

and show that it is quick and solid. 
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1. Introduction

1.1. Overview
Transformer and generator are the most fundamental 

components of the power framework with their protection 

significance. Since most recent three decades, analysts have been 

dealing with this specific point and rose to numerous new 

strategies however generally focused on person protection 

framework. There are assortments of defensive transfers to give 

solid and secure transformer protection, of which the differential 

transfers are observed to be more viable [1] in blame segregation 
than the old harmonic restraint techniques. The differential 

transfers ought to be planned in a manner that it doesn't mal-

work amid polarizing inrush and over excitation states of 

transformer. The inrush flows produced after blame leeway are 

additionally to be considered, as in [2], while structuring the 

hand-off. The greater part of the techniques pursue a 

deterministic methodology, depending on fixed limit. 

1.2. Artificial Neural Networks
The ANN-based algorithms have been effectively actualized in 

many example or mark acknowledgment issues, as they can 

distinguish solid states of generator and transformer based on 

perceiving their wave shapes, all the more decisively, by 

separating them from the blame current wave shapes [3]-[5]. In 

[6], Neural Network Principle Component Analysis alongside 

Outspread Basis Function Neural Networks is utilized as 

example classifier. At the end of the day, this procedure makes 
the choice based on the present mark check which is more exact 

than customary harmonic restraint based techniques utilized for 

the protection of transformer. This system could deliver the 

stumbling signal in the occasion of inward blame inside 15ms 

after blame event. Optimal Probabilistic Neural Network (PNN) 

utilized in [7] as the center classifier to segregate among inrush 

and inside blame. Molecule Swarm Optimization is utilized to 

acquire optimal smoothing factor for PNN. PNN requires bigger 

capacity for model examples and it is progressively troublesome 
to prepare attributable to numerical troubles. 
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1.3. Differential Protection A half breed protection plot is exhibited in [13] for the protection 

of generator-transformer unit thinking about most of the blame 

Differential protection,  utilizing electromechanical and strong sorts. This plan is created utilizing three microprocessors based 

state transfers, is the most widely recognized technique utilized on customary harmonic restraint circuit strategy. This gave a base 
by electric utilities for stator winding protection. Nonetheless, the thought for unit protection frameworks. Afterward, two ANN 
fast advances in computerized innovation empowered analysts based  techniques  were  introduced  in  [14],  [15] in  mix  with 
also,  originators  to gain huge  ground in creating chip based customary strategies with a blame identification time of 20ms 
protection calculations [l], [2] several chip based calculations for roughly. In the two cases, ANN had been prepared with back 

recognizing  stator  winding  flaws  have  been  proposed.  A spread algorithm. A ground blame unit protection framework is 
calculation that utilizes immediate contrasts between lineside introduced  in  [16]  thinking  about  as  it  were  the  ground 
also,  nonpartisan  end  flows  for  recognizing  stage  issues  is deficiencies happening in generator. A considerable lot of the 
depicted in [3]. The whole of the quick flows was utilized to give proposed algorithms delivered great results as far as exactness. A 
a  restriction.  Cross-relationship  was  used  to  process  basic superior algorithm  can continuously improve  the unwavering 
recurrence phasors of the line-side and nonpartisan end flows in quality of the protection plot. Be that as it may, utilization of a 
[4] the wholes and results of these flows were utilized in the blame reinforcement protection framework improves the dependability 
discovery calculation. A technique which checked the nearness of and usefulness of protection gadgets. This research introduces a 

the second symphonious in the field winding to distinguish issues model of decision framework based on ANN considering the 

is  portrayed  in  [5].  The  course  of  negative-grouping control generator-transformer unit as the ensured object. All the interior 
stream at the generator terminals was utilized to separate among blame states of transformer and generator have been reenacted to 
interior and outside flaws. An advanced system that utilizes the produce  the  required  database  for  the  preparation  of  ANN. 
positive and negative grouping models  of the generator,  and Likewise, few instances of deficiencies are created utilizing the 
voltages and flows estimated at the generator terminals to separate strategy given in [10]. These cases are utilized just amid testing 
between inward and outside deficiencies is given in [6]. The of the networks. The created ANN has been prepared and tried 
utilization of multifunctional computerized transfers for generator with RPROP and Genetic Algorithm and the results are analyzed. 

protection has likewise been examined [7], [8]. These transfers Amid this procedure, different designs of ANN have been tried 
utilize advanced blame location calculations include various flag by differing the number of concealed neurons and keeping the 
pre-preparing prerequisites. quantity of info and yield neurons fixed. Definite depiction about 

these sources of info and yields is examined in later segments. 

1.4. Feedforward Neural Networks
The   capacity  of   Artificial   Neural   (ANNs),   in   specific 

Feedforward Neural Networks (FNNs) , to learn via preparing any 

complex  input/output  their  utilization  as  example  classifiers 

fruitful  [  scientists have  connected ANNs  in various  diverse 

territories [21. In transmission line protection, FNNs have been 

genius course separation [lo], blame classifier versatile reclosing 

[la]. ANNs are additionally useful in perceiving charging inrush 

current waveforms, subsequently transformer protection [13]. An 

ANN has additionally been propose to distinguish early blames, 

as turn-to turn stator protection blame and bearing we stage 

acceptance engines [14]. The utilization of ANN the field current 

of  an  alternator  and  afterward  identifying  the  field  winding 

interterm blame is portrayed. 

Another  methodology  based  on  decision  tree  for  separation 

among inrush and inner blame with better precision is exhibited 

in [8]. This strategy cases to take preparing time of 0.02sec (1 

cycle) with characterization precision of 97.77%. 

Correspondingly, ANN based techniques have been utilized for 

the protection of generator as well. One such plan with basic ANN 

is exhibited in [9] for stator winding protection. Three parallel 

ANNs have been utilized in this plan for characterizing three 
diverse blame cases. Another such plan is exhibited in [10] where 

two separate ANNs are utilized for blame discovery and blame 

grouping. A propelled adaptation of this strategy utilizing fluffy 

rationale in mix with ANN is exhibited in [11]. In the two cases, 

blame waveforms are recreated utilizing direct stage amounts 

strategy. A down to earth protection plot is executed in [12] with 

ANN created on a digital signal processor (DSP). In spite of the 

fact  that  the  significance  of  consolidated/unit  protection 

frameworks has been distinguished in late nineties, not very many 

have done research on unit protection frameworks from that point 

forward.  

1.5. Half Breed Protection

Figure 1. Synchronous Generators with Infinite Bus

To satisfactorily prepare the ANNs to identify blames and arrange 

inside shortcomings, an exact model for simulating typical task 

state, outside blame state and inner blame state in a synchronous 

generator ought to be accessible. For the reason for this venture 

an electromagnetic transient program for simulating generator 

states was assembled. Figure demonstrates the reproduced model. 

It  comprises  of  a  multiparallel  way  synchronous  generator 

associated  with  an  unending  transport   through   a  short 

transmission  line  (TL),  having  a  obstruction  RTL  and  an 

inductance  LTL.  Both  the  generator  also,  the  interminable 

transport neutrals are grounded through protections Rgl and Rg2 

individually.  Typical  task at various power levels and power 
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variables can be reproduced utilizing this model. Reenactment 

of the outside issues is based on the algorithm exhibited in [16], 
by which it is conceivable to recreate a wide range of outside 

issues that can happen along the TL. 

Figure 2. an algorithm for simulating interior blames in
the synchronous generator of Fig. 1 

1.6. Proposed Algorithm
An algorithm for simulating interior blames in the synchronous 
generator of Fig. 1, utilizing the immediate stage amounts, was 

created. This algorithm pursues the equivalent essential lines 
followed in [16], for the reenactment of outer flaws. The strategy 

for ascertaining oneself and shared inductances of the blamed 

winding of the synchronous machine is based on the 
examination exhibited in [17], [18], and [19]. 

The inner deficiencies algorithm can reproduce extraordinary 

kinds of inner flaws at various rates of the stator winding. A full 
depiction of that algorithm is accessible in [20]. Henceforth, the 

created model can reproduce each of the three states. The model 
gives the momentary estimations of the rotor flows and of the 

flows in the stator ways, in per unit (Pu). 

A three-stage control framework including a 200MVA, 13.8kV 

Generator and a 200MVA 13.8/132kV -Yg Transformer 

alongside a 150 km transmission line has been utilized to create 

the required test and preparing designs. Fig. 2 demonstrates the 

plan of the unit protection framework and Fig. 2 demonstrates 

the power framework display made by methods for MATLAB 
Simulink programming. Extraordinary sorts of deficiencies are 

made at various areas. All the generator flaws are accepted to 

happen at 100% of the stator winding. Additionally, inrush 

present and over excitation conditions are mimicked at various 

voltage edges and with various burdens. The created waveforms 

are at that point inspected to bolster the neural networks to be 

tried with two diverse testing rates. 

Figure 3. structure of the proposed ANN based
differential protection conspire 

The structure of the proposed ANN based differential protection 

conspire, utilized for distinguishing flaws and ordering inward 

blames, is appeared in Fig. 2. The modules appeared in Fig. 2 are 

not the total modules of a digital hand-off, yet rather the vital 

modules required for the proposed plot. In this area the activity of 

the protection plot as an independent transfer is portrayed. Be that as 

it may, the ANN modules utilized in the plan can be utilized to help 

existing algorithms utilized €or generator protection, thus expanding 

the unwavering quality of the protection activity. A. Sources of info 

the contributions to the transfer are the generator three stage flows 

from both the line-side (&TL, ibTL, &TL) and the nonpartisan end 

(I, ibn, IC,) notwithstanding the field current (I f). The second 

harmonic present in the field current, amid a blame, has been 

utilized beforehand in a generator digital protection algorithm to 

show the presence of an irregularity [5]. Albeit crucial as well as 

second harmonic (depending on the sort of blame) show up in both 

inner and outside deficiencies, the recreation results appeared that 

their amplitudes in outer and inward blames are unique. Henceforth, 

tests of the field current are utilized to help the ANN based blame 

locator module to separate between the three states. 

1.7. Simple Input Subsystem
In a real equipment usage the contributions to these modules 
would be the low dimension signals given by the present 

transformers (CT) [l]. Be that as it may, in this venture the 

contributions to the simple information subsystem are the 

immediate Pu current qualities given by the reenactment 

demonstrate depicted in area 11. An inspecting recurrence of 

1200 Hz (20 tests/cycle) is utilized in this handing-off plot. 

Subsequently, to abstain from associating issues, an antialiasing 

low pass channel, with a cut-off recurrence of 570 Hz, is utilized 

at the simple information subsystem. 

1.8. Objectives
Design of a new ANN based digital differential protection 

scheme for generator stator winding protection is presented in 

this paper.  The scheme has two ANNs: 

One ANN is used by the fault detector module and the other by 
the fault classifier module. 

The ANN based fault detector module is used to discriminate 
between three generator states, namely the normal operation 

state, external fault state and internal fault state. 

To adequately train the ANNs to detect faults and classify 
internal faults, an accurate model for simulating normal 

operation state, external fault state and internal fault state in a 
synchronous generator should be available. 
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limiting rule by utilizing different proportions characterized at a 

higher  recurrence  [6].  While  different  scientists  proposed 

concealed Markov's model [7], fluffy rationale based techniques 

[4,  8],  wave  formed  acknowledgment  strategy  [1,  9],  and 

furthermore artificial neural networks-(ANNs-) [10, 11] based 

learning design way to deal with show signs of improvement 

characterization exactness, low computational weight, and quick 

reaction of the transfer. In any case, these techniques rely upon 

fixed limit list (either in time area or in recurrence space) and 

these may require extensive computational weight. Besides, the 

execution of an ANN especially relies upon its speculation ability, 

which thus is needy upon the information portrayal. One critical 

normal for information portrayal is uncorrelated. At the end of the 

day, a lot of information introduced to an ANN should not to 

comprise  of  associated  data.  This  is  on  the  grounds  that 

corresponded information diminish the uniqueness of information 

portrayal  and  consequently  acquaint  disarray  with  the  ANN 

display amid learning process and henceforth, delivering one that 

has  low  speculation  capacity  to  determine  inconspicuous 

information. 

3. Methodology

3.1. Artificial Neural Network

The ANN-based algorithms have been successfully implemented 

in many pattern or signature recognition problems, as they can 

detect healthy conditions of generator and transformer based on 

recognizing their wave shapes, more precisely, by differentiating 

them from the fault current wave shapes [3]-[5]. In [6], Neural 

Network Principle Component Analysis along with Radial Basis 

Function Neural Networks is used as pattern classifier. In other 

words, this technique makes the decision based on the current 

signature verification which is more accurate than traditional 

harmonic restraint based techniques used for the protection of 

transformer. This technique could produce the tripping signal in 

the event of internal fault within 15ms after fault occurrence. 

Optimal Probabilistic Neural Network (PNN) used in [7] as the 

core classifier to discriminate between inrush and internal fault. 

Particle Swarm Optimization is used to obtain optimal smoothing 

factor for PNN. PNN requires larger storage for exemplar patterns 

& it is more difficult to train owing to numerical difficulties. 

3.2. Our Approach 

A new approach  based  on decision  tree  for discrimination 

between inrush and internal fault with better accuracy is presented 

in [8]. This method claims to take processing time of 0.02sec (1 

cycle) with classification accuracy of 97.77%. Similarly, ANN 

based techniques have been used for the protection of generator 

too. One such scheme with simple ANN is presented in for stator 

winding protection. Three parallel ANNs have been used in this 

scheme for classifying three different fault cases. Another such 

scheme is presented in where two separate ANNs are used for 

fault detection and fault classification. An advanced version of 

this  method  using fuzzy logic  in  combination with  ANN  is 

presented in [11]. In both cases, fault waveforms are simulated 

using  direct  phase quantities  method.  A  practical protection 

scheme is implemented in [12] with ANN developed on a digital 

signal processor (DSP). 

Although the importance of combined/unit protection systems has 

been identified in late nineties, very few have carried out research 

For  the  purpose  of  this  project  an  electromagnetic  transient 

program for simulating generator states was built. Figure 1 shows 

the simulated model.  

2. Literature Review

2.1. Overview

Power transformer is a standout amongst the most imperative 

segments in power  framework, for  which  different kinds  of 

defensive and observing plans have been created for a long time. 

2.2. Differential protection 

Differential protection is a standout amongst the most broadly 

utilized techniques for securing power transformer against inward 

blames. The system is based on the estimation and examination 

of flows at both side of transformer: essential and auxiliary lines. 

The differential transfer trips at whatever point the distinction of 

the flows in the two sides surpasses a foreordained edge. This 

method  is  precise  in the vast majority of the instances  of 

transformer inside deficiencies anyway mal-task of differential 

hand-off is conceivable because of inrush flows, which result 

from homeless people in transformer attractive transition. The 

homeless people in transformer attractive motion may happen 

because of empowerment of transformer, voltage recuperation 

after blame leeway or association of parallel transformers. 

The presence of such current unsettling influences has made the 

protection of intensity transformers a difficult issue for protection 

engineers. In this way, exact characterization of flows in a power 

transformer is need of this difficult issue, in avoiding 

maloperation of the differential hand-off under various no-fault 

conditions including charging inrush,  over-excitation, outside 

blame, and immersion of current transformers [1]. 

2.3. Background Studies 

Since last 1960s, analysts have extensive enthusiasm for the 

region of digital protection  of  intensity contraption [1]. The 

primary highlights which have pulled in specialists to explore the 

attainability of structuring digital transfers for power framework 

protection are its speed  of  activity,  steadfastness, solidness, 

economy, adaptability, and probability of incorporating a digital 

hand-off into the progressive PC framework inside the substation 

and with the lattice. Further the digital transfer gives protection, 

yet in addition is utilized for status observing of intensity device. 

Also, with the utilization of artificial insight in defensive gadgets, 

the decision-production capacity of the transfers is improved. 

2.4. Early Techniques 

Early techniques were based on desensitizing or postponing the 

transfer to defeat the homeless people [2]. These strategies are 

unacceptable by the by, since the transformer were presented to 

since quite a while ago unprotected occasions. Improved security 

and trustworthiness at that point was acknowledged when the 

second harmonic substance concerning the key one was presented 

as a distinguishing proof model, known as harmonic restraint 

differential protection [3]. Be that as it may, a few scientists 

revealed the presence of a lot of the second harmonic in some 

winding deficiencies [4, 5]. Moreover, the new ages of intensity 

transformers utilize low-misfortune indistinct material in their 

centre, which can create inrush flows  with lower  harmonics 

substance and higher extents [5]. In such cases, a few creators 

have changed the proportion of second harmonic to essential 
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is developed using three microprocessors based on conventional 

harmonic restraint circuit method. This gave a base idea for unit 

protection systems. Later, two ANN based techniques were 

presented in [14], [15] in combination with conventional 

methods with a fault detection time of 20ms approximately. In 

both cases, ANN had been trained with back propagation 

algorithm. A ground fault unit protection system is presented in 

 [16] considering only the ground faults occurring in generator.

3.3. Research Gap 

Many of the proposed algorithms produced good results in terms 

of accuracy. A better algorithm can always improve the 

reliability of the protection scheme. However, use of a backup 

protection system improves the reliability and functionality of 

protection devices. This research presents a model of decision 

system based on ANN considering the generator-transformer 

unit as the protected object. All the internal fault conditions of 

transformer and generator have been simulated to generate the 

required database for the training of ANN. Also, few cases of 

faults are generated using the method given in [10]. These cases 

are used only during testing of the networks. The developed 

ANN has been trained and tested with RPROP and Genetic 

Algorithm and the results are compared. During this process, 

various architectures of ANN have been tested by varying the 

number of hidden neurons and keeping the number of input and 
output neurons fixed. Detailed description 

3.4. Neural Network Design and Simulation 

The first step to formulate the problem is identification of proper 

input and output set. Various architectures and combination of 

input sets were attempted to arrive at the final configuration with 

a goal of maximum accuracy. Keeping the number of 

outputs fixed at 2, the number of input neurons and the 

number of hidden neurons are varied on trial and error 

basis until it produced minimum error. Two configurations 

are finalized for testingBoth the proposed ANNs generate 2 

outputs to represent 4 classifications as shown in Table I. The 

basic architecture of the ANN is shown in Fig. 3. 

A. Resilient Backpropagation (RPROP) Algorithm

Resilient Backpropagation is a modification of the ordinary 

gradient descent back-propagation. To overcome the inherent 
disadvantages of pure gradient-descent, Resilient 
Backpropagation (RPROP). This algorithm was pioneered by 
Martin Riedmiller [17]. The basic principle of RPROP is to 
eliminate the harmful influence of the size of the partial 
derivative on the weight step. As a consequence, only sign of the 
derivative is considered to indicate the direction of the weight 
update but not the magnitude. 

The update value for each weight and bias is increased by a 

factor whenever the derivative of the performance function with 

respect to that weight has the same sign for two successive 

iterations. The update value is decreased by a factor whenever 

the derivative with respect to that weight changes sign from the 

previous iteration. If the where 0<η−<1<η+ RPROP is generally 

much faster than the standard steepest descent algorithm as it 

converges quickly and it is said to be the best training algorithm 

for pattern recognition & classification problems [18]. 

B. GA Based Training of ANN

The genetic algorithm (GA) is a well-known optimization technique 

based on the principles of genetics and natural selection and doesn’t 

require derivative information for optimization. Unlike back 

propagation algorithm, it provides global minima of optimization 

function. In the proposed method, GA has been used for finding 

weights and biases of Artificial Neural Network. Then the next part 

is to define a fitness function which can be used as an evaluation 

function to optimize the weight set. The fitness function used here is 

mean square error (MSE), which has been obtained by applying all 

training sets (Input and Target) for each weight set in the 

population. The algorithm of fitness function used with GA is given 

below. 

Let (Ii, Ti), i=1, 2, N, where Ii= (I1i, I2i…Ili) and Ti =(T1i, T2i, 
…Tni) represents the input-output pairs of the problem to be 
solved by ANN with configuration l-m-n. For each chromosome 
Ci=1, 2 …p belonging to the current population Pi whose size is 
p 

C. Training and Testing of ANN

Both the ANNs are trained separately with both above algorithms. 

During RPROP based training, 10% sets of total samples are used 

for validation and another 10% are used for testing purpose. During 

GA based training, the ANN is trained by optimizing the weights 

and biases of the network to minimize MSE. The total number of 

variables is calculated as given below. 

No. of variables = input weights + input biases + layer weights + 
layer biases 

=(I*H) + H + (H*O) + O 

=(I+O+1)*H+O 

where I = No. of inputs; H = No. of Hidden neurons; O= No. of 
outputs. 

Once the training process is completed the network is ready for 

testing. The network is then fed with new samples that are not used 

for training. For this purpose few test cases of generator have been 

developed using the direct phase quantities method given in 

[10]. For transformer fault cases, database is created in 

MATLAB only.. 

4. Results

4.1. Network Performance and Numerical 
Results 

The designed ANN has been trained and tested with Resilient 

Back Propagation (RPROP) algorithm and Genetic Algorithm 

(GA). Further, ANN1 with 30 inputs (half cycle data) give less 

error than the ANN2 with 48 inputs (full cycle data). However, 

further decreasing the inputs didn’t produce good results as the 

data less than half cycle is insufficient to reproduce the required 

wave shape to take the decision. 

4.2. Training Time State 

The training time also depends on the processor used in the PC. 
Present methods are implemented on the latest Intel core i7 
processor based system. To further increase the training speed of 
the GA algorithm, parallel processing technology has been used 
with the help of parallel processing toolbox available 
in MATLAB. This allows GA to use best speed of multi-core 
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technology of the processor. The Intel i7 processor has 8 cores 
which can be used in 12 clusters or workers mode. 

It is worth mentioning that both algorithms (RPROP and GA) take 

almost same time to detect the occurrence of fault, i.e., about 10ms 

for ANN1 and about 13ms for ANN2. This time is calculated based 

on the number of the sample at which the ANN produce a value 

above 0.98 at the output for a target value of ‘1’ after the first 

sample of the fault wave is fed to it. Although the results are not 

very good when the method is applied as a primary protection 

system, the results can be considered satisfactory when this system 

is used as a backup protection unit, which generally operates after 

 some delay from the primary protection unit. 

4.3. Simulations 

We have got 100 neural networks dataset to test our validation 

after training neural network for different epochs. Following are 

the results for different epochs at interval of 6 to test the 

 validation performance of training time state 

 Figure 4. Complete neural network of project

Figure 5. Hidden layers and neurons of the projects

Case 1: For epoch 12 

6 

Figure 6. best validation performance is at epoch 12 and
37.3649 where the exact solution obtains 

MSE is the mean (average) magnitude of the squares of the 

error: i.e., the distance between the model's estimate of your test 

values and the actual test value. (Squaring just converts things to 

an absolute value rather than fiddling with under or 

overshooting). 

The physical interpretation would be that this is how close, on 

average, the hyperplane drawn by your network gets to the 

actual cloud of data in your validation set. Lila's MSE of 36.6 

shows that this network can essentially guess arbitrarily close to 

the targets. 

Now this is only half of judging performance. The other half is 

how validation is done (is the model any good at guessing out-

of-sample values?), and how much regularization the network 

has done (i.e., did the network use a ton of free parameters and 

overfit? or is it tuned to a small set of actual regularities in the 

 data). 

Figure 7. After 18 epochs the level og gradient, Mu
and Validation Fail approajhes to stability 
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Figure 8. Error histogram, after validation of training, the zero  
error shows there is no negative feedback 

Figure 10. MSE (Mean Square Error) of the ANN has decreased.
A well trained ANN should have a very low MSE at the end of 
the training phase, equals to 38. 

As you can see in the performance plot, with the epochs the 

MSE (Mean Square Error) of the ANN has decreased. A well 

trained  ANN should have a very low MSE at the end of the training

phase , which in this example, equals to 38.2 at 31
epochs. The meaning of MSE being very small (close to 

zero) is that the desired outputs and the ANN's outputs for the 

training set have  become very close to each other.

Figure 9. the three plots represent the training, validation,
and testing data. The dashed line in each plot represents the 
perfect result – outputs = targets. The solid line represents the 
best fit linear regression line between outputs and targets. 

The three plots represent the training, validation, and testing data. 

 The dashed line in each plot represents the perfect result – outputs 

= targets. The solid line represents the best fit linear regression 
line between outputs and targets. The R value is an indication of 
the relationship between the outputs and targets. If R = 1, this 
indicates that there is an exact linear relationship between 
outputs and targets. If R is close to zero, then there is no linear 
relationship between outputs and targets. 

Case 2: For epoch 25 

Figure 11. shows the error histogram of the trained neural

network for the training, validation and testing steps. This 

figure shows 
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that the data fitting errors are distributed within a reasonably 
good range around zero.  

Figure 13. shows variation in gradient coefficient with respect to
number of epochs. The final value of gradient coefficient at 
epoch number 25 is 0.01 which is approximate near to zero. 

shows variation in gradient coefficient with respect to number of 

epochs. The final value of gradient coefficient at epoch number 

25 is 0.01 which is approximate near to zero. Minimum the 

value of gradient coefficient better will be training and testing of 

networks. From figure it can be seen that gradient value goes on 

decreasing with increase in number of epochs. 

Figure 12. As you can see in the performance plot, with the

epochs the MSE (Mean Square Error) of the ANN has decreased. 

A well trained ANN should have a very low MSE at the end of the 

training phase , which in this example, equals to 35.7 

As you can see in the performance plot, with the epochs the MSE 

(Mean Square Error) of the ANN has decreased. A well trained 

 ANN should have a very low MSE at the end of the training phase 

, which in this example, equals to 35.7 in 25 epochs. The 

meaning of MSE being very small (close to zero) is that the 

desired outputs and the ANN's outputs for the training set have 

become very close to each other. 

Figure 14. shows the error histogram of the trained
neural network for the training, validation and testing steps. This 
figure shows that the data fitting errors are distributed 
within a reasonably good range around zero. 
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Figure 15. The three plots represent the training, validation,
and testing data. The dashed line in each plot represents the 
perfect result – outputs = targets. The solid line represents the 
best fit linear regression line between outputs and targets. 

The three plots represent the training, validation, and testing data. 

 The dashed line in each plot represents the perfect result – outputs 

= targets. The solid line represents the best fit linear regression 
line between outputs and targets. The R value is an indication of 
the relationship between the outputs and targets. If R = 1, this 
indicates that there is an exact linear relationship between 
outputs and targets. If R is close to zero, then there is no linear 
relationship between outputs and targets. 

 Case 2: For epoch 10 

Figure 16. As you can see in the performance plot, with the

epochs the MSE (Mean Square Error) of the ANN has decreased. 

A well trained ANN should have a very low MSE at the end of the 

training phase , which in this example, equals to 49.8. 

As you can see in the performance plot, with the epochs the MSE 

(Mean Square Error) of the ANN has decreased. A well trained 

 ANN should have a very low MSE at the end of the training phase 

, which in this example, equals to 49.5 in at 10 epochs in 16 

epochs. The meaning of MSE being very small (close to zero) is 

that the desired outputs and the ANN's outputs for the training 

set have become very close to each other. 

Figure 17. shows variation in gradient coefficient with respect to

number of epochs. The final value of gradient coefficient at epoch 

number 16 is 0.02 which is approximate near to zero. Minimum the 

value of gradient coefficient better will be training and testing 

Figure 18. shows the error histogram of the trained neural

network for the training, validation and testing steps. This figure 

shows that the data fitting errors are distributed within a 

reasonably good range around zero. 

Figure 19. The three plots represent the training, validation,
and testing data. The dashed line in each plot represents the 
perfect result – outputs = targets. The solid line represents the 
best fit linear regression line between outputs and targets. 

The three plots represent the training, validation, and testing data. 

The dashed line in each plot represents the perfect result – outputs 
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= targets. The solid line represents the best fit linear regression 

line between outputs and targets. The R value is an indication of 
the relationship between the outputs and targets. If R = 1, this 

indicates that there is an exact linear relationship between 
outputs and targets. If R is close to zero, then there is no linear 

relationship between outputs and targets. 

Case 2: For epoch 17  

Figure 20. As you can see in the performance plot, with the epochs

the MSE (Mean Square Error) of the ANN has decreased. A well 

trained ANN should have a very low MSE at the end of the training 

phase , which in this example, equals to 36.7 

As you can see in the performance plot, with the epochs the MSE 

(Mean Square Error) of the ANN has decreased. A well trained 

ANN should have a very low MSE at the end of the training phase 

, which in this example, equals to 36.7 at 11 epochs in 17 

epochs. The meaning of MSE being very small (close to zero) is 

that the desired outputs and the ANN's outputs for the training 

set have become very close to each other. 

Figure 21. shows variation in gradient coefficient with respect

to number of epochs. The final value of gradient coefficient at 

epoch number 17 is 0.03 which is approximate near to zero. 

Minimum the value of gradient coefficient better will be training 

and testing 

10 

Figure 22. shows the error histogram of the trained neural

network for the training, validation and testing steps. This figure 

shows that the data fitting errors are distributed within a 

reasonably good range around zero. 

Figure 23. The three plots represent the training, validation,
and testing data. The dashed line in each plot represents the 
perfect result – outputs = targets. The solid line represents the 
best fit linear regression line between outputs and targets. 

The three plots represent the training, validation, and testing data. 

 The dashed line in each plot represents the perfect result – outputs 

= targets. The solid line represents the best fit linear regression 
line between outputs and targets. The R value is an indication of 
the relationship between the outputs and targets. If R = 1, this 
indicates that there is an exact linear relationship between 
outputs and targets. If R is close to zero, then there is no linear 
relationship between outputs and targets. 

Case 2: For epoch 14 
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Figure 24. As you can see in the performance plot, with the epochs

the MSE (Mean Square Error) of the ANN has decreased. A well 

trained ANN should have a very low MSE at the end of the training 

phase , which in this example, equals to 36.6 

As you can see in the performance plot, with the epochs the MSE 

(Mean Square Error) of the ANN has decreased. A well trained 

ANN should have a very low MSE at the end of the training phase 

, which in this example, equals to 36.6 at 8 epochs in 14 epochs. 

The meaning of MSE being very small (close to zero) is that the 

desired outputs and the ANN's outputs for the training set have 

become very close to each other. 

Figure 25. shows variation in gradient coefficient with respect

to number of epochs. The final value of gradient coefficient at 

epoch number 14 is 0.0002 which is approximate near to zero. 

Minimum the value of gradient coefficient better will be training 

and testing 

Figure 26. shows the error histogram of the trained neural

network for the training, validation and testing steps. This figure 

shows that the data fitting errors are distributed within a 

reasonably good range around zero. 

Figure 27. The three plots represent the training, validation,
and testing data. The dashed line in each plot represents the 
perfect result – outputs = targets. The solid line represents the 
best fit linear regression line between outputs and targets. 

The three plots represent the training, validation, and testing data. 

 The dashed line in each plot represents the perfect result – outputs 

= targets. The solid line represents the best fit linear regression 
line between outputs and targets. The R value is an indication of 
the relationship between the outputs and targets. If R = 1, this 
indicates that there is an exact linear relationship between 
outputs and targets. If R is close to zero, then there is no linear 
relationship between outputs and targets. 

Case 2: For epoch 24 
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Figure 28. As you can see in the performance plot, with the

epochs the MSE (Mean Square Error) of the ANN has decreased. 

A well trained ANN should have a very low MSE at the end of the 

training phase , which in this example, equals to 36.3 

As you can see in the performance plot, with the epochs the MSE 

(Mean Square Error) of the ANN has decreased. A well trained 

ANN should have a very low MSE at the end of the training phase 

, which in this example, equals to 36.3 at 18 epochs in 24 epochs 

The meaning of MSE being very small (close to zero) is that the 

desired outputs and the ANN's outputs for the training set have 

become very close to each other. 

Figure 29. shows variation in gradient coefficient with respect

to number of epochs. The final value of gradient coefficient at 

epoch number 24 is 0.06 which is approximate near to zero. 

Minimum the value of gradient coefficient better will be training 

and testing 

Figure 30. shows the error histogram of the trained neural

network for the training, validation and testing steps. This figure 

shows that the data fitting errors are distributed within a 

reasonably good range around zero. 

Figure 31. The three plots represent the training, validation,
and testing data. The dashed line in each plot represents the 
perfect result – outputs = targets. The solid line represents the 
best fit linear regression line between outputs and targets. 

The three plots represent the training, validation, and testing data. 

 The dashed line in each plot represents the perfect result – outputs 

= targets. The solid line represents the best fit linear regression 
line between outputs and targets. The R value is an indication of 

the relationship between the outputs and targets. If R = 1, this 

indicates that there is an exact linear relationship between 

outputs and targets. If R is close to zero, then there is no linear  

relationship between outputs and targets. 

Table 1. Number of Iteration and Epochs will lesser the Gradient

value means the train set is almost near to solution 

Epochs Validation Error Gradient Mu Validation 

Performance Histogram Check 
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14 37.6 -0.482 0.01 1e- 6 

05 

17 37.2 -0.482 0.0112 1e- 6 

05 

18 37.5 -0.482 0.002 1e- 6 

05 

21 37.8 -0.482 0.006 1e- 6 

05 

22 38.4 -0.482 0.0001 1e- 6 

05 

24 38.9 -0.482 0.0001 1e- 6 

05 

25 39.5 -0.482 0.0001 1e- 6 

05 

5. Conclusion

After comparing the results, it is found that the ANN with half 

cycle data input is found more suitable than the remaining 3 

combinations in terms of accuracy, training speed, precision 

and speed in fault detection. The RPROP based pattern 

recognition method is efficient in solving classification 

problems and a differential relay can be considered as a 

classifier which identifies what kind of event occurs on the 

power system network. 
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