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Abstract 

This paper outlines an approach for evolutionary procedural generation of video game content. The study deals with the 

automatic generation of game level designs using genetic algorithms and the development of a fitness function that 

describes the playability of the game level. The research explores whether genetic algorithms have the ability to produce 

outcomes that demonstrate characteristics that arise through human creativity, and whether these automated approaches 

offer any benefits in terms of time and effort involved in the design process. The approach is compared to a random 

method and the results show that the genetic algorithm is more consistent in finding levels; however analysis of the game 

levels indicates that the fitness function is not fully capturing level playability. The ability to produce playable levels 

decreases as the play area increases, however there is potential to produce larger maps that are both playable and arguably 

creative through a recombination method. 
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1. Introduction

Game content is an important factor in keeping players 

engaged in gaming worlds, yet games are becoming 

increasingly complex which has a corresponding impact on 

game development [1]. As well as dealing with this 

complexity in terms of the underlying code, there is an 

increasing demand for new game content. In general, game 

content and game asset creation are some of the most 

significant costs of a game development [2]. Manual content 

production is therefore expensive and potentially not 

scalable [3]. In contrast to manual content production, 

Procedural Content Generation is the application of 

computers to generate game content, specifically in terms of 

algorithmic generation of game content with limited or no 

human contribution [4]. However, PCG is considered 

difficult as it not only incurs considerable computational 

overhead, but also requires the ability to compute the 

technical and cultural values of the generated instances [5]. 

There are also open questions as to whether PCG can 

produce novelty in terms of content that could be 

comparable to the outcomes of human creativity. 

The research in this paper outlines a comparative study to 

determine the implications of developing game content 

using evolutionary computation as an approach. In 

particular, the study compares the use of a genetic algorithm 

based approach to the design of game levels with more 

randomised content generation. This research is an initial 

study that attempts to compare the outcomes of the two 

approaches to determine whether the game levels produced 

by the genetic algorithm have any novel characteristics that 

are not found in the randomly generated levels. 

The remainder of this paper is structured as follows. 

Section 2 outlines the background to this research and 

discusses related work. Section 3 describes the both genetic 

algorithm used to evolve the game levels in this study. 

Section 4 outlines the evaluation approach for different 

sized game levels that allows the scalability of the 

approaches to be inferred. Section 5 discusses the results 

and presents directions for future work, whilst Section 6 

concludes the paper.  
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2. Background and Related Work

The creation of game content, such as models, levels, 

textures, and other items within the game world, is time-

consuming and expensive [6]. In addition, it has been noted 

that the manual creation of game content has a range of 

other drawbacks that include a lack of flexibility and 

suggestions that manual approaches are inherently 

unscalable  [7]. The automatic creation of game content is 

not new, with examples dating back to the 1980s [4], 

however there are continuing challenges in finding ways to 

reduce unwanted artefacts that can be encountered using 

simple random generation of content.  

Procedural Content Generation (PCG) is therefore an area 

of study that looks at the automated generating of useful 

content for games. It has been argued that games are the 

“killer app” for the study of computational creativity but 

games can also be considered in much the same light from a 

creative computing context. 

2.1. Creative Computing and Computational 
Creativity 

The terms “Creative Computing” and “Computational 

Creativity” are a simple juxtaposition of two words, but a 

simple swap that produces a significant change in meaning. 

HUGILL and YANG [8] suggest that “the former is about 

doing computations in a creative way, while the latter is 

about achieving creativity through computation”. YANG 

and ZHANG [9] continue this argument by stating that “the 

difference can be that Creative Computing requires 

computing to be creative. However, computational creativity 

is to generate machine creativity through simulating human 

creativity, which does not necessarily require computing 

itself to be creative”. 

Computational Creativity is the therefore the art, science, 

philosophy and engineering of computational systems that 

exhibit behaviours that unbiased observers would deem to 

be creative. It has been observed that “from a CC 

perspective, procedural content generation (PCG) in games 

has been viewed — like mathematics and engineering — as 

a potentially creative activity but only if done exceptionally 

well.” [10]. These authors also suggest that “computational 

game creativity as the study of computational creativity 

within and for computer games. Games can be (1) improved 

as products via computational creations (for) and/or (2) used 

as the ultimate canvas for the study of computational 

creativity as a process (within)” [10]. However, whilst 

coherent in its own definition, this perspective does not 

address the need for creative approaches to developing 

games or the development of tools to support and 

understand human creativity. 

Autonomous creative systems have a long history in the 

game industry with many examples readily cited in the 

literature [5] along with many commercial games having 

been created using such approaches, with very successful 

titles such as Diablo III and Skyrim being just two examples. 

With a growing demand for engaging but unpredictable 

game experiences, such autonomous creative systems are 

increasingly becoming a necessity for the games industry. 

This necessity therefore requires that the approaches to 

game design itself are explored creatively as well as being a 

process that produces creative outcomes. LIU [11] identifies 

some of the challenges around creative exploration of 

process and the need for appropriate tools to support those 

process in a definition of creative computing: “Creative 

computing aims to better understand human creativity  and 

to  formulate  an algorithmic  perspective  on  creative 

behaviour  in  human;  and  to  design  programs  that  can 

enhance  human  creativity  without  necessarily  being 

creative  themselves”.  

With this in mind, the automated generation of game 

content can therefore be viewed simultaneously using both 

computational creativity and creative computing as lenses to 

analyse and reflect on the outcomes of the work. In the 

context of exploring new tools to support the creative 

process, there has been a growing emphasis on the use of 

computational intelligence techniques such as evolutionary 

computation. Whilst such techniques are arguably not 

creative, they however offer the potential to enhance human 

creativity as well as the ability to produce a surprising result. 

Such surprise has been identified as an essential aspect of 

creativity [12] and therefore the use of such approaches may 

be helpful in producing an output with creative elements.  

The following sections provide an overview of both 

Procedural Content Generation (PCG) in general, as well as 

specific examples of evolutionary approaches to PCG. 

2.2. Procedural Content Generation 

This section introduces existing work in the area of 

Procedural Content Generation. It is not an exhaustive 

review, as such surveys are already published in the 

literature [5]. Instead, this section introduces PCG for later 

considering evolutionary approaches to PCG. PCG can be 

used for a variety of reasons, including providing variety, 

reducing development time and development costs, saving 

space in transmission or on disk, augmenting human 

creativity and enabling adaptivity in games [4]. 

Togelius, Kastbjerg and Schedl [13] attempt to classify 

PCG through a process of defining what it is not. Implicit in 

this work is the distinction between online PCG and offline 

PCG, the former being where content is generated at 

runtime during gameplay and the latter being where content 

is generated during the design of the game or prior to 

gameplay [14]. Online PCG is both challenging and 

fascinating with the potential to impact factors such as the 

replayability of games as well as promoting the emergence 

of new game dynamics [15], however work outlined in this 

paper specifically address offline PCG. 

Offline PCG facilitate the game development process and 

typically involves systems that assist game developers in 

their design process [16, 17] or through the creation of game 

assets [18] or levels [19-21]. Traditional approaches to PCG 

utilise a number of techniques or theoretical frameworks, 

such as L-systems [22] or other space based approaches 
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[23], statecharts [24] and petri nets [25], along with an 

emergence of declarative approaches [26] or those using 

techniques such as answer set programming [27].  

Despite these different approaches to PCG, it has been 

observed that “generated content generally looks 

generic” [4], and there is an obvious challenge in using 

PCG to generate content that would exhibit the same 

novelty characteristics as arise from human creativity. 

One of the dominant trends in recent years is the 

growing interest in search based or evolutionary based 

approaches to PCG. Evolutionary algorithms have 

been used as novelty generators in other domains 

[28-30], indeed with some authors going as far as to 

suggest that evolutionary algorithms are better 

considered as continuous novelty generators as 

opposed to optimisers [31] and that the dominant 

theme of evolutionary computation is novelty 

generation [32]. 

2.3. Evolutionary PCG 

Evolutionary Procedural Content Generation (EvoPCG) is a 

specific case of search based PCG where the search 

algorithm utilises an evolutionary base. In general, search 

based PCG [33] provides the opportunity to explore massive 

search spaces and find unique solutions that may not be 

generatable using more traditional approaches. The 

identification of “unexpected” solutions using search 

algorithms has been seen in a variety of domains, such as 

software engineering [34], engineering design [35, 36] and 

robot morphology [37] to name but a few explicitly. Many 

examples of such novelty generation or unexpected 

solutions can be found in the literature [38-41]. The 

application of evolutionary algorithms offer the same 

potential in terms of the possibility to identify surprising and 

novel solutions in the creation of game content.  

Whilst the term search based PCG was only recently 

utilised [42], the use of evolutionary algorithms has been 

relatively extensive prior to this. As with PCG in general, 

surveys of existing search based approaches to PCG exist in 

the literature [33, 43] and this review does not attempt to 

replicate this work and instead focuses specifically on the 

use of genetic algorithms in the generation of game maps. 

One of the challenges of the use of genetic algorithms in 

game level design is the complexity of formulating a fitness 

function that captures the intent of a game designer. It is 

perhaps this challenge that has limited the uptake of 

automated evolutionary approaches to procedural content 

generation. Whilst not specific to game level design, the 

challenge of capturing vague performance measures has 

been identified in other applications of evolutionary 

computation [44]. It is the formulation of the fitness 

function that ultimately determines the extent to which a 

genetic algorithm can explore beyond the expected. To 

circumnavigate this challenge, many applications focus on 

the use of interactive evolutionary computation where the 

designer evaluates the levels in place of a fitness function. 

Examples of such approaches have been applied to city 

layouts [45], racing car track levels [46], terrain generation 

[47] and game levels [48] to name but a few. Whilst these

approaches are interesting in terms of computationally

augmenting human creativity, they still suffer from being a

manually intensive process. A more useful approach would

then be the use of a fully automated approach.

Various studies have addressed the evolutionary 

generation of game levels, for example Ashlock, Lee and 

McGuinness [49] apply both cellular automata and genetic 

algorithms to the process of creating game level maps. 

Similarly, Hartsook, Zook, Das and Riedl [50] use a genetic 

algorithm to create 2D role playing game worlds. Whilst 

some studies can be found in the literature, the use of 

genetic algorithms in the creation of game levels is still an 

underexplored area. Perhaps the most relevant study to date 

is the work of Sorenson and Pasquier [51] who create a 

generic fitness function for the “fun” developed in playing a 

given level of a game to guide the generation process. In this 

particular work, the mechanics of the game creation process 

are modelled as constraints rather than embedded in the 

fitness function. For example, a game level that is not 

traversable is considered as violating a constraint which 

arguably could mean that valuable game level features are 

quickly lost from the genetic mating pool. 

Common to all approaches identified in the literature are 

challenges related to the game level representation and the 

formulation of the fitness function. Opportunities exist to 

further explore the potential for applying genetic algorithms 

or other metaheuristic search algorithms to the game level 

design process to better explore how to represent levels and 

formulate fitness functions in order to address the challenge 

of creating original content [52]. 

3. Evolutionary Game Level Creation

This research sets out to consider whether the use of 

evolutionary algorithms provides any quantifiable benefit 

when used in the game design process to procedurally 

generate game levels. To that end, a Genetic Algorithm has 

been utilised to automatically design game levels for a 

simple top down shooter game. The outcome of evolving 

such levels is compared to randomly generated levels in the 

first instance. Initially, the Genetic Algorithm approach also 

involve the random generation of a population of levels and 

for consistency the same approach to generate levels is 

utilised as with the random generation baseline.  

3.1. Game Level Representation 

The game used to evaluate the approach is a top down 

shooter game where the player controls a character who 

explores the level, finds keys to open doors and confronts 

enemies that can be attacked using a variety of weapons. A 

generic level therefore consists of an m x n grid of cells and 

for the purpose of the level design it is assumed that the start 

of each level is always the bottom left cell and the exit is the 

top right cell. Whilst somewhat artificial, the prescription of 

entrance and exit cells has been used in similar studies [49]. 

Evolutionary generation of game levels
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Within the level, cells can either be walls or vacant 

spaces that combine to give rooms and corridors. A typical 

level is shown in Figure 1 where the dark spaces are the 

walls and the white the contiguous space of passageways 

and rooms. 

Figure 1. Typical game level 

Initial experimentation on level generation showed that 

generating initial levels using a cell based representation, 

where each cell was initialised independently as a wall or 

void resulted in noisy and incoherent levels. Such an 

implementation based on individual cells is the obvious 

approach, however the outcomes drove the development of 

the final representation into more creative directions. The 

adoption of an evolutionary algorithm was itself a trigger to 

human creativity to identify potential representations that 

might not otherwise have been considered. The final 

generative strategy used is dubbed “falling rectangles”. It is 

analogous to simply throwing some rectangular shapes into 

a space and using where they fall as the level map. 

To implement this in practice, a number of assumptions 

were made and control parameters assigned. The main 

assumption is that a “good” level will have a coverage of 

about 70% of the available space as playable space that is 

reachable from the start point. This goal is defined as the 

desired space ratio, R. Whilst this is given an arbitrary value, 

this is not a real limitation of the current work as the 

intention is to compare the ability of different methods to 

reach the goal and not to validate the goal in its own right. 

This approach for generating levels has been fully described 

in other work [53] but the essence of the approach is the 

determination of the number of randomly placed rectangles 

that will likely result in the desired space ratio, R. The 

following equation is used to calculate the number of 

rectangles used ( ): 

(1) 

In this equation,  is the total number of cells in the 

level determined by the width and height and O is the 

overlap factor, which is a simple adjustment that takes into 

account potentially overlapping tiles. Finally,  is the 

projected average area of rectangles measured in cells that is 

determined from the upper and lower bounds on the sizes of 

the generated rectangles.  

Upon generation of a level, the state of each individual 

cell is determined to be either a wall or a void, and all future 

operations are conducted by manipulating cells. For the 

Genetic Algorithm the initial population of individuals was 

created by repeating this approach to generating an 

individual level until the initial population was complete. 

3.2. Genetic Algorithm Implementation 

Genetic Algorithms [54] are a search and optimisation 

approach that are based on the principles of natural selection 

and population genetics. Genetic Algorithms (GAs) have 

been widely used in science, engineering and other domains 

as an adaptive algorithm for solving practical problems and 

to computationally explore solution spaces. They have been 

successfully applied to problems as diverse as equipment 

selection [55], machine design [56], service composition 

[57] and layout design [58] to name but a few. In general,

GAs are considered a robust global optimisation algorithm.

The basic operation of GAs is well documented in the 

existing literature [59, 60], consistently essentially of a 

population of individuals with in which breeding takes place 

to produce a new generation. During the breeding process, 

individuals are selected to mate based on their fitness (or 

quality score) with the more fit individuals likely to be 

selected. This results in the transfer of strong characteristics 

from generation to generation, which is the essence of 

survival of the fittest. Two individuals create two children in 

the next generation through the application of the crossover 

(or recombination) and mutation operators.  

The final elements for a GA to be implemented are the 

creation of a fitness function that differentiates between 

individuals and also a specific encoding of an individual in 

such a way that it allows the GA to evolve better individuals 

over time. The specific characteristics of the GA 

implemented in this research are discussed in the following 

sections. 

Chromosome Encoding 
Traditionally, GAs have used a binary encoding where 

either real or symbolic parameters are represented by 

mapping to one or more bits in a binary string. In this 

research, the two dimensional game level map is transferred 

into a one dimensional binary array, where each bit 
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corresponds to one cell in the level map with a value of 1 

indicating that the cell is currently a wall, and a 0 indicating 

that the cell is currently a void. A simple 4x4 grid is shown 

in Figure 2 along with the chromosome encoding. 

0 0 0 1 0 1 0 1 0 0 00 0 11 0

(0,0)

(0,3) (3,3)

(3,0)

. 

Figure 2. Chromosome encoding for a 4x4 grid 

Selection 
The GA implemented in this research uses a roulette wheel 

selection method, which is one of the most common 

selection approaches. In roulette wheel selection, the 

population of individuals is ranked according to the fitness 

value. A cumulative probability of selection is awarded 

based on the contribution of the fitness of each individual to 

the total fitness of the generation. Two individuals are 

selected for breeding based on a randomly generated number 

that is compared to the probability of selection. 

Crossover 
The crossover implementation used in this research is a 

simple single point crossover. A crossover point is chosen at 

random using a probability test for each cell against a fixed 

value. When a crossover point is chosen, the two parents are 

recombined to produce two new children as shown in Figure 

3, where the crossover cell is indicated by an X. 

X

Parents Children

Figure 3. Single point crossover 

Using these crossover scheme, existing wall and void 

structures are recombined without any knowledge of the 

spaces that may exist in the game level map. 

Mutation 
The normal approach to mutation in a binary string GA is to 

randomly flip bits with a very low probability, which in the 

case of the game level maps would result a cell changing 

from either a wall to a void, or vice versa. Initial trials 

indicated that this strategy alone was disruptive and 

impacted the ability to produce coherent and playable levels. 

As with the initial level generation, this outcome triggered a 

new thought process as to how to represent the morphing of 

spaces with in a given level. As a result of this, an additional 

strategy was implemented based on contiguous elements of 

the level. The resulting mutation function selects a space at 

random and mutates the edge of that space. This allows 

spaces in the level to expand or contract in a mutation 

operation. This may allow rooms to connect, become two 

separate rooms, or carve a hallway over time.  

Initially, each cell in the level was tested against a very 

low probability of mutation to see if standard mutation 

occurred. If no cell mutation occurred, the contiguous 

mutation operator was applied. This selects a cell at random, 

and finds the void containing that cell. If the cell is not 

associated with a void, it selects another cell. There are two 

different operations the mutation function can perform on a 

space which either expand or contract the void, and for each 

mutation the choice of operation is chosen at random. To 

contract a void, each of the cells on the boundary of void is 

tested against a mutation probability and if mutation occurs 

the type of this cell flipped so that a void cell becomes a 

wall. This is shown in Figure 4 where the initial mutation 

site is shown with an X, and the set of cells available to 

mutate shown dotted. In this case, cell Y is undergoing 

mutation. 
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Y

X

Figure 4. Mutation strategy (Contraction) with void indicated by Cell X and the mutation site indicated by Cell Y 

The expansion operation works in a similar fashion, 

expect the cells available to flip are the external boundary of 

the void. In the case shown in Figure 5, these cells are 

shown as dotted and the expansion strategy has resulted in 

two different contiguous voids joining together to create a 

much larger navigable space in the game level. 

Y

X

Figure 5. Mutation strategy (Expansion) with void indicated by Cell X and the mutation site indicated by Cell Y 

The mutation operator is not limited to a mutation of a 

single cell, with each of the cells in the mutation set being 

tested against the mutation probability. The impact of this 

particular mutation strategy is that existing wall or void 

structures can grow or shrink relatively quickly, and are less 

likely to be disrupted by random cell mutations. This has the 

potential to result in more coherent and playable levels. 

Fitness Function 
The fitness function operates on the assumption that there is 

a target ratio between space that can be traversed and the 

total size of the level. Because the level map includes an 

explicit entry and exit cell, there is also a requirement that 

there must be at least one continuous path joining these two 

cells for the level to be playable. The space ratio is the ratio 

between the number of cells that are reachable in the largest 

contiguous space in the level and the total amount of the 

cells the level contains. The space ratio of a level can be 

compared against the desired space ratio to give an error 

value that indicates how far away any given level is from the 

target. The actual space ratio ( ) of the level is given by: 

(2)
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where  is the total number of cells in the level and  is 

the number of reachable cells in the largest contiguous 

space. The space ratio error ( ) is then given by: 

(3) 

Two other contributing factors are included in the fitness 

function calculation that are used to determine to what 

extent a continuous path exists between the entry and exit 

cells of the level. These factors are the proximity of the main 

space to the entry and exit cells are calculated as a ratio of 

how close a cell in the largest contiguous space is located to 

the entry (or exit) in relation to the distance between the 

entry and exit cells. This is illustrated in Figure 6. 

C

B

A

D

Figure 6. Proximity of largest space to entry and exit 

The proximity of exit and entry are then determined by 

the following distance ratios. 

(4) 

(5) 

When the largest contiguous space includes either the exit 

or entrance cells then the corresponding terms drops to zero. 

These two terms are combined with the space ratio to create 

the following fitness function. 

(7) 

For a level where the space utilisation of the largest 

contiguous space is 70%, and the space contains both the 

entry and exits cells, this results in a theoretical minimum 

value of the fitness function of 1. Such clarity over a known 

minimum is useful in the determination of how close any 

given level is to a “perfect” level. The effectiveness of the 

formulation of the fitness function will be discussed in 

section 5 following the presentation of the results. 

4. Game Level Evaluations

The evolutionary approach outlined in the previous section 

has been evaluated for different sizes of levels. For each 

size, the GA and random generation approach were repeated 

ten times to take into account the stochastic nature of the 

algorithm. For each approach, the settings associated with 

the generation of each initial level were constant with an 

overlap percentage of 50%. 

The GA used a population size of 100, and was run for 

100 generations. The GA was elitist, so that the best level in 

each generation was transferred to the next generation. The 

final solution for each run was the best ever solution found 

in the total number of generations. For the random 

generation baseline 10,000 candidate solutions were 

generated for each run and the fitness of each computed 

using the same fitness function before selecting the best 

solution. The results for each size of level are presented in 

the following sections, where each level is also evaluated 

using the lens of computational creativity to determine 

whether the levels could be considered a creative output. 

4.1. Small levels (25x25) 

For the purpose of this research, a small level is defined as a 

grid with 25 cells on each dimension, resulting in a total 

potential of 625 cells included in the level map. Table 1 

outlines the quantitative data related to the generation of 

solutions. Across the ten runs performed, the GA is more 

consistent in finding high quality solutions with every final 

level having the same resulting fitness. Whilst the 

theoretical minimum of the fitness function is 1, in practice 

this will not be achieved because the discrete nature of the 

level is such that the number of cells included in a level will 

never be exactly 70% of the 625 available cells. It can be 

assumed that the GA consistently finds levels that are as 

close to optimal as possible. 

Table 1. Quantitative performance comparison (25x25) 

GA Random 

No. Evaluations 10,000 10,000 

Mean Fitness 1.001601 1.1941024 

Median Fitness 1.001601 1.197717 

Best Fitness 1.001601 1.144044 

Worst Fitness 1.001601 1.252609 

Fitness (S.D.) 0 0.0338643 

The statistics presented are representative of the ten final 

solutions produced from each run of the solution method. 

The generation of random levels exhibits both greater 
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variability in final outcome as well higher fitness levels, 

arguably showing that random level generation is not as 

effective in finding good levels as the GA. In this context, 

the term “good” is used in relation to the formulation of 

fitness function rather than the actual playability of the 

level. Actual playability can be considered by comparing the 

best levels generated using the two different approaches. 

The best solution from the 10 candidates generated using 

random generation was selected purely on the fitness 

function value, as a distinct best solution was identifiable. 

However, multiple solutions generated using the GA had the 

same fitness score and hence a best solution was selected by 

visually inspecting the candidates. Such a subjective 

evaluation is of course questionable, and the fact that it is 

required suggests that the fitness function is not sufficiently 

differentiating good characteristics in different levels. The 

chosen solution and the best randomly generations solution 

can be compared in Figure 7. 

(a) GA (b) Random

Figure 7. Best candidate solutions (25x25) 

Both of these levels are playable in the sense that there is 

a continuous path between the entry and exit cells, however 

the randomly generated level contains less open space and 

more of a sense of distinct “rooms”. Given the observation 

in the literature that generated levels “lack meaningful 

macro-structure and a sense of progression and purpose” 

[52] it is worth exploring these differences in more detail,

albeit qualitatively and subjectively.

Whilst the randomly generated levels have distinct 

rooms, each is a relatively large open space and as such are 

not likely to elicit any sense of surprise during gameplay. 

An attempt could be made to produce a better gameplay 

experience through inserting game elements such as doors 

and enemies, but there are few areas where immediate line 

of sight in the large spaces would not lead to an obvious 

understanding of the situation.  

In contrast, whilst the procedurally generated level has 

one much larger space, it also contains some longer 

corridors that would produce a sense of progression during 

gameplay and many smaller spaces and hidden areas that 

would allow a more surprising placement of game elements 

Arguably, both levels could be used effectively within a top 

down shooter game, despite the difference in fitness score 

though both may result in a different player experience.  

However, each could be tailored to a specific game 

scenario in the downstream game design processes that 

include the placement of game assets. 

Given the small size of this level maps, it is difficult to 

classify whether the procedurally generated level would be 

considered as a creative outcome, and therefore identify 

whether the approach is meeting the stated goals of 

computational creativity. The only elements within the level 

that add a sense of them potentially being the outcome of a 

creative process are the various “pillars” in the interior of 

the rooms which provide potential cover from enemy fire 

during gameplay and would be features typically used by a 

human game designer.  

Such features are missing from the randomly generated 

level, however the procedurally generated level is also 

missing other aspects often included by human game 

designers such as symmetrical design, maze-like topography 

and identifiable shapes and features. Whilst the scale of the 

solution limits the potential for this to be seen, it is unlikely 

that a human game designer would consider this type of 

level map as something creative 

4.2. Medium levels (50x50) 

For the purpose of this research, a medium level is defined 

as a grid with 50 cells on each dimension, resulting in a total 

potential of 2500 cells included in the level map. Table 2 

outlines the quantitative data related to the solution 

generation of the two approaches.  
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Table 2. Quantitative performance comparison (50x50) 

GA Random 

No. Evaluations 10,000 10,000 

Mean Fitness 1.1057698 1.3673496 

Median Fitness 1.105022 1.360535 

Best Fitness 1.002401 1.305078 

Worst Fitness 1.205604 1.43904 

Fitness (S.D.) 0.0575286 0.0419825 

As with the smaller level, the genetic algorithm is again 

more consistent with finding highly fit solutions. However, 

in this case the GA is not consistently finding the practically 

optimal solution and fitness function values are generally 

higher than with the smaller levels. The randomly generated 

levels generally exhibit a more marked difference in terms 

of worse fitness than was seen with the smaller 25x25 levels 

and are again generally less fit than those levels discovered 

by the GA. There is also a marginal increase in variability 

when compared to the random generation of small levels. 

Interestingly, the GA is more variable in its outcomes when 

the standard deviation of fitness values is used as an 

indication of spread. However, the worst level found by the 

GA still has a better fitness than the best randomly 

generated level. 

The best solution from the 10 candidates generated using 

each method could be selected purely on the fitness function 

value as a distinct best solution was identifiable. This differs 

from the results for the smaller levels where manual 

inspection was required to determine a candidate solution 

from those generated by the GA. The two solutions can be 

compared in Figure 8. 

(a) GA (b) Random

Figure 8. Best candidate solutions (50x50) 

The distinction between these two levels is less marked 

than with the smaller 25x25 levels. At this size, both levels 

have the same potential to provide an engaging game level 

as both levels exhibit a character of distinct rooms. The 

marked difference in this case is that the evolved level has 

less “clean lines” in terms of the boundaries of the spaces in 

the level. Analysis of the evolution trajectory indicated that 

the most significant changes occurred through crossover in 

the early generations. However, once a good solution was 

found, mutation become the dominant operator. Rather than 

joining spaces as expected, mutation produces non-smooth 

walls. A simple manual cleaning of the space would result in 

a highly playable level. 

With the increase in scale, the potential for overlap 

between the “falling rectangles” in the randomly generated 

level has resulted in a number of “pillars” as seen in the 

smaller procedurally generated level (25x25). However, the 

larger procedurally generated level also contains such 

features as well as maintaining the narrow corridors. Whilst 

the mutation operator is eroding the integrity of some spaces 

through the creation of many single cell alcoves, it is also 

the mutation operator that is the likely source of narrow 

corridors. Both levels lack features that might be included 

by a human designer and from a computational creativity 

perspective, neither level includes would surprise or delight 

a game designer inspecting the level maps nor be considered 

“creative”. 

4.3. Large levels (50x50) 

For the purpose of this research, a large level is defined 

as a grid with dimensions of 75 cells in each dimension, 

resulting in a total of 5625 cells included in the level map. 

Table 3 outlines the quantitative data related to the solution 

generation of the two approaches.  
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Table 3. Quantitative performance comparison (75x75) 

GA Random 

No. Evaluations 10,000 10,000 

Mean Fitness 1.2234681 1.4419483 

Median Fitness 1.224525 1.456114 

Best Fitness 1.15319 1.334692 

Worst Fitness 1.296359 1.553735 

Fitness (S.D.) 0.0447513 0.063888112 

The difference in performance seen when comparing the 

50x50 data with the 25x25 data is repeated, but more 

apparent. There is more variability in the fitness scores for 

the randomly generated levels and again the actual fitness 

scores are considerably higher than both that of the 

randomly generated medium sized levels and the evolved 

larger levels, suggesting that the solutions are further away 

from the optimal case. 

In this case, there was again a distinct best solution 

identifiable from the ten solutions produced by the genetic 

algorithm. This is shown in comparison with the best 

randomly generated level in Figure 9. Again, the differences 

between these levels is predominately related to the broken 

nature of the room walls that has been caused by the 

mutation operator. As with the medium sized levels, both 

solutions offer very playable levels albeit with the suggested 

manual cleaning of the evolved level. Saying this, the scale 

of these levels is such that many of the spaces would be 

considered fairly open during gameplay, particularly in the 

procedurally generated level. Both levels also contain 

multiple pathways between any two zones in the map which 

would be relatively uncommon in many games that utilise 

levels of this type. 

(a) GA (b) Random

Figure 9. Best candidate solutions (75x75) 

Whilst some features such as narrow corridors and pillars 

exist, arguably these larger levels are less playable simply as 

a result of the navigational uncertainty that would arise from 

these multiple pathways. Neither would be considered as 

particularly desirable (and hence creative) levels from the 

perspective of a human game designer. 

5. Discussion

The previous section has presented results that facilitate the 

comparison of evolutionary procedural content generation 

with the random generation of game levels. An increase in 

size of the game level results in an increasingly complex 

generation task, however in all cases both the genetic 

algorithm and the random generation approaches find 

feasible levels. However, as the size increases there is a 

perceived lack of usefulness of the generated levels and 

arguably a reduction in the level of creativity identifiable in 

the levels. 

The data presented in Tables 1-3 support the argument 

that the complexity of the generation task increases as the 

size of the level is increased. The increase in complexity can 

also be evidenced by considering how the genetic algorithm 

converges to a solution. Figure 10 shows the mean fitness 

function of the best solution in each generation across the 

ten runs of the genetic algorithm for each size of level. 
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Figure 10. Convergence of the genetic algorithm

As the size of the level increases, the rate of 

convergence decreases and the quality of the final 

solution is reduced according to the fitness function. 

However, the current formulation of the fitness function 

needs to be questioned. Whilst the GA finds supposedly 

better solutions over time in comparison to the random 

generation, visual inspection of the levels in Figures 6-8 

suggests that the GA potentially produces levels that are 

neither more or less playable than the randomly generated 

levels, but are arguable slightly more fragmented both in 

terms of the boundary walls and the overall space.  

It is possible that this outcome is the result of the 

fitness function not really differentiating between levels 

with different desirability. For example, the two levels 

shown in Figure 11 were produced by the genetic 

algorithm and have the same fitness function score as the 

level shown in Figure 6(a). Put simply,  for the smaller 

levels it  is relatively easy for the GA to generate a 

solution that meets the optimality criteria defined by the 

fitness function, and many such solutions exist with 

different characteristics that are not captured or 

differentiated by the formulation of the fitness function. 

(a) (b) 

Figure 11. Game levels with the same fitness function 
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These two game levels have very different 

characteristics than the level in Figure 6(a), and 

consistently the randomly generated levels exhibit much 

more of a “room and corridor” feel. Inspection of game 

levels from successful games (e.g. Doom, Wolfenstein) 

display the characteristic of distinct rooms connected by 

corridors. However, whilst these levels are not potentially 

useful or creative as a standalone entity, there is the 

potential to utilise them as building blocks in a process to 

assemble a larger, more useful and creative outcome. The 

outcome of such a process is shown in Figure 12(a) in 

comparison with a level from Doom in Figure 12(b) 

sourced from the Doom Wiki  [61]. 

To produce this game level map, five of the final 

solutions from the genetic algorithm were selected at 

random. Each level map was parsed to identify similar 

features or spaces, then these were aligned by using a 

series of translations to produce a larger combined level 

map. Finally, single-cell artefacts were algorithmically 

removed to produce a “clean” level map. 

(a) (b) [61] 

Figure 12. Comparison of combined level with a commercial game level map 

This process has produced what is an inherently playable 

level that immediate intrigues the game designer to 

inspect and analyse the topographical structure of the 

level. This level can be visually compared to a level from 

a commercial game with immediate parallels in terms of 

space distribution and ratios of distances and would be a 

candidate level for identifying whether procedurally 

generated content can produce immersion and 

engagement [62]. As a result, this process fits with in the 

definition of creative computing discussed by LIU [11] 

whereby there are “programs  that  can  enhance  human 

creativity  without  necessarily  being  creative 

themselves”. Similarly, this as an example of co-

evolution, enabled by feedback, which has been 

considered as an essential  element  of  creative  artistic 

and  technical  development [63]. The initial intention of 

using genetic algorithms as a generative system led to the 

conclusion that a simplistic fitness function was not 

sufficient to produce creative outcomes, which then 

resulted in reflective process between developer and game 

designer that led quickly to a pragmatic alternative that 

draws upon elements of cellular automata that produces 

usable and stimulating outcomes. Despite this, given that 

generation of original content has been stated as a 

challenge for PCG [52], clearly more effort is required in 

formulating an appropriate fitness function to differentiate 

levels that are likely to exhibit a sense of progression and 

purpose. This could be achieved through characterising 

the spaces created in the level as either rooms or corridors 

and seeking a balance between the two types. This could 

be further extended through formulating a fitness function 

that embraces novelty, an approach that has seen 

considerable successes in other domains [64, 65] 

In addition to the formulation of the fitness function, 

the fragmentation of the space in the evolved levels could 

be due to a number of factors. Arguably, all of the 

evolved levels show a much greater percentage of open 

space than the randomly generated levels. In this sense, 

the genetic algorithm is successful in that it is managing 

to move levels towards the desired space ratio. Setting the 

desired space ratio lower could significantly alter the 

results. 

The fragmentation may also be the result of the genetic 

operators disrupting the coherence of the space over time. 

This can be supported in part by inspecting the best level 

by generation. For most of the cases, the genetic 

algorithm typically maintained a stronger room/corridor 

feel for the first 20-30 generations and at that point 
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fragmentation occurred though the increasing significance 

of the mutation operator. A less aggressive mutation 

strategy would be valuable, as would a fitness function 

that can differentiate between levels with different 

characteristics. It is possible that because the fitness 

function is not differentiating between levels as most 

levels would include the start and end point in the main 

contiguous space. Rather than being a directed, 

randomised search the genetic algorithm would 

essentially be selecting completely random individuals for 

mating and as a result evolution is no longer occurring. 

Future work will therefore focus on the development of 

a more robust fitness function in the first instance. This 

fitness function needs to encapsulate a design goal or 

indeed multiple goals, which would facilitate further work 

that would allow the potential value of evolutionary PCG 

approaches to be determined. A more rigorous approach 

to evaluating the content generation approach will be 

implemented [66] and the outcomes will be compared to a 

selected set of alternative algorithms selected through a 

comprehensive review of existing methodologies for 

PCG.  

The research direction will include the development of 

goal-specific genetic operators that are targeted towards 

the non-fragmentation of game level maps. However, 

future research will also consider the compositing of sub-

sections of level maps into a larger whole to address the 

challenges identified with scaling. 

The challenge of generating original or novel content 

procedurally for game designers remains relevant, but the 

results in this paper indicate that relative simple fitness 

functions can produce playable levels and certainly at the 

smaller scale these exhibit many desirable characteristics. 

Similarly, the recombination of elements that in 

themselves may not be considered a creative outcome 

have the potential to produce levels that have features 

comparable to those produced by human game designers..  

6. Conclusions

This paper has presented results that compare the use of a 

genetic algorithm as an evolutionary PCG approach with 

a simple random generation of game content. This 

comparison needs to take place in two dimensions, 

namely the quality of the resulting game content and the 

process of game content creation. 

In terms of the quality of the resulting game content, 

the genetic algorithm can produce playable game levels 

but these levels do not have the same appeal as the 

randomly generated game levels. The space in the evolved 

levels is both more open and more fragmented, which 

suggests that the levels may not be as engaging for a 

player. This fragmentation is more apparent as the size of 

the game level increases. 

However, in terms of the process of content generation, 

the genetic algorithm has been shown to be more 

consistent in terms of finding high quality solutions. In 

this instance, the genetic algorithm has been led 

somewhat astray by the formulation of a fitness function 

that doesn’t capture whether a candidate game level is 

likely to be engaging. his stresses the importance of the 

role of the fitness function when using evolutionary 

algorithms, however this paper also provides insight in to 

the possibility of producing creative outcomes from 

essentially non-creative components. 
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