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ABSTRACT

There exists ample research exploiting cognitive processes
for robot localization and mapping, for instance RatSLAM
[10]. In this regard, tasks such as visual perception and
recognition, which are primarily governed by visual and peri-
rhinal cortices, receive a little attention. To bridge this gap,
we present a novel bio-inspired place recognition front-end
for the RatSLAM system. Our algorithm uses Gist features
to obtain the perceptual structure of the scenes and em-
ploys a modified growing self-organizing map (GSOM) to
model the behavior of the cells found in perirhinal cortex,
called recency and familiarity neurons [6]. This enables an
online learning and recognition of the places without acquir-
ing apriori knowledge of the environment. The experiments
carried out on the standard St. Lucia dataset demonstrate
that on average our approach achieves almost 10% improve-
ment (in F1-Score); it is able to correctly flag the visited
and unvisited places even for noisy and blurred visual in-
puts. The results show that the proposed method reaches
fast convergence and utilizes a smaller number of cells (con-
sumes less physical memory) to represent the traversed path
compared to the RatSLAM approach.
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1. INTRODUCTION
To produce a meaningful representation of an environ-

ment, a mobile robot should be able to distinguish visited
and unvisited places. Classical methods aim to tackle this
problem by keeping a short history of landmarks’ positions
and thus minimize the localization errors based on a multi-
hypothesis approach (i.e. particle filter) [27]. In the same
vein, pose graph optimization algorithms [28, 7] solve a
non-linear least squares problem using conjugate gradient
descent to approximate an optimal representation of the en-
vironment. Even though these approaches offer fairly good

.

Cartesian maps, such as a trajectory of the estimated robot
motion [29] or occupancy grid maps [12], they lack the no-
tion of place recognition.

Recent developments in computer vision have led the re-
searchers to solve the robotic mapping problem in the do-
main of scene recognition; examples include appearance-
based mapping [13, 8, 3]. The mainstream of these algo-
rithms uses a bag-of-words (BoW) model, introduced by
Sivic et al. [23], to learn a visual vocabulary of SIFT or Gist
features. Others impose 3D reconstruction constraints be-
tween a pair of images to group similar places into a single
cluster, see for instance [31]. Cummins and Newman pre-
sented a probabilistic formulation to use visual words, com-
puted from quantized SURF descriptors, for fast appearance-
based mapping of 1000 km long trajectory (FAB-Map) [3].
The vocabulary is built offline with a Chow Liu tree, and it
is later used to approximate the likelihood of being at a par-
ticular location based on the probability of which words are
observed in the image. A BoW model has also been adopted
to learn Gist features for different similarity measures [13].
The authors suggested a randomized k-d tree based ap-
proach as a feasible choice, which is trained on projected
Gist features obtained from PCA. The complexity of the al-
gorithm is O(logN), where N is the number of images in the
database; training multiple k-d trees did not show any im-
provements. A prior stage of learning the visual words makes
these methods less suitable for unknown environments.

Kawewong et al. introduced an incremental approach to
learn the BoW model for position invariant robust features
(PIRF) [8], derived from SIFT features appearing in consec-
utive frames over a sliding window. Their method showed
a better performance than FAB-Map and is robust for dy-
namic environments. Nevertheless, it is dependent on the
window size and for an appropriate window size the aver-
age computation time is 2 to 3 seconds. In an attempt to
do online place recognition, Suenderhauf and Protzel used
BRIEF descriptors around the center of downsampled im-
age, which they called BRIEF-Gist, and employed it as a
front-end for their pose graph optimization algorithm [25].
Unlike FAB-Map, it suffered weak data associations when a
vehicle traversed the same place from a different direction.

In this paper, we exploit the concept of “Gist of the scene”
formed in early vision and model a new scene learning mech-
anism for RatSLAM [11]. Unlike existing work, our method
performs bio-inspired scene learning which enables our al-
gorithm to map unknown environments. Further discussion
in the paper proceeds as follows: Section 2 gives a brief
overview of the related work. Section 3 describes the Gist
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descriptor to obtain the structural formation of the scenes.
This information is later fed to the modified growing self-
organizing map (GSOM), a type of neural network, to orga-
nize the places based on their perceptual distances. A com-
prehensive evaluation of the proposed approach on the stan-
dard St. Lucia dataset is presented in Section 4, including
comparison with the state-of-the-art RatSLAM algorithm.
The results show that the proposed approach performs bet-
ter than existing front-end module (data association) of the
RatSLAM system and imposes less consumption of physi-
cal memory. Finally, we conclude the discussion in Section
5 with the possible directions of future work.

2. RELATED WORK
In an early vision, a scene is represented by low-level fea-

tures (e.g. color opponency, oriented edge, etc.) at different
spatial scales. This information is held temporarily in iconic
memory and is only transferred to long-term memory if the
control processes (i.e. attention, rehearsal) decide to keep
that information [6]. As this memory is highly volatile, it
retains information only for a fraction of a second. Current
studies on visual perception report that humans interpret
the meaning of a scene within 200 ms of its presentation.
The amount of information extracted during this period is
referred to as “Gist” [18], provided the eye fixations or ex-
posures to a new scene are separated by a gap of a few
milliseconds. This indicates that a precise classification of
the constituent objects of a scene is not needed in early vi-
sion [16]. In essence, such a holistic view of the scene could
be of significant importance, for example in robotic map-
ping, and would augment the formation of spatial memory
for long-term cognitive mapping.

In this respect, Siagian and Itti developed a model to
compute Gist features and saliency regions in parallel from
saliency maps, which are then fed to a trained back-propagat-
ion neural network and SIFT recognition module, respec-
tively, for place recognition [22]. At the back-end, a vari-
ant of the Monte Carlo method is implemented to estimate
the most likely position of a robot. The experiments are
done on small scales and the recognition process took al-
most 3 seconds at a machine with a 16-core 2.6 GHz pro-
cessor. Tapus and Siegwart combined features from different
modalities (i.e. a laser and an optical camera) to form the
fingerprint of a place for topological mapping based on a
POMDP (Partially Observable Markov Decision Processes)
framework [26].

Milford andWyeth demonstrated the RatSLAM algorithm
on a 66 km long suburb of St. Lucia [11]. Their work draws
upon the models of Arleo and Gerstner [1] with major mod-
ifications in the model for place and head direction cells,
the type of cells found in a rat’s brain which fire maximally
when animal is at a particular place or facing a specific di-
rection [15]. The system learns associations between scenes
and pose cells – a network of place and head direction cells;
path integration in the pose cells network is driven by trans-
lational and angular velocities while dead-reckoning errors
are re-calibrated via visual input. The performance of the
system relies on the parameter settings and the size of a
pose cells network. Glover et al. integrated FAB-Map with
the RatSLAM to improve recalls and reduce the overhead of
configuring parameters [5]. Their results showed that offline
vocabulary of SURF features is sensitive to illumination and
does not remove the parameters’ dependency. The work of

Milford and Wyeth has also been extended to implement a
security system that uses a dendritic cell algorithm (DCA)
for anomaly detection in the environment [14].

Chen et al. modeled the concept of multi-scale spatial
maps discovered in rodent’s brain [2]. They trained arrays of
SVMs (Support Vector Machines) on Gist features for over-
lapping segments along the path at different spatial scales.
For a query image, hypotheses from arrays of SVMs are
combined to perform place recognition. Their experiments
show that there is no rule of thumb that multi-scale place
recognition would always outperform single scale recogni-
tion. Rather, there exist certain cases where single scale
place recognition works better. This work could although
suggest a good method to recognize places at multiple scales,
but it has not been demonstrated to perform mapping. Addi-
tionally, an offline training on a dataset makes this approach
biased to the learned environment and thus it does not seem
to contribute significantly to relax the parameter tuning.

Some researchers have compared their approaches with
RatSLAM. For example, Suenderhauf and Protzel formu-
lated dynamics of pose cells in terms of a Bayes filter, which
they named Causal Update Filter (CUF) and used a TORO
pose graph algorithm for experience mapping [24]; however,
no significant improvements are achieved compared to Rat-
SLAM. Rebai et al. used a Fuzzy ART network to capture
the properties of spatial view cells in primates [20]. The net-
work is trained incrementally on the quantized local his-
tograms of hue and saturation. It has been shown that their
method outperforms RatSLAM regarding loop closure de-
tection, but this is not demonstrated for mapping.

3. GIST BASED PLACE RECOGNITION
The human vision system characterizes places using dif-

ferent spatial frequencies, at several scales and orientations,
without an explicit need of grouping the objects [18]. This
global information of a scene could serve as a basis to con-
struct its human-like coarse representation. This alone does
not suffice the need of human way of recognizing places.
Therefore, we attempt to model the behavior of recency
and familiarity neurons using a growing self-organizing map
(GSOM) to learn and recognize places.

3.1 Computing Gist of a Scene
The Gist of a scene represents the structural properties

composing it. This information can be obtained from percep-
tual attributes, such as the degree of naturalness, openness,
verticalness, etc. These features are shared among places and
thus aid to achieve continuous categorization of the scenes
such that the places having similar attributes lie close to one
another on the perceptual axis, as shown by Torralba and
Oliva [17]. They computed these features by sampling the
energy spectrum A(fx, fy)

2 of an image I(x, y) using a set of
Gaussian functions Gi(fx, fy) at different orientations and
scales:

gi =

∫ ∫

A(fx, fy)
2 Gi(fx, fy) dfx dfy (1)

The Gaussian functions Gi model the Gabor filters like
responses at different orientations and scales of spatial fre-
quencies; they are obtained as follows:

G(fx, fy) = e−f2
y/σ2

y

(

e−(fx−f0)
2/σ2

x + e(fx+f0)
2/σ2

x

)

(2)

where f0 specifies the center of the response function. The



parameters σx and σy control the scale of Gaussian in hori-
zontal and vertical directions, respectively, for specified spa-
tial frequencies fx and fy . Thus, the sampled energy spec-
trum of an image is represented by a vector g = {gi}i=1:L,
where L is the dimensionality of the feature vector. This
makes Gist features suitable to build the human-like per-
ceptual representation of the scenes.

3.2 Growing Self-Organizing Map (GSOM)
The cells found in the visual cortex and the associated

areas of hippocampus exhibit a competitive response to rep-
resent an input pattern [9]. The type of neural network mod-
eling such a map of neural activity in cortical regions of the
brain is called as Kohnen’s Self-Organizing Map (SOM). In
practical, realizing such a neural network to map environ-
ments with unknown size is computationally expensive. As
a result, we selected a Growing SOM [21] to adapt to the
dynamic size of the environments. The number of neurons
in a GSOM tends to vary over time to adapt to the topology
of the input space according to its size, as shown in Fig. 1. A
neuron i ∈ {1, 2, 3, ..., m} that closely resembles the observa-

tion x(k) ∈ Rn is deemed to be a winning neuron or the best
matching unit and thus contributes strongly to represent it.
The winning cell having the minimum distance from the kth
input is determined as follows:

c(k) = argmin
i

||x(k) − wi|| (3)

where c(k) is an index to the winner neuron mapping the
kth input and wi is the current weight of neuron i. In prac-
tice, one usually finds a set of best matching units for some
x(k) during the initial phase of learning. The arrival of fur-
ther input leads to the convergence1 of activity to a single
winner neuron [4] where a group of neurons in the neighbor-
hood Nc(k) of the winning neuron forms a receptive field.
This requires adaptation of the weights for the winning neu-
rons (along with the neighboring cells) given as:

wt+1
i =

{

wt
i + α (x(k) −wt

i) i ∈ {c(k), Nc(k)}

wt
i otherwise

(4)

where α is the learning rate. It can be constant, expo-
nentially decreasing or inversely proportional to time t, de-
pending upon the problem at-hand. The other considera-
tions, such as an initial neighborhood size and initialization
of weights are discussed in the next section.

3.3 Modeling the Front-End for RatSLAM
One of the neat characteristics of GSOM is that it does

not require assumptions about the distribution of the feature
space and the size of the network. These properties enable
us to perform incremental scene recognition because we in-
tend to learn from scratch in an unknown environment as
soon as the stream of data is available, which in our case are
image sequences, as shown in Fig. 2.

1The convergence of the activity to a winner neuron is inher-
ent to network dynamics. However, it is subject to number
of epochs (time), stationarity of the input, and convergence
criteria. For general details the reader is referred to [4, 9].
The problem specific explanation is given in Section 3.3.3.

Growing SOM

Input Space

     -dimensional maps

New Neuron

Winning Neuron

Existing Neuron

Each Neuron    has weight

vector 

Figure 1: An example framework of Growing SOM
illustrating the concept of the winner neuron and
creation of new nodes in the network. The layers in
GSOM, shaded gray planes stacked on top of each
other, are maps of n-dimensional feature space.

3.3.1 Creation of GSOM Network

The creation of a GSOM network requires a) the decision
of the initial size for the network and b) the way weights are
initially assigned to start-up nodes. Usually, one starts with
3 to 4 initial nodes while weights of the nodes are randomly
assigned or picked from the feature space. We start with only
one node because in the start the only information about the
environment one can have is the starting point. Moreover,
the weight vector w1 of this node is set to the normalized
Gist descriptor obtained from first image using (1). This
is a justifiable consideration for the scenarios in which data
arrives in streams as at this instant of the time nothing more
can be known about an environment to be explored.

3.3.2 Distance Measure to Learn Input

When the kth input v(k) is presented to the network, its

distance d
(k)
i is computed from each neuron i in a set of

existing neurons M. There exist several measures, such as
Manhattan distance, Euclidean distance, Radial Basis, and
others [4]. The selection of the distance measure is specific to
the application and has a strong impact on the competition
induced in the network. Here, the input space is composed
of Gist features and they have been demonstrated to work
fairly good for the sum of squared distances [17]. Therefore,
the distance metric is given by:

d
(k)
i =

L
∑

j=1

(v
(k)
j − wij)

2 (5)

where d
(k)
i is the distance of ith neuron from the presented

feature v(k) and L = 512 is the dimensionality of the Gist
descriptor.

3.3.3 Determine Best Matching Unit

A best matching neuron c(k) is the one whose distance
from the presented feature vector v(k) is minimum, which is
obtained by minimizing (5) for all neurons i in a set M of the
existing neurons. Since the outdoor environments are highly
ambiguous in nature, it is likely to obtain almost a similar
descriptor for two different physical locations. Consequently,
it could lead to false positive recalls in the network. In or-
der to reduce the likelihood of such an aliasing, we extend
the distance measure to take into account the distances of
neurons in the neighborhood of the winner cell. Therefore,
we define the following objective function to determine the
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Figure 2: Gist+RatSLAM: GSOM based data association front-end for the RatSLAM algorithm. For each
image in a sequence, its Gist features are computed and presented to the network. A neuron familiar to this
input would show high activation (as indicated by a red circle in the GSOM network) being at minimum

distance d
(2)
2 . For a novel input a new neuron is created to learn the pattern.

best matching unit:

d
(k)
i = min

i



d
(k)
i +

1

N

∑

∀p∈Ni

||v(k) − wp||
2



 (6)

The summation on the right side of the equation acts like
a penalizing term. It incurs the cost of making a wrong de-
cision for associating different places; where N is the neigh-
borhood size and wp is weight of the neuron p in the neigh-
borhood of the ith neuron. Usually, the size of the neighbor-
hood is allowed to shrink with time, but it is not desirable
for Gist features (as explained in the next section) so that
only a particular neuron could be tuned to fire for specific
perceptual attributes. It should be noted that finding an
optimal best matching unit is not always guaranteed, be-
cause natural environments share a high-level of similarity.
The time complexity of the proposed method to search for
the best matching unit is quadratic in m; where m is the
number of neurons in the network. Our algorithm is efficient
compared to the RatSLAM algorithm in the sense that less
number of experiences are created and therefore the search
space has been reduced to find the winner neuron.

3.3.4 Adapting Weights of Neurons

Given the index of a winner neuron c(k), the next step is
to adapt the weights wc(k) of the winning cell including its
neighbors based on the learning rate α, see (4). Here, the
GSOM algorithm benefits from the ability of Gist descrip-
tors to segregate scenes as a contiguous organization along
the perceptual axis. This suggests that during exploration
places would appear consecutive to each other on the axis
defined by the Gist features. On that account, we modified

(4) to update the weights of the winner neuron only:

wt+1
i =

{

wt
i + α (v(k) −wt

i) i = c(k)

wt
i otherwise

(7)

The learning rate α of a neuron often decreases over time,
whereas we opt to reduce the learning rate as a function of
new nodes created in the neighborhood Ni of the neuron, it
is defined as follows:

at+1 = a0 exp
(

−
∑

Ni/ρ
)

(8)

a0 = 0.1 is the initial learning rate and ρ is the allowed
number of new nodes that can be created near a neuron i.
The weights should satisfy the constraint ||wi|| = 1.

3.3.5 Creating a New Neuron

The creation of a new cell needs to address several as-
pects based on the feature space, such as the position where
a node should be created and the decision that the pre-
sented input is novel (i.e., no neuron in existing set M can
represent it). In scenarios like exploration, the places are en-
countered as an ordered sequence. As discussed previously,
in Sections 3.3.3 and 3.3.4, the Gist features allow a contin-
uous categorization of the scenes along the perceptual axis.
This implies that the GSOM network should grow in a se-
quential manner to learn new places. Hence, a new neuron
is created next to the closest neuron (a neuron which neces-
sarily satisfies (6)). Otherwise, for two neurons found to be
almost equally closer to a presented Gist feature, we create a
new neuron that is equidistant from them in a space defined
by the Gist features.



3.3.6 Applying GSOM to RatSLAM

Previously, the view cells module of RatSLAM did not im-
pose competition between cells [30], rather a profile based
comparison or template matching is performed [10]. In con-
trast, the proposed framework of the view cells, depicted in
Fig. 2, is implemented using GSOM to achieve an incremen-
tal scene learning and recognition. The algorithm computes
Gist features for each image, whereas the distance of the
current feature vector from existing neurons is determined
using (5). If a neuron is already familiar with the current
place, it would cause that neuron to fire ai = 1 while other
neurons would not show a response. A best matching neuron
is identified using the proposed objective function (see Sec-
tion 3.3.3). The activation level is determined from the fre-
quency Vi maintained for each neuron that is updated every
time a neuron gets activated. In case of a novel scene, a new
neuron is created to learn the pattern on the basis of crite-
ria described in Section 3.3.5. This information is associated
with back-end of the RatSLAM system to perform localiza-
tion and mapping, governed by the pose cells network P
and experience map E. The pose cells network is a 3D grid
of a continuous attractor network (CAN) representing the
position (x, y, θ) of a robot. The experience map maintains
a sequence of experiences with each experience representing
the state of a robot i.e., the pose and the associated visual
scene (for details see [11, 10]).

4. RESULTS AND EVALUATION
To test the performance of the proposed approach, exper-

iments are performed on the St. Lucia dataset downloaded
from the RatSLAM’s web page [19]. The resolution of the
available video is 640×480 and it contains 2517 frames in-
cluding the path which has been traveled twice during the
phase of data acquisition. Unfortunately, ground truth is
not available for the specified dataset, therefore, we had to
manually label each frame in the video sequence as visited
or unvisited. In this regard, we observed that the vehicle en-
ters the already traveled path after 1735 frames and travels
along that path for 30 seconds. Hence, a frame is tagged as
a visited place if it is encountered within this time period.
The usefulness of the Gist features is tested using a distance
matrix, computed for a sequences of 2000 frames, as shown
in Fig. 3. The matrix shows the distances among individual
scenes, which are computed using distance metric defined
earlier in Section 3.3.2. These scenes include the path that
has been re-visited by the vehicle. The diagonals appear-
ing on either sides of the main diagonal show the regions of
re-visit. This is the road in the dataset which has been tra-
versed twice. It can be observed that Gist features perform
well for place recognition and detecting loop closures, de-
spite the false negative recalls which are caused by partially
occluded views or considerable changes in the scene.

4.1 Activity in View Cells
We compare our data association module with the exist-

ing profile based place recognition module of the RatSLAM.
In this regard, the activity in view cells V is analyzed and
false positive and negative cases are observed for the en-
tire course of mapping. The activity of view cells in our
Gist+RatSLAM approach is stable compared to RatSLAM,
as shown in Fig. 4. It has also shown the ability to com-
pactly represent the environment using only 297 neurons.
In contrary, the RatSLAM approach created 541 visual tem-
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Figure 3: Distance matrix showing similarity among
individual scenes. The values close to 0 show that
places are closer on the perceptual axis in the space
characterized by Gist features, whereas brighter re-
gions depict distant scenes.

plates to represent the same environment. This refers to the
fact that Gist+RatSLAM imposes less memory demands as
opposed to the existing RatSLAM’s front-end and thus it
can be used for mapping large scale environments. More-
over, it can be seen that RatSLAM produced more false
negative recalls when a learned place is re-visited, while
Gist+RatSLAM flagged more correct recalls (true positive)
on traversal of the learned places. A small area infront of
the purple shaded region depicts start of the path which has
been driven previously but not detected by either of the al-
gorithms. The purple region in the figure shows the distance
in number of frames when a first true positive recall was
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proach) needs fewer view cells and has more true
positive recalls compared to RatSLAM (blue curve).



responded. This reveals two major findings: first, it reflects
that RatSLAM made more incorrect recalls in relation to
Gist+RatSLAM; second, the detection of the first true pos-
itive recall is very late for RatSLAM and hence it has a
slower convergence and loop closure detection compared to
our method.

Optical cameras are often susceptible to noise and envi-
ronmental changes such as particles in the environment, il-
lumination conditions and motion blur due to an inappro-
priate frame rate. This leads to false positive or false neg-
ative results. Hence, we simulated these two scenarios in
the St. Lucia dataset to evaluate the performance of our
Gist+RatSLAM algorithm under such uncertain conditions.

4.1.1 Robustness for Gaussian Noise

To test the strength of our approach, Gaussian noise is
added to every input image and then the Gist descriptor is
computed. The value for σ of the Gaussian is chosen ran-
domly every time such that σ ∈ [0.01, 0.1) for µ = 0. This
kind of corruption is very common during navigation tasks
due to the particles present in the atmosphere. We observed
that the Gist+RatSLAM remained reasonably tolerant to
the noise, because only few places are misclassified while
traversing the previously visited path, see Fig. 5. However,
this time 345 view cells are created to represent the same
environment, which is an obvious response to a noisy in-
put. RatSLAM’s profile-based matching created a slightly
larger number of view cells i.e., 545 cells as compared to
the case when noise was not added. On the other hand, it
can clearly be seen that the area before the purple shaded
region has been expanded. This indicates that the rate of
incorrect recalls has increased for both the algorithms. We
have also noticed some false positive recalls in the unvisited
region, where both the algorithms falsely associated the cur-
rent place to the recently viewed scene.

4.1.2 Performance with Motion Blur

To simulate motion blur in the dataset, an in-plane mo-
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Figure 5: Activity in view cells when Gaussian noise
is added to every frame. Gist+RatSLAM is able to
detect a loop closure before RatSLAM and shows
relatively good convergence.

tion blur is applied opposite to the direction of the cam-
era rotation. The rotation of the camera is obtained from
rough visual odometry computed by the RatSLAM system.
A motion-blurred image is one of the common reasons which
affects the robustness of many descriptors. For RatSLAM,
it caused an increased number of false positives, whereas
Gist+RatSLAM is not influenced substantially, as can be
observed in Fig. 6. Unlike previous scenarios, in this partic-
ular case, the activity in view cells reflects a drop-off in the
number of cells utilized to map the entire trajectory trav-
eled by the vehicle. Here, 253 neurons were created for our
approach, whereas RatSLAM utilized 372 visual templates
to represent the environment. An apparent reason to this
phenomena is the fact that motion blur suppresses high fre-
quency components in an image so less information would
be available to discriminate between consecutive places. One
should note that suppression of high frequencies has no rela-
tion to the Gist of a scene, rather it is formed from both high
and low frequency components at different spatial scales [18].

4.2 Precision-Recall Rate
The response of Gist+RatSLAM or RatSLAM is regarded

as true positive (TP) if it correctly recalls a visited place
and it is considered true negative (TN) if the algorithm pre-
dicts an unvisited place as a novel place. The false posi-
tive (FP) and false negative (FN) responses are incorrect
decisions made by the algorithm, i.e., unvisited places are
predicted as familiar and vice versa. So, precision-recall is
computed as follows:

Precision =
#TP

#TP + #FP

Recall =
#TP

#TP + #FN

Usually, the precision-recall itself is not enough to deter-
mine the accuracy of tests, and so the results can be mis-
interpreted. That is why, the harmonic mean of precision
and recall, known as F1 Score, is also computed to deduce
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Figure 6: Applying motion blur to images oppo-
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Figure 7: Precision-recall rate for different scenar-
ios: RatSLAM shows 99.39% precision for the ad-
ditive Gaussian noise case (RSGN). But it has only
64.8% recall-rate compared to our Gist+RSGN in-
dicating 79.4% recall; interpreting results with F1
metric shows robustness of our method for all cases.

inferences about the overall performance of the algorithms:

F1 Score = 2
Precision× Recall

P recision + Recall

In order to derive conclusions, precision-recall of Rat-
SLAM and Gist+RatSLAM is computed for each of the
cases discussed in the previous sub-sections. In the absence
of noise and motion blur, precision for RatSLAM (RS) is
99.06% and Gist+RatSLAM (Gist-RS) has 100% precision.
A significant difference is noticeable in recall, where our ap-
proach reaches 87.88% correct recall of places; whereas Rat-
SLAM has produced more false negatives for the already
visited path (recall 63.4%). When Gaussian noise is added
to the dataset, RatSLAM (RSGN) gives 99.39% precision
and 64.8% recall. In contrast, our method (Gist+RSGN)
achieved 84.7% precision and up to 79.4% recall rate. The
rational for this decline in Gist+RSGN precision is the fact
that Gist is composed of both low and high frequency com-
ponents calculated at different scales and orientations, while
noise affects higher frequencies in an image. One can misap-
prehend these results to comment the overall performance
of the algorithms, thus F1 Score should be used that shows
a higher confidence of 81.96% in Gist+RSGN while it is
78.45% for RSGN. With regard to the motion blur case,
our approach (Gist+RSMB) yet outperformed RatSLAM
(RSMB) having 98.5% precision and 92.35% recall, respec-
tively.

Finally, the maps obtained from Gist+RatSLAM and Rat-
SLAM, respectively, for the driven path are shown in Fig. 8.
At a glance it is clear that both algorithms detected the
loop closure and preserved the topology of the path tra-
versed by vehicle. However, with reference to Section 4.1, it
is worth mentioning that our method shows comparatively
a faster convergence. Also, it builds the compact represen-
tation of an environment and created less experiences than
RatSLAM.

-300 -200 -100 0 100 200 300 400 500

x

0

100

200

300

400

500

600

700

y

Experience Map (Weakly Cartesian)

RatSLAM

Gist+RatSLAM

Figure 8: Experience map of the path driven by
vehicle. RatSLAM and Gist+RatSLAM are able to
detect loop closure and preserve topology of envi-
ronment, but Gist+RatSLAM has specifically better
convergence as already demonstrated in Section 4.1

5. CONCLUSIONS
In this paper, we proposed a bio-inspired front-end that

governs the data association for RatSLAM. To accomplish
this task, Gist features have been used and a modified grow-
ing self-organizing neural network is implemented, which
models the competitive behavior of the cells found in visual
and perirhinal cortices. This has allowed us to realize online
place learning in unknown environments. The results ob-
tained from the experiments on the St. Lucia dataset demon-
strate the robustness of our method for noisy and blurred
images. We are able to achieve a better recall rate (and thus
faster convergence) compared to existing data association
module of the RatSLAM algorithm. The ability of the pro-
posed method to compactly represent environments makes
this work useful for learning large scale environments. We
would be therefore interested to extend and evaluate this
work for even larger routes and comparing our approach with
state-of-the-art appearance based mapping approaches e.g.,
FAB-Map that is based on learning local keypoint descrip-
tors. Local descriptors are sensitive to noise and illumina-
tion conditions compared to global descriptors (such as Gist
features) and demand high computation time. The present
research in cognitive psychology suggests that in early vision
the human interpretation of a scene is followed by a coarser
representation of an environment. It is therefore desirable to
extend this work to hierarchical scene learning by combining
Gist features with local keypoint descriptors. Moreover, we
believe that the current objective function to find the win-
ner neurons can be improved by taking account of factors,
such as self-motion cues.
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