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ABSTRACT 
Use case scenarios are often used for conducting requirements 
inspection and other relevant downstream activities. While 
working with industrial partners, we discovered that an automated 
solution is required for optimally selecting a subset of use case 
scenarios, aiming to enable cost-effective requirements inspection. 
In this paper, relying on a natural language based use case 
modeling methodology to specify requirements as use case 
models and derive use case scenarios automatically, we propose a 
search based and similarity function based approach to optimally 
select most diverse use case scenarios from the ones automatically 
generated from the use case models. We conducted an empirical 
study to evaluate the performance of various search algorithms 
together with eight similarity functions, through an industrial case 
study and six case studies from the literature. Results show that 
the search algorithms significantly outperformed Random Search 
and (1+1) Evolutionary Algorithm together with the Normalized 
Longest Common Subsequence (NLCS) similarity function 
performed significantly better than the other 31 combinations of 
the search algorithms and similarity functions for most of the 
problems. 

Categories and Subject Descriptors 
D.2.1 [Software Engineering]: Requirements/Specifications– 
Methodologies and Tools.  

General Terms 
Algorithms, Measurement, Performance, Experimentation. 

Keywords 
Use Case Inspection, Scenarios Selection, Search Algorithms, 
Similarity Functions, Empirical Study. 

1. INTRODUCTION 
Requirements play a critical role in the development of any non-
trivial software system [15]. Use case modeling is one of the most 
widely used requirements specification techniques. By combining 
diagrammatic and textual descriptions, use case models offer an 
intuitive and precise foundation for requirements specification. 
The essential part of a use case is its scenarios, each of which 
describes a sequence of steps/actions that are executed under a 
specific set of conditions.  

In a practical context, a use case can lead to the generation of a 

non-trivial number of scenarios, especially when the use case 
incudes or is extended by one or more other use cases. Use case 
scenarios are often the input for conducting requirements 
inspection and analysis, supporting requirements-based testing 
and other relevant downstream activities [14]. Manually 
requirements inspection requires domain experts walking through 
all available scenarios, identify defects and fix them if there exists 
any [10]. It is often impossible to walk through all scenarios. 
Hence, a common practice is to select a subset of the scenarios to 
inspect within limited time and human resources. The selection 
criteria are either based on domain expert’s tacit knowledge or 
simply random [10].  

In this paper, we propose an automated, systematic and similarity-
based approach to identify an optimal subset of scenarios for 
manual inspection, using search algorithms. The objective is to 
maximize the diversity of selected scenarios, expecting that more 
defects can be identified during a requirements inspection process. 
Notice that different scenarios of a given use case might contain 
common steps since they are derived from the same use case. It is 
therefore important to select scenarios that cover as many 
different steps as possible.  

Search algorithms with similarity functions have already been 
adopted to address optimization problems regarding test case 
selection or prioritization (e.g., [13]). However, to the best of our 
knowledge, there is no work focusing on using similarity-based 
techniques combined with search algorithms to address the use 
case scenario selection problem. In this paper, we propose and 
assess a fitness function for addressing this optimization problem. 
We evaluate the fitness function in conjunction with the following 
search algorithms, i.e., Steady State Genetic Algorithms (SSGA) 
[26], (1+1) Evolutionary Algorithm ((1+1)EA) [22], Alternating 
Variable Method (AVM) [27]. Random Search (RS) was used as 
the baseline to evaluate the performance of these algorithms. To 
determine the diversity of scenarios, we evaluated eight similarity 
functions: Counting function (CNT) [5], Jaccard Index (JAC) [4], 
Gower-Legendre (GOW) [4], Sokal-Sneath (SOK) [4], 
Normalized Longest Common Subsequence (NLCS), Levenshtein 
Distance (LEV) [6], Needleman-Wunsch (NW) [7] and Smith-
Waterman (SW) [7].  

One industrial case study from the avionics domain and six 
carefully selected case studies from the literature, with in total 38 
use case specifications and 1667 scenarios were used to evaluate 
the performance of the selected search algorithms and similarity 
functions. Results show that all the search algorithms significantly 
outperformed RS, indicating the usefulness of applying search. 

The rest of the paper is organized as follows. Section 2 describes 
key techniques of our methodology including: the use case 
modeling approach, automated generation of use case scenarios, 
selected similarity measurements and search algorithms. In 
Section 3, we specify the optimization problem and present the 
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fitness functions. Empirical evaluation is reported in Section 4. 
Section 5 addresses the threats to validity. Related work is 
provided in Section 6 and we conclude the paper in Section 7. 

2. BACKGROUND 
We describe the use case modeling methodology in Section 2.1, 
followed by the similarity functions in Section 2.2. 

2.1 Use Case Modeling and Scenario 
Derivation 
In [15], a restricted use case modeling methodology (RUCM), 
which encompasses a use case template and a set of restriction 
rules for the textual use case specifications, was proposed. A use 
case specification has one basic flow and zero to many alternative 
flows. An alternative flow always depends on a condition in a 
reference flow, which can be the basic flow or another alternative 
flow. There are three types of alternative: A 
specific/bounded/global alternative flow refers to a specific 
step/more than one steps/any step in the reference flow. This 
methodology is generic and can be extended for other purposes 
such as specifying and generating test cases [19]. RUCM includes 
a use case metamodel [25] to formalize use cases with the 
objective to enable automated analysis. 
In RUCM, a use case scenario is a sequence of steps (sentences) 
that only forms one branch to execute. RUCM captures control 
flow information in a structured way through flows of events and 
keywords (e.g., DO-UNTIL and INCLUDE USE CASE). Based 
on the control flow information embedded in use case models, 
RUCM supports the following three coverage criteria: All 
Condition Coverage, All FlowOfEvents Coverage and All 
Sentence Coverage to automatically generate use case scenarios. 
The All Condition Coverage criterion ensures that all conditions 
are covered at least once. The Loop Coverage criterion ensures 
that each loop is exercised x number of times, where x can be 
specified by a user. In the current implementation of the Loop 
Coverage criterion, each loop is exercised exactly once. The All 
FlowOfEvents Coverage criterion makes sure that the basic and 
all the alternative flows of a use case specification are covered at 
least once. The All Sentence Coverage criterion generates a set of 
scenarios that cover all the sentences of a use case specification at 
least once. Note that the scenario derivation approach has been 
applied to automatically generate test cases [19]. 

2.2 Similarity Measures 
2.2.1 Set-Based Similarity Measures 
Set-based similarity functions are widely used in data mining, in 
our context, each use case scenario is a vector of elements and 
each element is a step (sentence). However, the vector size can be 
different since the length of scenarios (i.e., the number of steps) 
may vary. As an example, taking two scenarios sn1 = {s1, s2, s3, 
s5, s6, s3} and sn2 = {s1, s2, s4, s6} as inputs, in our context, s1-
s6 are different steps of the flows of events of a particular use case 
specification. Scenarios sn1 and sn2 share the common steps: s1, 
s2 and s6. We used four set-based similarity functions in our 
experiments: CNT [5], JAC [4], GOW [4], and SOK [4]. 
Counting function (CNT). The Counting function is borrowed 
from [5] for comparing two sets of transitions in a specific 
modeling language. We have defined a generalized version of this 
function as the number of identical elements in the input sets 
divided by the average size of inputs. The formula for calculating 
similarity of two scenarios (denoted A and B) is: 𝐶𝐶𝐶𝐶𝐶𝐶(𝐴𝐴, 𝐵𝐵) =

(|𝐴𝐴∩𝐵𝐵|)
�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐴𝐴)+𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐵𝐵)� 2⁄

(1), where |A∩B| is the size of intersection 

of A and B (i.e., common steps of the two scenarios) and the 
function sizeof() calculates the element size of a set (i.e., number 
of the steps of a scenario). For example, when taking sn1 and sn2 
as the input, CNT(sn1, sn2) = 3 / ((5+4) / 2) = 0.6667.  
Jaccard Index (JAC). In [4], JAC is defined with formula as: 
𝐽𝐽𝐽𝐽𝐽𝐽(𝐴𝐴, 𝐵𝐵) = |𝐴𝐴∩𝐵𝐵|

|𝐴𝐴∪𝐵𝐵|
= |𝐴𝐴∩𝐵𝐵|

|𝐴𝐴∩𝐵𝐵|+1∗(|𝐴𝐴∪𝐵𝐵|−|𝐴𝐴∩𝐵𝐵|)  (2). 

Gower-Legendre (GOW) is defined in [4] with formula: 
𝐺𝐺𝐺𝐺𝐺𝐺(𝐴𝐴, 𝐵𝐵) = |𝐴𝐴∩𝐵𝐵|

|𝐴𝐴∩𝐵𝐵|+12∗(|𝐴𝐴∪𝐵𝐵|−|𝐴𝐴∩𝐵𝐵|)
  (3). 

Sokal-Sneath (SOK) is the last one in Jaccard family with formula 
[4]: 𝑆𝑆𝑆𝑆𝑆𝑆(𝐴𝐴, 𝐵𝐵) = |𝐴𝐴∩𝐵𝐵|

|𝐴𝐴∩𝐵𝐵|+2∗(|𝐴𝐴∪𝐵𝐵|−|𝐴𝐴∩𝐵𝐵|)
  (4). 

Notice that GOW and SOK are two variations of JAC and the 
difference between JAC, GOW and SOK is on the weight that 
each measure puts on the difference between input sets (i.e., |A∪
B| − |A∩B|). For the same inputs, similarity values are 
higher/lower for GOW/SOK than JAC. For example, taking sn1 
and sn2 as input, |sn1∪sn2| = 6, and |sn1 ∩ sn2| = 3. Therefore, 
JAC(sn1, sn2) = 3/6 = 0.5, GOW(sn1, sn2) = 6/9 = 0.6667, and 
SOK(sn1, sn2) =1/3= 0.3333. All these set-based similarity 
algorithms actually normalize their similarity values based on the 
number of elements in the intersection set of two input sets and 
the number of different elements. 

2.2.2 Sequence-Based Similarity Measures 
For sequence-based similarity functions, the input sequences (use 
case scenarios) are taken as edit distance, which is defined as the 
minimum number of operations (insertions, deletions and 
substitutions) [6] and the order of elements in the input sequences 
matters. One well known sequence-based similarity function is 
Hamming Distance [16]. However, it is limited to identical length 
input sequences, which does not fit our purpose. We used four 
sequence-based similarity functions: LCS [6], LEV [6], NW [7] 
and SW [7]. 
Normalized Longest Common Subsequence (NLCS). Longest 
Common Subsequence (LCS) [6] is a classical computer science 
problem and has applications in bioinformatics. In order to make 
LCS be capable of calculating similarity value, we extend is as 
Normalized Longest Common Subsequence (NLCS): the length 
of LCS divided by the average length of input sequences. The 
formula is defined as: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐴𝐴,𝐵𝐵 = 𝐿𝐿𝐿𝐿𝑆𝑆𝐴𝐴,𝐵𝐵 �
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑂𝑂𝑂𝑂(𝐴𝐴) + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑂𝑂𝑂𝑂(𝐵𝐵)

2
� �      (5) 

Where lengthOf() aims to calculate the number of steps contained 
in a scenario and 𝐿𝐿𝐿𝐿𝐿𝐿𝐴𝐴,𝐵𝐵  is the length of LCS calculated by 
following formula: 

LCS′𝐴𝐴,𝐵𝐵(𝑖𝑖, 𝑗𝑗)

= �
0, 𝑖𝑖𝑖𝑖  𝑖𝑖 = 0 𝑜𝑜𝑜𝑜 𝑗𝑗 = 0

LCS′𝐴𝐴,𝐵𝐵(𝑖𝑖 − 1, 𝑗𝑗 − 1) + 1,   𝑖𝑖𝑖𝑖 𝐴𝐴𝑖𝑖 =𝐵𝐵𝑗𝑗
max (LCS′𝐴𝐴,𝐵𝐵(𝑖𝑖 − 1, 𝑗𝑗), LCS′𝐴𝐴,𝐵𝐵(𝑖𝑖, 𝑗𝑗 − 1)),   𝑖𝑖𝑖𝑖 𝐴𝐴𝑖𝑖 ≠ 𝐵𝐵𝑗𝑗 

(6) 

Where Ai is the ith step of scenario A, Bj is the jth step of scenario 
B, and i and j are the lengths of scenarios A and B, respectively. 
Let us take sn1 and sn2 as input, LCS(sn1, sn2)=3 with the longest 
common subsequence: “s1, s2, s6.”, therefore, NLCS(sn1, 
sn2)=3/((6+4)/2)=0.6. 
Levenshtein Distance (LEV). LEV [6] is a well-known algorithm 
implementing edit-distance. In [6], the Levenshtein distance is 
defined as each mismatch (substitutions) or gap (insertion/deletion) 
increases the distance by one unit. To change distances into 
similarities, the function rewards each match and penalizes each 

http://en.wikipedia.org/wiki/Computer_science
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mismatch and gap. In our current implementation, we use the 
basic setting: mismatch and gap are penalized the same by giving 
one point to increase the diversity (distance) and matches are 
given no penalty or reward. The Levenshtein distance between 
two scenarios A and B is defined as: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐴𝐴,𝐵𝐵
𝑖𝑖≤𝑚𝑚,𝑗𝑗≤𝑛𝑛

(𝑖𝑖, 𝑗𝑗) =

⎩
⎪
⎨

⎪
⎧ max(𝑖𝑖, 𝑗𝑗) , 𝑖𝑖𝑖𝑖 min(𝑖𝑖, 𝑗𝑗) = 0

𝑚𝑚𝑚𝑚𝑚𝑚 �
1 + LEV𝐴𝐴,𝐵𝐵(𝑖𝑖 − 1, 𝑗𝑗)
1 + LEV𝐴𝐴,𝐵𝐵(𝑖𝑖, 𝑗𝑗 − 1)

1𝐴𝐴𝑖𝑖≠𝐵𝐵𝑗𝑗 + LEV𝐴𝐴,𝐵𝐵(𝑖𝑖 − 1, 𝑗𝑗 − 1)

 (7) 

When taking sn1 and sn2 as inputs, the first two elements in sn1 
and sn2 match, and there is one mismatch (“sn3, sn4” or “sn3, 
sn5”) combined with two gaps (“sn5, sn3” or “sn3, sn3”) and one 
match (“sn6, sn6”). Therefore the Levenshtein distance is 3 
meaning that the minimum edit operations required to change 
sn1/sn2 into sn2/sn1 is 3. 
Global alignment and Needleman-Wunsch (NW). An alignment of 
two sequences is a mapping between positions of their elements 
[7]. The goal of an alignment algorithm is to find the best way of 
positioning the elements of input sequences to maximize the 
alignment score. An alignment score measures matches, 
mismatches and gaps. Which is actually a similarity value. Global 
alignment is an algorithm that aligns the entire input sequences. 
The most basic global alignment algorithm is Needleman-Wunsch 
[7], and we use match score +1, mismatch 0 and a gap (Deletion, 
Insertion) of 0 as the operation weights of this similarity function. 
The scoring matrix F for NW is defined as below: 

= 𝑟𝑟 ∗ 𝑑𝑑1≤𝑟𝑟≤𝑖𝑖
𝐹𝐹[𝑟𝑟][0] , = 𝑐𝑐 ∗ 𝑑𝑑1≤𝑐𝑐≤𝑗𝑗

𝐹𝐹[0][𝑐𝑐] ; 

= 𝑚𝑚𝑚𝑚𝑚𝑚 �
𝐹𝐹[𝑟𝑟−1][𝑐𝑐−1] + 𝑠𝑠𝑠𝑠𝑠𝑠(𝐴𝐴𝑟𝑟, 𝐵𝐵𝑐𝑐)

𝐹𝐹[𝑟𝑟−1][𝑐𝑐] + 𝑑𝑑
𝐹𝐹[𝑟𝑟][𝑐𝑐−1] + 𝑑𝑑

       (8) 1≤𝑟𝑟≤𝑗𝑗,1≤𝑐𝑐≤𝑗𝑗
𝐹𝐹[𝑟𝑟][𝑐𝑐]  

Where A and B are the input sequences, function sim(Ar, Bc) 
returns the match/mismatch scores between the rth member of A 
and the cth member of B, and d is the gap penalty. The similarity 
between A and B is F[i][j] where i and j are the lengths of A and B 
respectively. Therefore the similarity function is defined as: 

𝑁𝑁𝑁𝑁𝐴𝐴,𝐵𝐵(𝑖𝑖, 𝑗𝑗) = 𝐹𝐹[𝑖𝑖][𝑗𝑗]  (9) 

Similarly, let us take sn1 and sn2 as input, then NW(sn1, sn2)=3. 
Local alignment and Smith-Waterman (SW). The goal of local 
alignment is to find the best alignment for sub-sequences of two 
input sequences. The output of a local alignment similarity 
function is two aligned substrings with the highest alignment 
score. SW is a commonly applied local alignment algorithm [7], 
where the scoring matrix F is defined in a similar way as the NW 
scoring matrix: 

= 01≤𝑟𝑟≤𝑖𝑖
𝐹𝐹[𝑟𝑟][0] , = 01≤𝑐𝑐≤𝑗𝑗

𝐹𝐹[0][𝑐𝑐]  ; 

= 𝑚𝑚𝑚𝑚𝑚𝑚 �
𝐹𝐹[𝑟𝑟−1][𝑐𝑐−1] + 𝑠𝑠𝑠𝑠𝑠𝑠(𝐴𝐴𝑟𝑟, 𝐵𝐵𝑐𝑐)

𝐹𝐹[𝑟𝑟−1][𝑐𝑐] + 𝑑𝑑
𝐹𝐹[𝑟𝑟][𝑐𝑐−1] + 𝑑𝑑

     1≤𝑟𝑟≤𝑗𝑗,1≤𝑐𝑐≤𝑗𝑗
𝐹𝐹[𝑟𝑟][𝑐𝑐] (10) 

Note that each single element should not be negative, and the final 
similarity value is the biggest F[r][c], which indicates the most 
similar subsequence of the two input sequences. Therefore, the 
similarity function is defined as: 

𝑆𝑆𝑆𝑆𝑨𝑨,𝑩𝑩(𝑖𝑖, 𝑗𝑗) = max 
1≤𝑟𝑟≤𝑖𝑖,1≤𝑐𝑐≤𝑗𝑗

(𝐹𝐹[𝑟𝑟][𝑐𝑐])  (11) 

Where i and j are the lengths of the two input sequences A and B, 
respectively, and F is the scoring matrix defined above. Take sn1 
and sn2 as input, then SW(sn1, sn2)=3. 

3. PROBLEM REPRESENTATION AND 
FITNESS FUNCTIONS 
Our objective is to select a most diverse subset of use case 
scenarios from the generated ones to enable cost-effective, manual 
requirements inspection, and the selection is optimized with 
respect to their pairwise similarity.  

3.1 Problem Representation 
As described in Section 2, a use case generates a set of scenarios 
Scen = {S1, S2, S3 …. Sn}. Different scenarios may contain 
common steps; therefore each pair of the scenarios (Si, Sj) can be 
assigned with a similarity value indicating their commonality. We 
summarize our problem as follows. We first encode the solution 
as a binary string ⟨0|1|0|⋯ |1|0|1⟩ and a bit value “1” indicates 
the corresponding scenario is selected in the current solution. We 
then use the eight similarity functions to calculate the average 
similarity of scenarios obtained from the previous step. At last, 
after 2000 evaluations, the subset of scenarios with smallest 
similarity value is returned as the final solution. As we want to 
diversify selected scenarios, smaller similarity values are 
preferable. 
In theory, the number of scenarios of a candidate subset ranges 
from 2 to n and the search space is the number of possible 
combinations of the number of scenarios for a given use case. For 
example, if the number of scenarios of a use case is n, then the 
overall space is . Therefore, given a 
set of generated scenarios for a use case (sn) and a particular 
similarity function (SimFunc), the selection of diverse use case 
scenarios can be formulated as Minsr(sn): 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑆𝑆𝑆𝑆) = min
1≤𝑝𝑝≤2𝑛𝑛−𝑛𝑛−1

�𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑆𝑆𝑆𝑆)� (12) 

  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑆𝑆𝑆𝑆)
2≤𝑚𝑚≤𝑛𝑛

=
∑ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑆𝑆𝑖𝑖,  𝑆𝑆𝑗𝑗)(𝑆𝑆𝑖𝑖,𝑆𝑆𝑗𝑗∈𝑆𝑆𝑆𝑆⋀ 𝑖𝑖<𝑗𝑗)

𝐶𝐶2𝑚𝑚
 (13) 

Where m is the number of scenarios of the selected subset sm, 
SimFunc(si, sj) returns the similarity of two scenarios in sm, and n 
is the total number of scenarios generated from use case sn. 
Depending on which similarity function to apply, SimFunc(si, sj) 
can be CNT(si, sj), JAC (si, sj), GOW(si, sj), SOK(si, sj), NLCS(si, 
sj), LEV (si, sj), NW (si, sj), or SW(si, sj) (Section 2.2). 

3.2 Fitness Function 
For similarity functions CNT, JAC, GOW, SOK, NW, SW and 
NLCS, a lower value means more diversity. We define the fitness 
functions as: 

Fitness(𝑆𝑆𝑆𝑆) =
∑ ∑ 𝑁𝑁𝑁𝑁𝑁𝑁(𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑆𝑆𝑖𝑖,  𝑆𝑆𝑗𝑗))𝑚𝑚

𝑗𝑗=𝑖𝑖+1
𝑚𝑚−1
𝑖𝑖=1

𝐶𝐶2𝑚𝑚
   (14) 

A fitness value calculated by the above fitness functions ranges 
from 0 to 1, where a value closer to 0 means that the selected 
scenarios are different. In case of LEV, a higher value means more 
diversity and thus we define the fitness function as: 

Fitness𝐿𝐿𝐿𝐿𝐿𝐿(𝑆𝑆𝑆𝑆)

=
∑ ∑ (1.0 − 𝑁𝑁𝑁𝑁𝑁𝑁(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑆𝑆𝑖𝑖,  𝑆𝑆𝑗𝑗)))𝑚𝑚

𝑗𝑗=𝑖𝑖+1
𝑚𝑚−1
𝑖𝑖=1

𝐶𝐶2𝑚𝑚
   (15) 

In all the fitness functions, m is the number of the selected 
scenarios (subset Sm). Since different similarity functions produce 
different ranges of values, we normalize them between 0 and 1 
using the normalization function [1]: 𝑁𝑁𝑁𝑁𝑁𝑁(𝑥𝑥) = 𝑥𝑥

𝑥𝑥+1
, where x is a 

similarity value computed by a particular similarity function. 

2 3 4 ... 2 1n n n n n
nC C C C n+ + + = − −



4. EMPIRICAL EVALUATION 
In Section 4.1, we describe the experiment design. Section 4.2 
presents statistical tests applied in the analysis. The experiment 
execution is presented in Section 4.3. Results are provided in 
Section 4.4 and a summary is presented in Section 4.5. 

4.1 Experiment Design 
This section describes our experiment design, including case 
studies, research questions, parameter settings of selected search 
algorithms and artificial problems. 

4.1.1 Case Studies 
Our evaluation is based on one industrial case study and six other 
case studies from the literature. Their characteristics are 
summarized in Table 1. In total, we obtained 38 use cases, each of 
which forms a particular optimization problem. In Table 1, we 
also reported the total number of scenarios that are automatically 
derived for each case study based on the All Condition Coverage 
criterion (Section 2.1). The average length (column Avg_Len) of 
the scenarios for each case study is also reported in Table 1. 
The industrial case study is a Navigation System (NAS), which 
controls and guides the system based on control law computation 
that takes data sampled from sensors as input and sends 
commands to actuators. The other six case studies were derived 
from the literature. ATM is from [9]. Crisis Management Systems 
(CMS) was originally presented in [11]. We modeled one of its 
key use case named as Communicate with other coordinator. 
Payroll, CPD, VS and NGP are course materials. Notice that some 
of these case studies have been used to in [15] to evaluate RUCM. 

Table 1. Characteristics of the case studies 
Category Case studies # Use Cases #Scenarios  Avg_Len 
Industrial 
Case Study 

Navigation System 
(NAS) 

11 792 23 

From the 
Literature 

Bank System (ATM) 4 221 20 
Crisis Management 
System (CMS) 

1 282 27 

Car Part Dealer (CPD) 6 122 29 
Video System (VS) 7 53 22 
Next Generation POS 
(NGP) 

1 34 14 

Payroll System (PAY) 8 163 27 
 SUM 38 1667 23.2 

4.1.2 Research Questions 
Our experiments aim to evaluate the proposed fitness functions 
together with the selected search algorithms and the similarity 
functions in terms of optimally selecting a subset of scenarios by 
maximizing their diversity. With respect to this objective, we 
would like to answer the following research questions: RQ1: Are 
the search algorithms effective to solve our optimization problem 
to compare with RS? RQ2: Among the four search algorithms, 
which one fares best in solving our optimization problem? RQ3: 
Among the eight similarity functions, which one performs best for 
optimizing our problem? RQ4: How does the combination of a 
similarity function and search algorithm impact the results? 

4.1.3 Parameter Settings for Search Algorithms 
We compared four algorithms: AVM, SSGA, (1+1) EA and RS. 
AVM was selected as a representative local search algorithm and 
each variable can either be “0” or “1” in our problem. SSGA was 
selected since it is the most commonly used global search 
algorithm [8]. Population size of SSGA was set to 100; crossover 
rate was set to 0.75; whereas 1.5 bias was used for rank selection. 
The standard 1-point crossover operator was employed with 
mutation rate of 1/nvar, where nvar represents the total number of 

variables. In case of (1+1) EA, the population size is set to one. 
Finally, for the sanity check, RS is used as the baseline. 

4.2 Statistical Tests 
Following the guidelines on the use of appropriate statistical tests 
for search algorithms [3], we used the Vargha and Delaney 
statistics [24] and Mann–Whitney U test (also called the 
Wilcoxon rank-sum test). The Vargha and Delaney statistics is an 
effect size that computes Â12. Notice that it is a non-parametric 
measure, i.e., it doesn’t assume the normality of the sample. If Â12 
is 0.5, this means two algorithms have equal performance; a value 
greater than 0.5 suggests the first algorithm has higher chance to 
obtain better solutions than B, and a value less than 0.5 implies 
vice-versa. The Mann–Whitney U test computes 𝑝𝑝-value for 
deciding if there is a significant difference between two 
algorithms. We choose the significance level of 0.05. 

4.3 Experiment Execution 
In our experiments, we run each algorithm 100 times to deal with 
random variations and the number of generations was set to 2000. 
We collected the final optimal solutions for evaluation of 2000th 
generation. We ran our experiments on Abel computer cluster 
with eight computing nodes, each of which has 16 physical 
computer cores and 64 GB of memory.  

4.4 Results and Analyses 
4.4.1 RQ1 and RQ2 
To answer RQ1 and RQ2, we conducted the Vargha and Delaney 
statistic test and Mann–Whitney U test. Results for RQ1 show that 
AVM, (1+1) EA and SSGA significantly outperformed RS for 
most of the problems regardless which similarity function was 
applied. To answer RQ2, we compared each algorithm pair and 
results are presented in Table 2. The column A>B is the number 
of problems (out of 38) that A is significantly better than B; A<B 
means vice versa; and A=B means the number of problems for 
which there no significant differences since 𝑝𝑝-value>=0.05.  

Table 2. Results for RQ2 using Vargha and Delaney statistics and 
Mann–Whitney U test at significance level of 0.05 

Similarity 
Function 

Pair of Algorithms A > B A < B A = B 

 
CNT 

AVM vs. SSGA 31 5 2 
(1+1) EA vs. SSGA 36 1 1 
AVM vs. (1+1) EA 2 34 2 

 
JAC 

AVM vs. SSGA 30 7 1 
(1+1) EA vs. SSGA 36 2 0 
AVM vs. (1+1) EA 1 36 1 

 
GOW 

AVM vs. SSGA 29 5 4 
(1+1) EA vs. SSGA 37 1 0 
AVM vs. (1+1) EA 0 38 0 

 
SOK 

AVM vs. SSGA 29 7 2 
(1+1) EA vs. SSGA 35 2 1 
AVM vs. (1+1) EA 0 38 0 

 
NLCS 

AVM vs. SSGA 31 6 1 
(1+1) EA vs. SSGA 36 2 0 
AVM vs. (1+1) EA 0 37 1 

 
LEV 

AVM vs. SSGA 29 6 3 
(1+1) EA vs. SSGA 35 1 2 
AVM vs. (1+1) EA 0 38 0 

 
NW 

AVM vs. SSGA 32 5 1 
(1+1) EA vs. SSGA 34 0 4 
AVM vs. (1+1) EA 1 37 0 

 
SW 

AVM vs. SSGA 32 6 0 
(1+1) EA vs. SSGA 33 0 5 
AVM vs. (1+1) EA 1 37 0 



In summary, AVM vs. (1+1) EA: For CNT, (1+1) EA 
significantly outperformed AVM for 36 problems; AVM 
significantly outperformed (1+1) EA for only one problem; and 
there was no significant difference for one problem. Similar cases 
can be observed for the other similarity functions. (1+1) EA vs. 
SSGA: For most of the problems, (1+1) EA performed 
significantly better than SSGA. Taking JAC for example, (1+1) 
EA significantly performed SSGA for 36 problems, while SSGA 
significantly outperformed (1+1) EA for only two problems. 
AVM vs. SSGA: AVM performed significantly better than SSGA 
for most of the problems. Taking example of JAC, AVM 
performed significantly better for 30 problems; SSGA performed 
significantly better for seven problems; there was no difference 
for one problem. We therefore can conclude that for RQ2, (1+1) 
EA significantly outperformed AVM and AVM significantly 
outperformed SSGA for most of the problems regardless which 
similarity function was applied. 

4.4.2 RQ3 
RQ3 aims to answer which similarity function performs 

significantly better. To address RQ3, similar to RQ1 and RQ2, 
we performed the Vargha and Delaney statistics and Mann–
Whitney U test to evaluate the differences of the eight similarity 
functions. 
In order to perform these statistical tests between two similarity 
functions, we re-evaluated similarity function values of the 
obtained solution (i.e., a set of scenarios) of one similarity 
function, using the similarity function of the other one. Doing so 
is to make sure that two samples of two similarity functions are 
comparable. For example, when comparing CNT and JAC in 
terms of AVM, we use the similarity function of JAC to re-
evaluate the optimal solution obtained by the combination of 
CNT and AVM, and perform the statistical tests. The comparison 
is both ways, in the sense that we use the similarity function of 
CNT to re-evaluate the optimal solution obtained by the 
combination of JAC and AVM and perform corresponding 
statistical tests. 
We first compare the performance of set-based and sequence-

 
Fig. 1. OptimumPercentage of all set-based similarity functions 

 
Fig. 2. OptimumPercentage of all sequence-based similarity functions 
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based measures separately and identify the best function of each 
class. We then compare the best set-based one with the best 
sequence-based one. Based on the data collected from the 
experiment, we conclude that NLCS is the best among all the 
sequence-based measures. It is however not easy to conclude 
which set-based similarity function is the best one. Detailed 
experiments data regarding the performance of set-based and 
sequence-based measures are reported in the Fig. 1 and Fig. 2, 
respectively. Therefore, we compared NLCS with all the four set-
based similarity functions. To enhance the comprehension of 
these results, we compared NLCS with each set-based similarity 
function for solving each problem by counting the number of 
problems for each algorithm where it performs the best in terms 
of fitness values. The percentage of the problems that a 
combination is the best among the all is named as 
OptimumPercentage and the both-ways evaluation and statistical 
tests results are eventually reported in Fig. 3.  For example, in 
context of NLCS vs. JAC as shown in Fig. 3, for AVM, NLCS 
significantly outperformed JAC for 60.53% of all cases (total 
number of the evaluation results), as the black bar (A > B) 
indicating that one performed significantly better than the other. 
Notice that the total number of the evaluation results for each 
combination of a search algorithm and a similarity function are 
then doubled the total number of the problems (i.e., 38).  
We summarize the key results below. NLCS vs. CNT: For AVM, 
NLCS achieved the best OptimumPercentage (51.32%), implying 
that NLCS significantly outperformed CNT for more than half of 
the cases while CNT only performed significantly better than 
NLCS for 28.94% of all cases. Similar results can be observed for 
other search algorithms, for (1+1) EA, NLCS significantly 
outperformed CNT for 65.79% of all cases. For SSGA, NLCS 
achieved the best OptimumPercentage (64.47%). For RS, NLCS 
performed significantly better than CNT for 48.68% of all cases 
while CNT only achieved the OptimumPercentage of 27.64% 
(Fig. 3). NLCS vs. JAC: For AVM, NLCS significantly 
outperformed JAC for 60.53% of all cases, while JAC only 
achieved the OptimumPercentage of 28.95%. Similar results can 
be observed for other search algorithms, we therefore can draw 
the conclusion that NLCS is significantly better than JAC. NLCS 
vs. GOW: For (1+1) EA, NLCS achieved the best 

OptimumPercentage (64%) while GOW only significantly 
outperformed NLCS for 28% of all cases.  For other search 
algorithms, NLCS always achieved the best OptimumPercentage 
as shown in Fig. 3. NLCS vs. SOK: NLCS always achieved the 
best OptimumPercentage no matter which search algorithm is 
applied. Taking SSGA for example, NLCS significantly 
outperformed SOK for 63.16% of all cases, and SOK performed 
significantly better than NLCS only for 28.95% of all cases. 

Therefore, based on the data presented in Fig. 3, we can then 
conclude that NLCS significantly outperformed all the other set-
based similarity functions, no matter which search algorithm is 
applied. Thus NLCS is preferable for solving our problems. 

4.4.3 RQ4 
To address RQ4, we evaluate the obtained optimal solution from 
each combination of the four search algorithms and eight 
similarity functions. Results are reported in Table 3.  

Table 3. ReliabilityPercentage Values of Each Combination of the 
Similarity Functions and Search Algorithms 

Similarity 
Measures 

Search Algorithms 
AVM (1+1) EA SSGA RS 

CNT 75.92% 76.97% 55.06% 21.01% 
JAC 63.68% 75.19% 58.51% 19.34% 
GOW 75.85% 79.83% 65.26% 21.51% 
SOK 63.55% 64.37% 61.11% 16.43% 
NLCS 79.67% 87.59% 65.92% 23.46% 
LEV 41.31% 42.26% 39.93% 11.97% 
NW 44.47% 46.44% 40.46% 13.88% 
SW 42.46% 45.82% 40.75% 13.68% 

For each problem we obtain 32 solutions and each solution is a set 
of use case scenarios, and we pick up scenarios shared among all 
the solutions into a set (Best-Set). We then report the value of 
ReliabilityPercentage (one cell in Table 3) representing the 
probability of a solution to be the Best-Set, i.e., how many 
scenarios of a solution are selected into Best-Set. For example, 
value 75.92% in the 3rd row and 2nd column shows that 75.92% of 
the scenarios of the solutions obtained by the combination of 
AVM and CNT were shared with other combinations. Notice that, 
if two solutions with the same fitness value are total different, we 
then put both of them into the Best-Set. 

From the data presented in Table 
3, we can observe that the 
combination of NLCS and (1+1) 
EA achieved the best 
ReliabilityPercentage (87.59%), 
indicating that the combination 
of NLCS and (1+1) EA obtained 
a high reliability 87.59% for 
solving our problems. 

4.5 Summary and 
Overall Discussion 
We observed that the 
performance of (1+1) EA, AVM 
and SSGA was significantly 
better than RS (RQ1), indicating 
that the fitness function is 
effective to guide search 
algorithms to solve our 
optimization problem. Among 
all the search algorithms, (1+1) 
EA was significantly better than 

 
Fig. 3. NLCS vs. all set-based similarity functions 
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the others (RQ2), followed by AVM and then SSGA. This is 
because (1+1) EA is a global search algorithm and manages to 
find global optimal solutions as compared to AVM (a local search 
algorithm). Though SSGA is also a global search algorithm, it 
relies on both mutation and crossover operators for exploration 
and exploitation of the search space. Therefore, SSGA might need 
more generations to exploit (via the crossover operator) on a 
specific area of the search space in order to obtain an optimal 
solution. In contrast, (1+1) EA uses only the mutation operator to 
explore the search space and hence manages to find optimal 
solutions quicker than SSGA. 

NLCS significantly outperformed all the others for most of the 
cases when combined with any search algorithm (RQ3). For set-
based ones, CNT and GOW performed similarly for most of the 
cases. One possible reason is that, in the current implementation 
of the Loop Coverage criterion for deriving use case scenarios, 
each loop is exercised exactly once. Therefore there are not many 
repeated steps (sentences) in automatically generated use case 
scenarios, which makes the effect of CNT and GOW very minor. 
One can expect that a different implementation of the Loop 
Coverage criterion might lead to a different result. We plan to 
further investigate it in the future. For the sequence-based 
similarity functions, NLCS performed significantly better than the 
others. It may be because NLCS normalizes the length of LCS 
with respect to the average length of two input sequences, which 
makes the similarity value more precise as compared to the other 
sequence-based similarity functions. To compare with the set-
based ones, NLCS is more effective, because the order of steps of 
input scenarios indeed matters in our context. 

5. THREATS TO VALIDITY 
To reduce construct validity threats, we chose the effectiveness 
measure (fitness value) and the same stopping criterion (number 
of generations) for all the search algorithms. To reduce 
conclusion validity threats, we followed a rigorous statistical 
procedure to analyze collected data: the Vargha and Delaney 
statistics, Mann–Whitney U test (also called Wilcoxon rank-sum 
test) and Kruskal-Wallis test. Furthermore, we repeated 
experiments 100 times to tackle the random variation. A possible 
threat to internal validity is that we have experimented with only 
one configuration setting for the GA parameters. However, these 
settings conform to the common guidelines in the literature. One 
common external validity threat is about the generalization of 
results. We ran our experiments on one industrial case study and 
six case studies from the literature. However, to build further 
confidence on the results, more studies will be conducted in the 
future. 

6. RELATED WORK 
6.1 Search-Based Requirements Engineering 
A survey of search-based software engineering is reported in [2]. 
This survey discusses various applications of search algorithms to 
various phases of software development, for instance, requirement, 
design, and testing. From all of these works, the works reporting 
requirements related applications are related to us and includes 
requirements selection and optimization, requirements assignment 
and requirements prioritization. Using search algorithms together 
with similarity functions to address optimization problems have 
already been applied in supporting testing. For example, in [12], 
the authors adopted similarity functions in conjunction with a 
classification algorithm to select test cases.  

The approach in [23] takes requirements interaction management 
into the consideration of the automated requirements selection 
process and introduces five requirements dependencies (i.e., And, 
Or, Precedence, Value-related, Cost-related). Results of their 
empirical studies show that the And dependency appears to denote 
a tighter constraint than the Or and Precedence dependencies, and 
Value-related and Cost-related dependencies directly contribute 
to an increase or decrease in fitness values. Our approach however 
focuses on well-defined UML use case relationships (e.g., Include, 
Extend), which are actually requirements dependencies. 

To the best of our knowledge, there is no work focusing on using 
similarity-based techniques combined with search algorithms to 
address the use case scenarios selection problem. 

6.2 Inspection of Use Case Models 
In software engineering, identifying defects in requirements is one 
of the most effective and efficient quality assurance techniques 
[18]. The authors of [10] proposed a tentative taxonomy of defects 
in use case models in conjunction with a checklist-based 
inspection technique to detect defects and the proposed checklist 
was evaluated in a controlled experiment. We carefully studied 
their checklist and found some items of the checklist have already 
been fulfilled in our approach. In fact, the RUCM built-in 
restriction rules help users to avoid such defects. Pete McBreen 
[20] proposed a checklist with 29 specific elements to conduct use 
case inspection that covers stakeholders, use case goal, use case 
structure, use case syntax, etc. In paper [21], the authors adopted 
usage-based reading technique to conduct use case inspection. An 
empirical study has been conducted to compare inspection 
techniques for detecting defects in use case descriptions [17]. The 
authors performed a systematic review of use case checklist 
techniques and proposed their checklist technique. Results show 
that the checklist found more defects than the ad hoc approach 
and groups found more defects than individuals.  

Different from the above methods, our approach adopts search 
algorithms in conjunction with similarity measures to select most 
diverse use case scenarios to facilitate use case inspections. Notice 
that, rather than focusing on specific use case inspection 
techniques, our approach aims to pick up most diverse use case 
scenarios that deserve more attention and a higher priority during 
the inspection process. 

6.3 Use Case Prioritization 
An approach of use case scenario prioritization has been proposed 
in paper [9] to identify the criticality of a scenario by relying on 
the density of overlapping of the sub paths of a scenario path with 
other scenario path(s) of the same use case. We however 
optimally select diverse use case scenarios based on similarity 
measures.  

7. CONCLUSION 
Due to the inherent complexity of large-scale systems, a large 
portion of effort is allocated to requirements engineering as the 
quality of requirements has a significant impact on almost every 
single downstream activity of the development lifecycle of such a 
system.  A large number of use cases often lead to a large number 
of use case scenarios for any non-trivial system. Use case 
scenarios are usually the input for manual requirements inspection 
and analysis. Finding a subset of use case scenarios to support the 
cost-effective manual inspection is therefore an important 
optimization problem to address. In this paper, we propose an 
innovative approach to address this optimization problem by 
combining similarity measures with search algorithms. 



The proposed approach has been evaluated with an industrial case 
study and six case studies from the literature. Results show that all 
search algorithms significantly outperformed random search and 
among the algorithms (1+1) EA is the best. NLCS performed 
significantly better than the other similarity measures. The 
combination of NLCS with (1+1) EA gives the best results. 
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