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Abstract

Mainly present in industry, robots begin to invade our every-day lives for very precise tasks. In order to
reach a level where more general robots get involved in our lives, the robots’ abilities to communicate and to
react to unexpected situations must be improved. This paper introduces an attentive computational model for
robots as attention can help both in reacting to unexpected situations and to help improving human-robot
communication. We propose to enhance and implement an existing real time computational model. Intensity,
color and orientation are usually used but we have added information related to depth and isolation. We have
built a robotic system based on LEGO Mindstorm platform and the Kinect RGB-D sensor. This robot, called
CuriousMind, is able to take a picture of the most interesting part of the scene and it can also be distracted
from its first goal by novel situations mimicking in that way the human (and more precisely small children)
behaviour.
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1. Introduction

1.1. Context

Robots will help us in the future with all the boring
daily tasks: housekeeping, shopping, classification, etc.
This implies that we will have many interactions
with intelligent robots. To do this they need to fit
into our lives with comprehensive abilities: vision,
grasping, motion, etc. For us, human beings, all of
these capabilities are often conditioned by our ability
to pay attention to something (person, object, word,
etc). If we cannot pay attention to the world around
us we can neither anticipate dangers, nor share with
others. Visual attention is, by the way, an important
phenomenon to be able to understand our environment.
It corresponds to the mechanisms that enable us to select
visual information in order to process some clues in
particular and also that we use to attract someone’s else
attention and communicate with him. The ability to pay
attention is thus used by humans to understand their
environment, to adapt to environment changes and to
communicate with others.

While machine vision systems are becoming increas-
ingly powerful, in most regards they are still far inferior
to their biological counterparts. Attention is important
for robots for 1) its functional objective related to their
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mechanic possibilities and 2) their limited abilities to
process information.

The first point considers that our processing
capabilities are unlimited. For proponents of this theory
([2], [19], [28]), attention would not be a filter for our
limited brain capacities, but would be a filter for our
limited capacities of action. Motor skills are limited by
morphology, for example hands can only handle one
(or two) objects simultaneously (cf Figure 1 (a)). Thus,
action capacities are limited and require the collecting of
a selection of information in order to treat it accurately.

The second theory considers irrelevant messages are
filtered out before the stimulus information is processed
for meaning. In other words, if our brain were bigger
and/or more powerful, we would not need attentional
mechanisms [3]. In this context, attention selects some
information in order not to overload our cognitive
system. This is also the basic premise of a large number
of computational models of visual attention [1] [12] [15]
and [24].

1.2. Hypothesis

The objective of this article is to propose an attentive
computational model for robots. This model is an
enhancement of [15] and [6]. The main difference between
the above mentioned models and what is actually
implemented on a robot mainly relies on the presence of
spatial information extracted from a depth map acquired
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(a) Asimo pouring out a glass of water

(b) Isolated snooker blue ball

Figure 1. Future robots will have to focus their attention
either on close object such a glass of water or farther like
the blue ball.

by a low-cost sensor. We propose to integrate two new
conspicuity maps in the existing framework:

• one for the depth of objects itself,

• one for the objects isolation in the 3D scene.

The depth map helps to promote the nearest elements.
The depth map acts like top-down information stating
that closer objects need to be taken into account first as
they are the most likely to collide with the robot.

The isolation map brings out an element, even banal
or diffuse, but clearly separated from the rest of its
surroundings in terms of depth (cf Figure 1 (b)). This
map is a bottom-up approach and tends to highlight
objects which are in a different configuration than the
others independently from the object distance from the
robot.

In the following section we describe a few computa-
tional models of attention as well as our contributions
concerning a model of attention for a robotic system.
In section 3 we describe how we have integrated our
model in a robotic system. Section 4 provides first
experiments. Finally, section 6 presents conclusions and
some outlooks.

2. Attentive robots

The tasks of the robot which involves visual attention
might be classified roughly into three categories [7]:

• low-level category: uses attention to detect salient
landmarks that can be used for localization and
scene recognition,

• mid-level category: considers attention as a front-
end for object recognition,

• highest-level category: attention is used in a
human-like way to guide the actions of an
autonomous system like a robot.

In the first category robots use landmarks to compute
their position in space. In [20] or [27], authors used static
maps in which specific landmarks are located. In [11],
the robot has to build a map of its environment and
to localize itself inside. Salient regions are tracked over
several frames to obtain a 3D position of the landmarks,
and match them to database entries of all previously seen
landmarks.

In the second category, attention methods are of
special interest for all tasks in object detection and
localization, or in classification of non pre-segmented
images. [13] has integrated attentive object detection on
the robot. In the same way, Curious George, developed
by the laboratory for computational intelligence of the
University of British Columbia was ranked first in the
robot league of the Semantic Robot Vision Challenge
both in 2007 and 2008, and first in the software league
for 20091 [18].

Finally, the highest-level category is dedicated to
robots which have to act in a complex world facing the
same problems as a human. One of the first active vision
systems which integrated visual attention was presented
by [5]. They describe how a robot can fixate and track
the most salient regions in artificial scenes composed of
geometric shapes. In [29], authors present an attention
system which guides the gaze of a humanoid robot. The
authors consider only one feature, visual flow, which
enables the system to attend to moving objects. In [25],
the humanoid robot iCub bases its decisions to move eyes
and neck on visual and acoustic saliency maps. Other
works concerning joint attention were done by [14] and
[26].

As mentioned before, many methods exist, but most
of them need either strong information concerning
the locations of landmarks or concerning objects to
recognize. What we propose is to enhance an easily
tunable model which works in real time in order to
integrate 3D information.

3. Our model and its extension

In this section we present the model, its evaluation
and the way we implemented it in CuriousMind. We
used the first steps of Laurent Itti’s work [15]. The
first part of its architecture relies on the extraction of
three conspicuity maps based on low level characteristics
computation that correspond to the production of
information on the retina. These three conspicuity maps

1http://google-opensource.blogspot.fr/2010/01/2009-semantic-
robot-vision-challenge.html
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are representative of the three main human perceptual
channels: color, intensity, and orientation. The second
part of Itti’s architecture proposes a medium level
system which allows merging conspicuity maps (Cn), and
then simulates a visual attention path on the observed
scene. The focus is determined by “winner-takes-all” and
“inhibition of return” algorithms. This method suffers
from numerous lacks. First, it is not dynamic and do
not support evolution, it cannot model dynamic path
of focus of attention. This method avoids to return to
previous sites already observed, and finally it is very
difficult to add new information. This is mainly why we
have developed our own model.

We have substituted this second part of the
initial algorithm by our optimal competitive dynamics
evolution equation [22], in which a predator density map
I represents the level of interest the image contains and
Cn represent respectively color, intensity and orientation
prey populations i.e. which are the sources of interest
(Figure 2).

For each of the conspicuity maps (color, intensity,
orientation), the preys population Cn evolution is
governed by the following equation:

dCn
x,y

dt
= Cn

x,y + f 4C∗n
x,y
−mCC

n
x,y − sCn

x,yIx,y (1)

with C∗nx,y = Cn
x,y + wCn

x,y
2 and n ∈ {c, i, o,m}, which

means that this equation is valid for Cc, Ci, Co

and Cm which respectively represent color, intensity
and orientation populations. w is a positive controlled
feedback. This feedback models the fact that provided
that there are unlimited resources the more numerous
a population, the better it is able to grow. mn

C is a
mortality rate that allows to decrease the level of interest
of regions in the conspicuity map Cn. The population of
predators I, which consumes the three kinds of preys, is
governed by the following equation:

dIx,y

dt
= s(Px,y + wI2x,y) + sf 4Px,y+wI2

x,y
−mIIx,y (2)

with Px,y =
∑

n∈{c,i,o,m}(C
n
x,y)Ix,y.

This yields to the following set of equations, modeling
the evolution of prey and predator populations on a two
dimensional map:


dCi

x,y

dt = bCi
x,y + f 4Ci

x,y
−mCiCi

x,y − sCi
x,yIx,y

dIx,y

dt = sCi
x,yIx,y + sf 4Px,y

−mIIx,y

(3)
As already mentioned, the positive feedback factor

w enforces the system dynamics and facilitates
the emergence of chaotic behaviors by speeding up
saturation in some areas of the maps. Lastly, the
maximum of the interest map I at time t is the

location of the focus of attention. This system has been
implemented in real time, see [6, 22, 23]. A demonstrator
of our model can be downloaded and tested on
this web page http://www.perreira.net/matthieu/

downloads/vico-visual-attention-model/.

3.1. Initial model evaluation

In [22], we have presented a very complete evaluation
of our model. We used the cross-correlation, Kullback-
Leibler divergence and normalized scanpath saliency
measures between 6 efficient algorithms and an eye-
tracking ground-truth.

In these evaluations, we have shown that our model is
highly stable, robust, exploratory (we can easily define
scene exploration strategy), dynamic, plausible, fast, and
highly configurable.

All measures were done on two image databases.
The first one is proposed in [4]. It is made up of 120
color images which represent streets, gardens, vehicles or
buildings, more or less salient. The second one, proposed
in [17], contains 26 color images. They represent sport
scenes, animals, buildings, indoor scenes or landscapes.
For both databases, eye movement recordings were
performed during a free viewing task.

Regarding the numerous models that exist in
literature, we have decided to benchmark our model.
However, it is hard to make immediate comparisons
between models. To alleviate this problem, T. Judd has
proposed a benchmark data set containing 300 natural
images with eye tracking data from 39 observers to
compare model performances2. She writes, this is the
largest data set with so many viewers per image. She
calculates the performance of 10 models in predicting
ground-truth fixations using three different metrics: a
receiver operating characteristic, a similarity metric, and
the Earth Mover’s Distance. We have downloaded the
database, have runned our model to create saliency maps
of each image and have submitted our maps. We present
the results in Table.1. References of algorithms can be
found in the web page of the benchmark. Evaluation
indicates that our system obtains an average ranking
among almost 20 algorithms. In addition to such a
benchmark, we have demonstrated in [22], that our
model is :

• plausible,

• adaptable,

• invariant,

• rapid,

• extensible,

2http://people.csail.mit.edu/tjudd/SaliencyBenchmark
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Figure 2. Schematic view of the proposed model of visual attention. After a first step similar to Itti [15] work, a prey-
predator approach optimally fuse the information from different conspicuity maps.

Model Name Area under
ROC curve

Similarity

Chance 0.503 0.327

Achanta 0.523 0.297

Itti&Koch 0.562 0.284

SUN saliency 0.672 0.34

Hou & Zhang 0.682 0.319

Torralba 0.684 0.343

Context-Aware saliency 0.742 0.39

Preys/predators model 0.7496 0.4147

Itti&Koch 2 0.75 0.405

Bruce and Tsotsos AIM 0.751 0.39

Narayan model 0.753 0.42

RARE2012 0.7719 0.4363

Saliency for Image Manipulation 0.774 0.439

Center 0.783 0.451

CovSal 0.7999 0.4869

GBVS 0.801 0.472

Judd et al. 0.811 0.506

Humans 0.922 1

Table 1. A comparison of several models realised by
T.Judd.

• dynamic.

3.2. Extension to robotic environment

In order to enhance our model, and make it usable
for robotic applications, we have integrated with the

previous model two new conspicuity maps. One for the
depth and one for the isolated objects.

The depth conspicuity map. This map represents the
depth of the scene in front of the robot. We have used
a Kinect RGB-D sensor [8] from Microsoft which is a
low-cost active 3D camera. The SDK provides Kinect
capabilities for developers to build applications which
include access to low-level streams from the depth sensor,
the color camera sensor, and a four-element microphone
array. The depth sensor consists of an infra red laser
projector combined with a monochrome CMOS sensor,
which captures video data in 3D under any ambient
light conditions. Let Id be the depth image. Each
pixel represents approximately the distance between the
Kinect sensor and each object of the scene. In order to
promote close objects rather than distant ones we define
the depth consipicuity map as the inverse of Id between
computable distances provided by the Kinect.

Figure 3. Transformation used to compute depth
conspicuity pixel value from original depth one.
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Cd(i, j) =
−MaxCd

dynId
∗ Id(i, j) + α (4)

where dynId represents the dynamic of image Id and α
a coefficient to constraint Cd to be positive. In order to
avoid problems due to uncomputed depth in Id, each null
value on Id remains null on Cd. In that sense, this map is
different from the previous one. It is not based on visual
perception but distance relevance. It does not include
any center surround nor any multi-resolution analysis.
Nevertheless, this information can be mixed with the
other map thanks to our prey-predator fusion process
presented in the previous section.

The isolation conspicuity map. This map has to
focus on an isolated element. An isolated element
is characterized by a pixel value different from its
surroundings (lower or higher). In order to be as
coherent as possible we have decided to use the same
approach as the one used to detect information in the
intensity conspicuity map. The difference is that the
input is not the intensity information but the depth
map provided by the Kinect. Thus, we compute centre-
surround differences to determine contrast, by taking
the difference between a fine (center) and a coarse scale
(surround) for the depth feature. This operation across
spatial scales is done by interpolation to the fine scale
and then point-by-point subtraction (Figure 4).

Original image and its depth map

Figure 4. Isolation conspicuity map.

For each of the conspicuity maps (color, intensity
orientation, depth and isolation), the prey population

Cn evolution is governed by the following equation:

dCn
x,y

dt
= Cn

x,y + f 4C∗n
x,y
−mCC

n
x,y − sCn

x,yIx,y (5)

4. Experimentation

For our experimentation we have decided to use a mobile
system composed by a LEGO Mindstorm platform and
a Kinect sensor (Figure 5). The LEGO Mindstorm
allows motion, whereas Kinect allows video and depth
acquisition. This system will be referred as CuriousMind
in the rest of the paper. The LEGO Mindstorms series

Figure 5. CuriousMind: a LEGO Mindstorm vehicle and a
Kinect sensor.

of kits contain software and hardware to create small,
customizable and programmable robots. They include a
programmable brick computer that controls the system,
a set of modular sensors and motors, and LEGO
parts from the Technics line to create the mechanical
systems. For our test we have decided to link the
LEGO Mindstorm and the Kinect to a computer thanks
to a USB liaison rather than Bluetooth. Free tools
in combination with the Robotics Developer Studio
developed by Microsoft [9] enable programming the
Mindstorm using the C# language. Concerning Kinect,
in 2011 Microsoft announced a non-commercial SDK [10]
to build applications with C#, see Figure 6.

Thus, we have decided to use C# to manage our
application. It runs in real time on a computer DELL
precision M4700 core i5 CPU 2.8 GHz, 8Gb of RAM.

4.1. CuriousMind control

In this section, we present the algorithm we have
implemented on CuriousMind.

In the algorithm 1, the first loop is an infinite
thread dedicated to saliency analysis that provides three
different variables. The first one Sal provides the average
value of pixel inside the region of interest. This ROI is
defined by a bounding box around the focus of attention.
Its size is 10% of the dimension of the acquired image.
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Figure 6. Block diagram of CuriousMind.

Algorithm 1 Take a picture of the nearest salient object

Require: Kinect connected
loop

Image I ← Camera acquisition
Image D ← Depth acquisition
Computation of the most salient region from I and
D thanks to our model of attention
Sal←<Region of interest saliency value>
Dist←<Region of interest depth value>
θ ←<Orientation of the ROI>

end loop
Require: LEGO Mindstrom connected
loop
S ← Sal
Rotate CuriousMind from θ
while (S > α ∗ Sal) AND (Distance < β ∗Dist)
do

CuriousMind moves straight forward
end while
if (Distance >= β ∗Dist) then

Take a picture
loop

CuriousMind waits for new orders
end loop

end if
end loop

The second one Dist is the minimum distance given by
the Kinect inside the same region of interest. Finally, θ
is the angle between the normal direction given by the
Kinect and the focus of attention (see figure.7).

Figure 7. Definition of θ, the angle between the normal
direction given by the Kinect and the focus of attention.

The second loop controls the LEGO Mindstorm.
Firstly, the level of saliency is saved into a specific
variable S. Then, CuriousMind rotates to be facing to
the nearest salient region and starts to move towards
this region until the distance is smaller than a portion of
Dist (for our test, we have chosen β = 90%) or until a
new salient region appears. If the robot arrives close to
the region, it takes a picture and waits for new orders. If
a new salient region appears, it starts again the second
loop.

In order to avoid too many modification of
CuriousMind objectives, we have decide to authorize the
robot to be distracted from its initial task only when the
new value of Sal is higher than α times the initial one. We
have chosen α equal to 1.5. This parameter controls the
ability of CuriousMind to be distracted from its initial
goal. In humans this parameters varies with age and
environment knowledge. It is very easy to distract a small
baby from her/his initial goal just by showing her/him
a new object as a baby has little knowledge about this
environment ans she/he wants to learn a maximum of
things. It is not the same with an adult who has a precise
task to do and who has a priority hierarchy. In this
case, the environment change might need to be drastic
to disturb the person.

5. First evaluation

It is very difficult to objectively evaluate our system. In
fact we should evaluate the relevance of our results by
using a head-mounted eye tracking solution. Moreover,
the view of the robot is very close to the ground which
adds practical issues to an eye-tracking based evaluation.
As a first attempt of performance evaluation, we prefer
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assigning a specific objective to our system, and then
subjectively evaluate the result.

The objective assigned to our robot is to go to the
nearest salient object and take a picture of it when the
object is large enough in its field of view. In this way
we have a photographer robot which will provide a set
of pictures of the most interesting locations in the scene
(from its own point of view).

An example is given Figure 9. We have done some
experimentation in our lab, our office and hall. Figure 10
represents a small part of experiments. The objective we
have assigned to the robot makes us slightly overweight
the influence of the depth conspicuity map (twice as
color intensity, orientation and isolation), nevertheless,
when different objects are located to equal distance from
CuriousMind, this one prefers to discover the one which
is alone in its region, or the most salient from a color
or texture point of view if two objects are alone at
equal distance (cf. Figure.10). We present in Figure8,
the saliency map and the picture obtained if the weight
dedicated to isolation and depth is turned to zero.

Figure 8. Most interesting part without taking into
account isolation and depth.

Indeed, CuriousMind goes towards the areas contain-
ing objects of interest. If a new salient object is put
in its field of view closer than the existing one it will
reach the new object. This kind of behavior is a first step
towards adaptation to general purpose events and also to
communication. The action list of the robot can easily be
updated in case of very salient bottom-up location which
will distract the robot from its initial task allowing it
to analyze this new event which might be a threat or
an attempt to communicate with a human who would
intentionally want to attract CuriousMind attention.

The ability to be distracted from the original task by
unexpected events is a step towards emerging behavior.

6. Discussion and conclusion

This article proposes a low-cost robotic system based
on a LEGO Mindstorm platform and a Kinect sensor
which implements an attentive behavior capable of
being distracted from its initial task like humans
do. A parameter can be set to allow more or less
distraction for a robot function of the task priority
or the robot environment knowledge. The attentional
aspect in robotics is complex and has been addressed by
only a few previous works, but represent an important

Original image Isolation conspicuity map

Final saliency map Picture taken by our robot

Figure 9. Presentation of different elements of Curious-
Mind.

milestone for the future. Attention is guided by a real-
time computational system inspired by [22] and modified
in order to take into account depth and isolation which
are crucial in a real-life robotic environment.

We have conducted promising experiments which show
that our robot, CuriousMind, is able to reach the most
interesting locations for a simple application which is to
obtain a panorama of the outstanding views in the lab
from a robotic point of view. Moreover, CuriousMind is
able to cancel previous tasks/actions to respond to an
unexpected distractor if this one is salient enough.

The saliency algorithm provides a generic module
capable of reacting in case of novel and unexpected
situations for which the robot is not previously trained.
This component is complementary to the specific task-
oriented classical modules in robotics. It is able to
respond to danger and provide reactivity in human-robot
communication by a better adaptation to human actions
despite an original task to be solved. This first step
provides CuriousMind the ability to be distracted in the
same way as humans by surprising scenes which can lead
to a robot-human empathy improvement. We also look
for novel behavior as artificial humor emergence from
unexpected situations and unexpected robot behavior.

As a future work, we will implement our system
inside a Nao (Figure 11), an autonomous, programmable
humanoid robot developed by Aldebaran Robotics.
Moreover, we will integrate a motion conspicuity map,
to be reactive when a new element moves inside the
robot field of view. A more in-depth validation will be
conducted using the NUS3D-Saliency Dataset provided
by Tam V. Nguyen [16] which includes depth maps and
eye-tracking results on both 2D and 3D scenes.
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Figure 10. Sample of experiments realised. Left column: initial point of view of CuriousMind. Second column: raw depth
map, third column: saliency maps, fourth column: picture taken by CuriousMind once it reached the interesting objects.

Finally, we want to go deeper into the idea of using
distractors to add a capacity to develop humor both by
detecting situations which might induce humor and by
provoking those situation and trying to make a human
laugh.

Figure 11. Nao looks at its futures capabilities.
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